International Journal of Mathematics And its Applications

Lie Classical Method for (2+1)-dimensional Rosenau Equation

S. Padmasekaran ${ }^{1, *}$, R. Asokan ${ }^{2}$ and E. Nakkeeran ${ }^{2}$
1 Department of Mathematics, Periyar University, Salem, Tamil Nadu, India.
2 Department of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India.

Abstract

In this paper, a (2+1)-dimensional Rosenau equation is subjected to Lie's classical method. Classification of its symmetry algebra into one- and two-dimensional subalgebras is carried out in order to facilitate its reduction systematically to $(1+1)$-dimensional PDE and then to first order ODE.

Keywords: Nonlinear PDE, Lie's Classical Method, Lies Algebra, Symmetry Reductions.
(c) JS Publication.

Accepted on: 16.04.2018

1. Introduction

A simple model equation is the Korteweg-de Vries (KdV) equation [6]

$$
\begin{equation*}
v_{t}+6 v v_{x}+\delta v_{x x x}=0 \tag{1}
\end{equation*}
$$

which describe the long waves in shallow water. Its modified version is,

$$
\begin{equation*}
u_{t}-6 u^{2} u_{x}+u_{x x x}=0 \tag{2}
\end{equation*}
$$

and again there is Miura transformation [5]

$$
\begin{equation*}
v=u^{2}+u_{x} \tag{3}
\end{equation*}
$$

between the KdV equation (1) and its modified version (2). In 2002, Liu and Yang [4] studied the bifurcation properties of generalized KdV equation (GKdVE)

$$
\begin{equation*}
u_{t}+a u^{n} u_{x}+u_{x x x}=0, \quad a \in \mathbb{R}, n \in \mathbb{Z}^{+} . \tag{4}
\end{equation*}
$$

Gungor and Winternitz [7] transformed the Generalized Kadomtsev-Petviashvili Equation (GKPE)

$$
\begin{equation*}
\left(u_{t}+p(t) u u_{x}+q(t) u_{x x x}\right)_{x}+\sigma(y, t) u_{y y}+a(y, t) u_{y}+b(y, t) u_{x y}+c(y, t) u_{x x}+e(y, t) u_{x}+f(y, t) u+h(y, t)=0, \tag{5}
\end{equation*}
$$

[^0]to its canonical form and established conditions on the coefficient functions under which (5) has an infinite dimensional symmetry group having a Kac-Moody-Virasoro structure. In [10], they carried out the symmetry analysis of Variable Coefficient Kadomtsev Petviashvili Equation (VCKP) in the form,
$$
\left(u_{t}+f(x, y, t) u u_{x}+g(x, y, t) u_{x x x}\right)_{x}+h(x, y, t) u_{y}=0 .
$$

Burgers' equation $u_{t}+u u_{x}=\gamma u_{x x}$, is the simplest second order NLPDE which balances the effect of nonlinear convection and the linear diffusion. In this chapter, we discuss the symmetry reductions of the $(2+1)$-dimensional Rosenau equation as,

$$
\begin{equation*}
u_{t}+u u_{x}+u_{x}+u_{y}-u_{x x t}-u_{y y t} \tag{6}
\end{equation*}
$$

Our intention is to show that equation (6) admits a three-dimensional symmetry group and determine the corresponding Lie algebra, classify the one- and two-dimensional subalgebras of the symmetry algebra of (6), in order to reduce (6) to $(1+1)$-dimensional PDEs and then to ODEs. We shall establish that the symmetry generators form a closed Lie algebra and this allowed us to use the recent method due to Ahmad, Bokhari, Kara and Zaman [12] to successively reduce (6) to (1+1)dimensional PDEs and ODEs with the help of two-dimensional Abelian solvable subalgebras. This chapter is organised as follows: First, we determine the symmetry group of (6) and write down the associated Lie algebra. secondly, we consider all one-dimensional subalgebras and obtain the corresponding reductions to ($1+1$)-dimensional PDEs. Next, we show that the generators form a closed Lie algebra and use this fact to reduce (6) successively to ($1+1$)- dimensional PDEs and ODEs. Finally, we summarises the conclusions of the present work.

2. The Symmetry Group and Lie Algebra of Rosenau Equation

If (6) is invariant under a one parameter Lie group of point transformations (Bluman and Kumei [3], Olver [11])

$$
\begin{align*}
x^{*} & =x+\epsilon \xi(x, y, t ; u)+O\left(\epsilon^{2}\right), \tag{7}\\
y^{*} & =y+\epsilon \eta(x, y, t ; u)+O\left(\epsilon^{2}\right), \tag{8}\\
t^{*} & =t+\epsilon \tau(x, y, t ; u)+O\left(\epsilon^{2}\right), \tag{9}\\
u^{*} & =u+\epsilon \phi(x, y, t ; u)+O\left(\epsilon^{2}\right) . \tag{10}
\end{align*}
$$

