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Abstract: In this paper, we are consider a (2+1)-dimensional Modified Equal Width Wave equation with damping term is ut +
u+ u3ux − µ(uxxt + uyyt) = 0, subjected to Lies classical method. Classification of its symmetry algebra into one- and

two-dimensional subalgebras is carried out in order to facilitate its reduction systematically to (1+1)-dimensional PDE

and then to first order ODE.
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1. Introduction

A simple model equation is the Korteweg-de Vries (KdV) equation [10]

vt + 6vvx + δvxxx = 0, (1)

which describe the long waves in shallow water. Its modified version is,

ut − 6u2ux + uxxx = 0 (2)

and again there is Miura tramsformation [12]

v = u2 + ux, (3)

between the KdV equation (1) and its modified version (2). In 2002, Liu and Yang [9] studied the bifurcation properties of

generalized KdV equation (GKdVE)

ut + aunux + uxxx = 0, a ∈ R, n ∈ Z+. (4)

Gungor and Winternitz [12] transformed the Generalized Kadomtsev-Petviashvili Equation (GKPE)

(ut + p(t)uux + q(t)uxxx)x + σ(y, t)uyy + a(y, t)uy + b(y, t)uxy + c(y, t)uxx + e(y, t)ux + f(y, t)u+ h(y, t) = 0, (5)
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to its canonical form and established conditions on the coefficient functions under which (5) has an infinite dimensional

symmetry group having a Kac-Moody-Virasoro structure. In [1-4], they carried out the symmetry analysis of Variable

Coefficient Kadomtsev Petviashvili Equation (VCKP) in the form,

(ut + f(x, y, t)uux + g(x, y, t)uxxx)x + h(x, y, t)uy = 0.

Burgers’ equation ut + uux = γuxx, is the simplest second order NLPDE which balances the effect of nonlinear convection

and the linear diffusion. In this paper, we discuss the symmetry reductions of the (2+1)-dimensional modified Equal Width

Wave equation with damping term as,

ut + u3ux + u− (uxxt + uyyt). (6)

Our intention is to show that equation (6) admits a three-dimensional symmetry group and determine the corresponding

Lie algebra, classify the one-and two-dimensional subalgebras of the symmetry algebra of (6) in order to reduce (6) to

(1+1)-dimensional PDEs and then to ODEs. We shall establish that the symmetry generators form a closed Lie algebra

and this allowed us to use the recent method due to Ahmad, Bokhari, Kara and Zaman [12] to successively reduce (6) to

(1+1)-dimensional PDEs and ODEs with the help of two-dimensional Abelian and non-Abelian solvable subalgebras. In

this work, organised as follows: First, we determine the symmetry group of (6) and write down the associated Lie algebra.

secondly, we consider all one-dimensional subalgebras and obtain the corresponding reductions to (1+1)-dimensional PDEs.

Next, we show that the generators form a closed Lie algebra and use this fact to reduce (6) successively to (1+1)-dimensional

PDEs and ODEs. Finally, we summarises the conclusions of the present work.

2. The Symmetry Group and Lie Algebra of Modified Equal Width
Wave Equation with Damping Term

If (6) is invariant under a one parameter Lie group of point transformations (Bluman and Kumei [2-6], Olver [11])

x∗ = x+ ε ξ(x, y, t;u) +O(ε2), (7)

y∗ = y + ε η(x, y, t;u) +O(ε2), (8)

t∗ = t+ ε τ(x, y, t;u) +O(ε2), (9)

u∗ = u+ ε φ(x, y, t;u) +O(ε2). (10)

Then the third Prolongation Pr3(V ) of the corresponding vector field

V = ξ(x, y, t;u)
∂

∂x
+ η(x, y, t;u)

∂

∂y
+ τ(x, y, t;u)

∂

∂t
+ φ(x, y, t;u)

∂

∂u
, (11)

satisfies

pr3(V )Ω(x, y, t;u)|Ω(x,y,t;u=0 = 0. (12)

The determining equations are obtained from (12) and solved for the infinitesimals ξ, η, τ and φ. They are as follows

ξ = a1, (13)

η = a3, (14)

τ = a2, (15)
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φ = 0. (16)

At this stage, we construct the symmetry generators corresponding to each of the constants involved. Totally there are four

generators given by

V1 = ∂x,

V2 = ∂t,

V3 = ∂y, (17)

The symmetry generators found in Eq.(17) form a closed Lie Algebra whose commutation table is shown below.

