ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

On m- δ -I-Open Sets and m- δ -I-Continuity

R. Mariappan^{1,*} and M. Murugalingam²

- 1 Department of Mathematics, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamilnadu, India.
 - 2 Department of Mathematics, Sri Sarada College for women, Tirunelveli, Tamilnadu, India.

Abstract: In this paper, we introduce and study the notions of m- δ -I-open sets and m- δ -I-continuity and their related notions

in ideal minimal spaces. Also we investigate the decomposition of m-semi-I-continuous functions and m- α -I-continuous

functions using m- δ -I-open sets.

MSC: 54D10

Keywords: Ideal minimal space, $m-\delta-I$ -open sets, $m-\delta-I$ -closed sets, $m-\delta-I$ -continuity.

© JS Publication. Accepted on: 17.03.2018

1. Introduction

In 2001, Popa and Noiri introduced the notions of minimal structure and m-continuous function as a function defined between a minimal structure and a topological space [3]. A minimal structure m on a nonempty set X is a collection of subsets of X such that $\emptyset \in m$ and $X \in m$ [3]. By (X, m), we denote a nonempty set X with minimal structure m on X. The members of the minimal structure m are called m-open sets and the complement of m-open set is said to be m-closed [3]. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. An ideal is defined as a nonempty collection I of subsets of X satisfying the following two conditions: (i) If $A \in I$ and $B \subset A$, then $B \in I$; (ii) If $A \in I$ and $B \in I$, then $A \cup B \in I$ [1]. For a subset $A \subset X$, $A_m^*(m,I) = \{x \in X : U \cap A \notin I \text{ for each neighborhood } U \text{ of } x\}$ is called the local minimal function of A with respect to I and m [2]. We simply write A_m^* instead of $A_m^*(I,m)$ in case there is no chance for confusion. For every ideal topological space (X,I,m), there exists a minimal structure $m^*(m,I)$ called the *-minimal, finner than m. Additionally $mCl^*(A) = A \cup A_m^*$ for every $A \subset X$.

2. Preliminaries

Definition 2.1. A subset A of a minimal space (X, m) is said to be αm -open[7] (respectively m-preopen [6], m-semiopen [5], βm -open [9], m-b-open [10]) if $A \subset mInt(mCl(mInt(A)))$ (respectively $A \subset mInt(mCl(A))$, $A \subset mCl(mInt(mCl(A)))$, $A \subset mInt(mCl(A)) \cup mCl(mInt(A))$).

Definition 2.2. Let (X, m) be a minimal space. For a subset A of X, the m-closure of A and m-interior of A are defined in [11] as follows:

^{*} E-mail: mariappanbaqavathi@qmail.com

(a). $mCl(A) = \bigcap \{F : A \subset F, X - F \in m\},\$

(b).
$$mInt(A) = \bigcup \{U : U \subset A, U \in m\}.$$

Definition 2.3. A function $f:(X,m) \to (Y,\tau)$ is said to be αm -continuous [7] (respectively m-semicontinuous [5], m-precontinuous [6], βm -continuous, [9] m-b-continuous [10]) if the inverse image of every open set of Y is αm -open (respectively m-semiopen, m-preopen, βm -open, m-b-open) in (X,m).

Definition 2.4 ([13]). A subset A of an ideal minimal space (X, m, I) is said to be m-semi-I-open (resp. m-pre-I-open, m- α -I-open, m- β -I-open, strongly m- β -I-open, m- δ -I-open) if $A \subset mCl^*(mInt(A))$ (respectively $A \subset mInt(mCl^*(A))$, $A \subset mInt(mCl^*(MInt(MCl^*(A)))$), $A \subset mCl(mInt(mCl^*(A)))$, $A \subset mCl^*(mInt(mCl^*(A)))$, $MInt(mCl^*(A)) \subset mCl^*(mInt(A))$.

Remark 2.5. Let (X, τ) be a topological space. The families $\alpha IO(X, m)$, SIO(X, m), PIO(X, m) and $\beta IO(X, m)$ are all minimal structures on X.

Definition 2.6 ([13]). A function $f:(X, m, I) \to (Y, \tau)$ is said to be m-pre-I-continuous (respectively m-semi-I-continuous, m- α -I-continuous, m- δ -I-continuous) if the inverse image of every open set of (Y, τ) is m-pre-I-open (respectively m-semi-I-open, m- α -I-open, m- δ -I-open) in (X, m, I).

Lemma 2.7 ([8]). Let (X, m) be a minimal space and A, B subsets of X. Then $x \in mCl(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m$ containing x. And satisfying the following properties:

- (a). mCl(mCl(A)) = mCl(A).
- (b). mInt(mInt(a)) = mCl(A).
- (c). mInt(X A) = X mCl(A).
- (d). mCl(X A) = X mInt(A).
- (e). If $A \subset B$, then $mCl(A) \subset mCl(B)$.
- (f). $mCl(A \cap B) \subset mCl(A) \cup mcl(B)$.
- (g). $A \subset mCl(A)$ and $mInt(A) \subset A$.