Then the third Prolongation $\operatorname{Pr}^{3}(V)$ of the corresponding vector field

$$
\begin{equation*}
V=\xi(x, y, t ; u) \frac{\partial}{\partial x}+\eta(x, y, t ; u) \frac{\partial}{\partial y}+\tau(x, y, t ; u) \frac{\partial}{\partial t}+\phi(x, y, t ; u) \frac{\partial}{\partial u}, \tag{11}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\left.p^{3}(V) \Omega(x, y, t ; u)\right|_{\Omega(x, y, t ; u=0}=0 \tag{12}
\end{equation*}
$$

The determining equations are obtained from (12) and solved for the infinitesimals ξ, η, τ and ϕ. They are as follows

$$
\begin{align*}
\xi & =k_{1}, \tag{13}\\
\eta & =k_{2}, \tag{14}\\
\tau & =k_{3}, \tag{15}\\
\phi & =0 . \tag{16}
\end{align*}
$$

At this stage, we construct the symmetry generators corresponding to each of the constants involved. Totally there are three generators given by

$$
\begin{align*}
V_{1} & =\partial_{x}, \\
V_{2} & =\partial_{y}, \\
V_{3} & =\partial_{t}, \tag{17}
\end{align*}
$$

The symmetry generators found in Equation (17) form a closed Lie Algebra whose commutation table is shown below.

$\left[V_{i}, V_{j}\right]$	V_{1}	V_{2}	V_{3}
V_{1}	0	0	0
V_{2}	0	0	0
V_{3}	0	0	0

Table 1. Commutator Table

The commutation relations of the Lie algebra, determined by V_{1}, V_{2} and V_{3} are shown in the above table. For this fourdimensional Lie algebra the commutator table for V_{i} is a $(3 \otimes 3)$ table whose $(i, j)^{t h}$ entry expresses the Lie Bracket $\left[V_{i}, V_{j}\right]$ given by the above Lie algebra L. The table is skew-symmetric and the diagonal elements all vanish. The coefficient $C_{i, j, k}$ is the coefficient of V_{i} of the $(i, j)^{t h}$ entry of the commutator table. The Lie algebra L is solvable. In the next section, we derive the reduction of (6) to PDEs with two independent variables and ODEs. These are four one-dimensional Lie subalgebras

$$
L_{s, 1}=\left\{V_{1}\right\}, L_{s, 2}=\left\{V_{2}\right\}, L_{s, 3}=\left\{V_{3}\right\},
$$

and corresponding to each one-dimensional subalgebras we may reduce (6) to a PDE with two independent variables. Further reductions to ODEs are associated with two-dimensional subalgebras. It is evident from the commutator table that there is one two-dimensional solvable non-abelian subalgebras. And there are three two-dimensional Abelian subalgebras, namely,

$$
L_{A, 1}=\left\{V_{1}, V_{2}\right\}, L_{A, 2}=\left\{V_{1}, V_{3}\right\}, L_{A, 3}=\left\{V_{2}, V_{3}\right\} .
$$

2.1. Reductions of (2+1)-dimensional Rosenau equation by One-Dimensional Subalgebras

Case 1: $V_{1}=\partial_{x}$. The characteristic equation associated with this generator is

$$
\frac{d x}{1}=\frac{d y}{0}=\frac{d t}{0}=\frac{d u}{0}
$$

We integrate the characteristic equation to get three similarity variables,

$$
\begin{equation*}
y=r, \quad t=s \quad \text { and } u=W(r, s) . \tag{18}
\end{equation*}
$$

Using these similarity variables in Equation (6) can be recast in the form

$$
\begin{equation*}
W_{s}+W_{r}-W_{r r s}=0 \tag{19}
\end{equation*}
$$

Case 2: $V_{2}=\partial_{y}$. The characteristic equation associated with this generator is

$$
\frac{d x}{0}=\frac{d y}{1}=\frac{d t}{0}=\frac{d u}{0}
$$

Following the standard procedure we integrate the characteristic equation to get three similarity variables,

$$
\begin{equation*}
x=r, \quad t=s \quad \text { and } \quad u=W(r, s) . \tag{20}
\end{equation*}
$$

Using these similarity variables in Equation (6) can be recast in the form

$$
\begin{equation*}
W_{s}+W_{r}+W W_{r}-W_{r r s}=0 \tag{21}
\end{equation*}
$$

Case 3: $V_{3}=\partial_{t}$. The characteristic equation associated with this generator is

$$
\frac{d x}{0}=\frac{d y}{0}=\frac{d t}{1}=\frac{d u}{0}
$$

Following standard procedure we integrate the characteristic equation to get three similarity variables,

$$
\begin{equation*}
x=r, \quad y=s \text { and } u=W(r, s) \tag{22}
\end{equation*}
$$