[Vi, Vj ] V1 V2 V3

V1 0 0 0

V2 0 0 0

V3 0 0 0

Table 1. Commutator Table

The commutation relations of the Lie algebra, determined by V1, V2 and V3 are shown in the above table. For this four-

dimensional Lie algebra the commutator table for Vi is a (3⊗ 3) table whose (i, j)th entry expresses the Lie Bracket [Vi, Vj ]

given by the above Lie algebra L. The table is skew-symmetric and the diagonal elements all vanish. The coefficient Ci,j,k

is the coefficient of Vi of the (i, j)th entry of the commutator table. The Lie algebra L is solvable. In the next section,

we derive the reduction of (6) to PDEs with two independent variables and ODEs. These are three one-dimensional Lie

subalgebras

Ls,1 = {V1} , Ls,2 = {V2} , Ls,3 = {V3} ,

and corresponding to each one-dimensional subalgebras we may reduce (6) to a PDE with two independent variables. Further

reductions to ODEs are associated with two-dimensional subalgebras. It is evident from the commutator table that there is

no two-dimensional solvable non-abelian subalgebras.

3. Reductions of (2+1)-dimensional Modified Equal Width Wave
Equation with Damping Term by One-Dimensional Subalgebras

Case 1: V1 = ∂x. The characteristic equation associated with this generator is

dx

1
=
dy

0
=
dt

0
=
du

0
.

We integrate the characteristic equation to get three similarity variables,

y = r, t = s and u = W (r, s). (18)

Using these similarity variables in Equation (6) can be recast in the form

Ws +W − (Wrrs) = 0. (19)
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Case 2: V2 = ∂t. The characteristic equation associated with this generator is

dx

0
=
dy

0
=
dt

1
=
du

0
.

Following the standard procedure we integrate the characteristic equation to get three similarity variables,

x = r, y = s and u = W (r, s). (20)

Using these similarity variables in Equation (6) can be recast in the form

Ws(W
2Wr + 1) = 0. (21)

Case 3: V3 = ∂y. The characteristic equation associated with this generator is

dx

0
=
dy

1
=
dt

0
=
du

0
.

Following standard procedure we integrate the characteristic equation to get three similarity variables,

x = r, t = s and u = W (r, s). (22)

Using these similarity variables in Equation (6) can be recast in the form

Ws +W 3Wr +W −Wrrs = 0. (23)

4. Reductions of (2+1)-dimensional Modified Equal Width Wave
Equation with Damping Term by Two-Dimensional Abelian Subalge-
bras

Case 1: Reduction under V1 and V2. From Table 1 we find that the given generators commute [V1, V2] = 0. Thus either of

V1 or V2 can be used to start the reduction with. For our purpose we begin reduction with V1. Therefore we get Equation

(18) and Equation (19). At this stage, we express V2 in terms of the similarity variables defined in (18). The transformed

V2 is

Ṽ2 = ∂s.

The characteristic equation for Ṽ2 is

dr

0
=
ds

1
=
dW

0
.

Integrating this equation as before leads to new variables

r = ζ and W = R(ζ),

which reduce Equation (19) to

R(ζ) = 0 . (24)

Case 2: Reduction under V1 and V3. From Table 1 we find that the given generators commute [V1, V3] = 0. Thus either

of V1 or V3 can be used to start the reduction with. For our convenience we begin reduction with V1. Therefore we get
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Equation (22) and Equation (23). At this stage, we express V3 in terms of the similarity variables defined in Equation (22).

The transformed V3 is

Ṽ3 = ∂r.

The characteristic equation for Ṽ3 is

dr

1
=
ds

0
=
dW

0
.

Integrating this equation as before leads to new variables

s = ζ and W = R(ζ).

which reduce Equation (19) to

R(ζ) +R
′
(ζ) = 0. (25)

Case 3: Reduction under V2 and V3. From Table 1 we find that the given generators commute [V2, V3] = 0. Thus either of

V2 or V3 can be used to start the reduction with. For our convenience we begin reduction with V2. At this stage, we express

V3 in terms of the similarity variables defined in Equation (20). The transformed V3 is

Ṽ3 = ∂r.

The characteristic equation for Ṽ3 is

dr

1
=
ds

0
=
dW

0
.

Integrating this equation as before leads to new variables

s = ζ and W = R(ζ).

which reduce Equation (21) to

Rζ = 0 . (26)

5. Conclusions

In this paper, A (2+1)-dimensional modified Equal width wave equation with damping term, ut+u
3ux+u−(uxxt+uyyt) = 0

where µ ∈ R is subjected to Lie’s classical method. Equation (6) admits a three-dimensional symmetry group. (iii) It is

established that the symmetry generators form a closed Lie algebra. Classification of symmetry algebra of (6) into one- and

two-dimensional subalgebras is carried out. Systematic reduction to (1+1)-dimensional PDE and then to first order ODEs

are performed using one-dimensional and two-dimensional solvable Abelian subalgebras.
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