Lemma 2.8 ([4]). Let (X,m) be a minimal space and A a subset of X. Then $x \in mCl(A)$ if and only if $U \cap A \neq \emptyset$ for each $U \in m$ containing x.

3. m- δ -I-Open Set

Definition 3.1. A subset A of minimal space (X, m, I) is said to be m- δ -I-open set if $mInt(mCl^*(A)) \subset mCl^*(mInt(A))$. The Complement of a m- δ -I-open set is called a m- δ -I-closed set.

The family of all m- δ -I-open sets of (X, m, I) is denoted by $m\delta IO(X, m)$.

Proposition 3.2. Let (X, m, I) be a minimal space and A be a subset of X. Then A is m-semi-I-open if and only if it is both m- δ -I-open and strongly m- β -I-open.

Proof. Let A be a m-semi-I-open set, then we have $A \subset mCl^*(mInt(A)) \subset mCl^*(mInt(mCl^*(A)))$. This shows that A is a strongly m- β -I-open set. Moreover, $mInt(mCl^*(A)) \subset mCl^*(A) \subset mCl^*(mInt(M)) = mCl^*(mInt(A))$. Therefore, A is a m- δ -I-open set. Let A be a m- δ -I-open set and strongly m- β -I-open set, then we have $mInt(mCl^*(A)) \subset mCl^*(mInt(A))$. Thus we obtain that $mCl^*(mInt(mCl^*(A))) \subset mCl^*(mInt(A))$. Since A is a strongly m- β -I-open set, we have $A \subset mCl^*(mInt(mCl^*(A))) \subset mCl^*(mInt(A))$ and $A \subset mCl^*(mInt(A))$. Hence A is a m-semi-I-open set. \square

Proposition 3.3. Let (X, m, I) be a minimal space and A be a subset of X. Then A is an m- α -I-open set if and only if it is both m- δ -I-open set and m-pre-I-open set.

Proof. Let A be an $m-\alpha-I$ -open set. Clearly every $m-\alpha-I$ -open set is m-pre-I-open set. Since A is an $m-\alpha-I$ -open set, we have $A \subset mInt(mCl^*(mInt(A))) \subset mInt(mCl^*(A))$. Hence A is a m-pre-I-open set. Let A be a m- $\delta-I$ -open set and m-pre-I-open set. Then we have $mInt(mCl^*(A)) \subset mCl^*(mInt(A))$ and hence $mInt(mCl^*(A)) \subset mInt(mCl^*(mInt(A)))$. Since A is m-pre-I-open, we have $A \subset mInt(mCl^*(A))$. Therefore we obtain that $A \subset mInt(mCl^*(mInt(A)))$ and hence A is an m- α -I-open set.

Remark 3.4. The notion of m- α -I-openness is different from that of strongly m- β -I-openness and m-pre-I-openness.

Example 3.5. Let $X = \{a, b, c, d\}, m = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, \{c, d\}, X\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then

- (a). $A = \{b, d\}$ is m- δ -I-open but not strongly m- β -I-open.
- (b). $A = \{a, b, c\}$ is strongly $m-\beta-I$ -open but not $m-\delta-I$ -open.
- (c). $A = \{c\}$ is m-pre-I-open but not m- δ -I-open.
- (d). $A = \{a, d\}$ is $m-\delta$ -I-open but notm-pre-I-open.

Proposition 3.6. Let A and B be subsets of a minimal space (X, m, I). If $A \subset B \subset mCl^*(A)$ and A is a m- δ -I-open set, then B is a m- δ -I-open set.

Proof. Suppose that $A \subset B \subset mCl^*(A)$. Since A is a m- δ -I-open set, we have $mInt(mCl^*(A)) \subset mCl^*(mInt(A))$. Since $A \subset B$, $mCl^*(mInt(A)) \subset mCl^*(mInt(B))$ and $mInt(mCl^*(A)) \subset mCl^*(mInt(B))$. Since $B \subset mCl^*(A)$, we have $mCl^*(B) \subset mCl^*(A)$ and $mInt(mCl^*(B)) \subset mInt(mCl^*(A))$. Therefore, we obtain $mInt(mCl^*(B)) \subset mCl^*(mInt(B))$. This shows that B is a m- δ -I-open set.

Proposition 3.7. Let A and B be subsets of a minimal space (X, m, I). If A is a m- δ -I-open set, then $A = B \cup C$, where B is an m- α -I-open set, $mInt(mCl^*(C)) = \emptyset$ and $B \cap C = \emptyset$.