Using these similarity variables in Equation (6) can be recast in the form

$$
\begin{equation*}
W_{r}+W_{s}+W W_{r}=0 \tag{23}
\end{equation*}
$$

2.2. Reductions of $(2+1)$-dimensional Rosenau equation by Two-Dimensional Abelian Subalgebras

Case 1: Reduction under V_{1} and V_{2}. From Table 1 we find that the given generators commute $\left[V_{1}, V_{2}\right]=0$. Thus either of V_{1} or V_{2} can be used to start the reduction with. For our purpose we begin reduction with V_{1}. Therefore we get Equation (18) and Equation (19). At this stage, we express V_{2} in terms of the similarity variables defined in (18). The transformed V_{2} is

$$
\tilde{V}_{2}=\partial r
$$

The characteristic equation for \tilde{V}_{2} is

$$
\frac{d r}{1}=\frac{d s}{0}=\frac{d W}{0}
$$

Integrating this equation as before leads to new variables

$$
s=\zeta \text { and } W=R(\zeta)
$$

which reduce Equation (19) to

$$
\begin{equation*}
\left.R_{(} \zeta\right)=0 \tag{24}
\end{equation*}
$$

Case 2: Reduction under V_{1} and V_{3}. From Table 1 we find that the given generators commute $\left[V_{1}, V_{3}\right]=0$. Thus either of V_{1} or V_{3} can be used to start the reduction with. For our convenience we begin reduction with V_{1}. At this stage, we express V_{3} in terms of the similarity variables defined in Equation (18). The transformed V_{3} is

$$
\tilde{V}_{3}=\partial_{s}
$$

The characteristic equation for \tilde{V}_{3} is

$$
\frac{d r}{0}=\frac{d s}{1}=\frac{d W}{0}
$$

$$
s=\zeta \text { and } W=R(\zeta)
$$

which reduce Equation (19) to

$$
\begin{equation*}
R_{(\zeta)}=0 \tag{25}
\end{equation*}
$$

Case 3: Reduction under V_{2} and V_{3}. From Table 1 we find that the given generators commute $\left[V_{2}, V_{3}\right]=0$. Thus either of V_{2} or V_{3} can be used to start the reduction with. For our convenience we begin reduction with V_{2}. Therefore we get Equation (20) and Equation (21). At this stage, we express V_{3} in terms of the similarity variables defined in Equation (20). The transformed V_{3} is

$$
\tilde{V}_{3}=\partial_{s} .
$$

The characteristic equation for \tilde{V}_{3} is

$$
\frac{d r}{0}=\frac{d s}{1}=\frac{d W}{0} .
$$

Integrating this equation as before leads to new variables

$$
r=\zeta \text { and } W=R(\zeta)
$$

which reduce Equation (21) to

$$
\begin{equation*}
R_{(\zeta)}(R(\zeta)+1)=0 . \tag{26}
\end{equation*}
$$

3. Conclusions

In this paper, A $(2+1)$-dimensional Rosenau equation, $u_{t}+u_{x}+u_{y}+u u_{x}-\left(u_{x x t}+u_{y y t}\right)=0$ is subjected to Lie's classical method. Equation (6) admits a three-dimensional symmetry group. It is established that the symmetry generators form a closed Lie algebra. Classification of symmetry algebra of (6) into one- and two-dimensional subalgebras is carried out. Systematic reduction to (1+1)-dimensional PDE and then to first order ODEs are performed using one-dimensional and two-dimensional solvable Abelian subalgebras.

References

[1] G. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, (1989).
[2] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, (1986).
[3] A. Ahmad, Ashfaque H. Bokhari, A. H. Kara and F. D. Zaman, Symmetry Classifications and Reductions of Some Classes of (2+1)-Nonlinear Heat Equation, J. Math. Anal. Appl., 339(2008), 175-181.
[4] Z. Liu and C. Yang, The application of bifurcation method to a higher-order KdV equation, J. Math. Anal. Appl., 275(2002), 1-12.
[5] R. M. Miura, Korteweg-de Vries equations and generalizations. A remarkable explicit nonlinear transformation, I.Math. Phys., 9(1968), 1202-1204.
[6] D. J. Korteweg and G. de Vries, On the Chans of Form of Long Waves Advancing in a Rectangular canal, and On a New type of Long Stationary Waves, Philosophical Magazine, 39(1985), 422-443.
[7] F. Gungor and P. Winternitz, Generalized Kadomtsev Petviashvili equation with an infinitesimal dimensional symmetry algebra, J. Math. Anal., 276(2002), 314-328.
[8] F. Gungor and P. Winternitz, Equaivalence Classes and Symmetries of the Variable Coefficient Kadomtsev Petviashvili Equation, Nonlinear Dynamics, 35(2004), 381-396.
[9] S.Padmasekaran and S.Rajeswari, Solitons and Exponential Solutions for a Nonlinear (2+1)dim PDE, IJPAM, 115(9)(2017), 121-130.
[10] S. Padmasekaran and S. Rajeswari, Lie's Symmetries of ($2+1$) dim PDE, International Journal of Mathematics Trends and Technology, 51(6)(2017), 381-390.
[11] S. Padmasekaran and S. Rajeswari, Similarity Solution of Semilinear Parabolic Equations with Variable Coefficients, nternational Journal of Mathematics And its ApplicationsVolume 4(3A)(2016), 201209.

[^0]: * E-mail: padmasekarans@yahoo.co.in