Proof. Suppose that A is a m- δ -I-open set, then we have $mInt(mCl^*(A)) \subset mCl^*(mInt(A))$ and $mInt(mCl^*(A)) \subset mInt(mCl^*(mInt(A)))$. Now we have $A = (mInt(mCl^*(A)) \cap A) \cup (A - mInt(mCl^*(A)))$. Now we set $B = mInt(mCl^*(A)) \cap A$ and $C = A - mInt(mCl^*(A))$. We first show that B is an m- α -I-open set. Now we have $mInt(mCl^*(B)) = mInt(mCl^*(mInt(mInt(A)) \cap A)) = mInt(mCl^*(mInt(mCl^*(A)) \cap mInt(A))) = mInt(mCl^*(mInt(A)))$. Since A is a m- δ -I-open set, we have $mInt(mCl^*(mInt(A))) \supset mInt(mCl^*(A)) \supset B$ and thus B is an m- α -I-open set. Next we show that $mInt(mCl^*(C)) = \emptyset$. Since $mCl^*(A) \subset mCl(A)$ for any subset A of X. Therefore, we have $mInt(mCl^*(C)) = mInt(mCl^*(A)) \cap mInt(mCl^*(X - mInt(mCl^*(A)))) \subset mInt(mCl^*(A)) \cap mInt(mCl^*(X - mInt(mCl^*(A)))) \subset mInt(mCl^*(A)) \cap mInt(mCl^*(A)) = \emptyset$. It is obvious that $B \cap C = \emptyset$.

4. On Decompositions of m- α -I-continuity and m-semi-I-continuity

Definition 4.1. A function A function $f:(X, m, I) \to (Y, \tau)$ is said to be m- δ -I-continuous function if the inverse image of every open set of (Y, τ) is m- δ -I-open set in (X, m, I).

Proposition 4.2. For a function $f:(X,m,I)\to (Y,\tau)$, the following statements are equivalent:

- (a). f is a m-semi-I-continuous.
- (b). f is strongly m- β -I-continuous and m- δ -I-continuous.

Proof. The proof is obvious from Proposition 3.1.

Proposition 4.3. For a function $f:(X,m,I)\to (Y,\tau)$, the following statements are equivalent:

- (a). f is a m- α -I-continuous.
- $(b).\ f\ is\ m\text{-}pre\text{-}I\text{-}continuous\ and\ m\text{-}semi\text{-}I\text{-}continuous.}$
- (c). f is m-pre-I-continuous and m- δ -I-continuous.

Proof. The proof is obvious from Proposition 3.1 and Proposition 3.2.

Proposition 4.4. For a function $f:(X,m,I)\to (Y,\tau)$, the following statements are equivalent:

- (a). f is a m- δ -I-continuous function.
- (b). For each $x \in X$ and each open set V in Y with $f(x) \in V$, there exists $U \in m\delta IO(X,m)$ with $x \in U$ such that $f(U) \subset V$.
- (c). The inverse image of each closed set in Y is m- δ -I-closed in X.

Proposition 4.5. For a function $f:(X,m,I)\to (Y,\tau)$, the following statements are equivalent:

- (a). f is a m- δ -I-continuous function.
- (b). $f^{-1}(V) = mInt(f^{-1}(V))$ for every open set V of Y.
- (c). $f^{-1}(F) = mCl(f^{-1}(F))$ for every closed set F of Y.
- (d). $mCl(f^{-1}(B)) \subset f^{-1}(mCl(B))$ for every subset B of Y.
- (e). $f(mCl(A)) \subset mCl(f(A))$ for every subset A of X.
- (f). $f^{-1}(mInt(B)) \subset mInt(f^{-1}(B))$ for every subset B of Y.

Proof. Proof follows from definitions.

References

^[1] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, American Math. Monthly, 97(1990), 295-310.

^[2] O. B. Ozbakir and E. E. Yildirim, On some closed sets in ideal minimal spaces, Acta Math. Hungar., 125(3)(2009), 227-235.

^[3] V. Popa and T. Noiri, On the definition of some generalized forms of continuity under minimal condition, Mem. Fac. Sci. Kochi. Uni. Ser. Math., 22(2001), 9-19.

- [4] V. Popa and T. Noiri, On M-continuous functions, Anal Uni. "Durarea de Jos", Galati, Ser. Mat. Fis. Me. Teor., 18(23)(2000), 31-41.
- [5] W. K. Min, m-Semiopen sets and M-Semicontinuous functions on Spaces with minimal structures, Honam Math. J., (31)(2)(2009), 239-245.
- [6] W. K. Min and Kim Y. K, m-preopen sets and M-Semicontinuous functions on Spaces with minimal structures, Adv. Fuzzy Sets Systems, 4(2009), 237-245.
- [7] W. K. Min, m-open sets and M-continuous functions, Commun. Korean Math. Soc., 25(2010), 251-256.
- [8] H. Maki, K.C. Rao and A. Nagoor, On generalizing semi-open and preopen sets, Pure Appl. Math. Sc., 42(1993), 13-21.
- [9] C. Boonpok, Almost and weakly M-continuous functions in m-spaces, East J. Math. Sci., 43(2010), 41-58.
- [10] Takashi Noiri and Veleriu Popa, On Iterate Minimal Structures and M-Iterate Continuous Functions, Fasciculi Mathematici, 50(2013), 109-118.
- [11] H. Maki, K.C. Rao and A. Nagor Gani, On Generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49(1999), 17-29.
- [12] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [13] S. Jafari, N. Rajesh and R. Saranya, Semiopen sets in Ideal minimal spaces, Vasile Alecsandri University of Bacau Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics, 27(1)(1945), 33-48.