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1. Introduction

One of the important interactions among species is the predator-prey relationship and it has been extensively studied because

of its universal existence. Predator-prey models are argubly the most fundamental building blocks of any bio and ecosystems

as all biomasses are grown out of their resource masses. One of the familiar factors affecting the dynamics of predator-prey

models is the functional response, which relates a single predator’s prey consumption rate to prey population density. Lotka

[1] and Volterra [2] introduced the first predator-prey model in 1925 and 1926 respectively. In recent years, predator-prey

model takes the form: 
x′ = rx

(
1− x

K

)
− g(x)y,

y′ = y(−d+ µg(x)).

(1)

Here, x and y respectively stand for the densities of the prey and the predator and g(x) is the functional response function,

which reflects the capture ability of the predator to prey. For the detailed biological meaning, see for example [3–5] and the

references contained therein. When we consider the exploit of human being should be added, the model (1) becomes:


x′ = rx

(
1− x

K

)
− g(x)y − h1,

y′ = y(−d+ µg(x))− h2.

(2)
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For the study on systems with harvesting, one may consult [6–12] etc. In 1969, Hassell and Varley’s [13] introduced a general

predator-prey system, in which the functional response dependents on the predator density in different way. It is called a

Hassell-Varley type functional response which takes the following form:
x′ = rx

(
1− x

k

)
− cxy

myγ+x
,

y′ = y
(
− d+ fx

myγ+x

)
, γ ∈ (0, 1)

(3)

where γ is called the Hassell-Varley constant. In the typical predator-prey system interaction where predators do not form

groups, one can assume that γ = 1, producing the so-called ratio dependent predator-prey system. For terrestrial predators

that form a fixed number of tight groups, it is often reasonable to assume γ = 1
2
. For aquatic predators that form a fixed

number of tight groups, γ = 1
3

may be more appropriate. A special case of system (3) with γ = 0 and γ = 1 in ref [3, 14] cited

therein. Hsu [15] studied system (3) and presented a systematic global qualitative analysis to it. Kai Wang [16] discussed

the following delayed predator-prey model with Hassell-Varley type functional response:
x′(t) = x(t)

(
a(t)− b(t)x(t− τ(t))− c(t)y(t)

myγ(t)+x(t)

)
,

y′(t) = y(t)
(
− d(t) + r(t)x(t)

myγ(t)+x(t)

)
, γ ∈ (0, 1)

(4)

and established the existence of positive periodic solutions. In [17], the authors proposed a non-selective harvesting predator-

prey model with multiple delays as follows:
x′(t) = x(t)

(
r1(t)− b(t)x(t− τ1(t))− a1(t)y(t)

myγ(t)+x(t)

)
− c1(t)x(t),

y′(t) = y(t)
(
− r2(t) + a2(t)x(t−τ2(t))

myγ(t)+x(t−τ2(t))

)
− c2(t)y(t).

(5)

They considered the periodic case and derived case of easily verifiable sufficient conditions on the existence of positive

periodic solutions of (5).

Theorem 1.1 ([17]). Suppose that the following assumptions hold.

(I). τ ′1(t) < 1 and τ ′2(t) < 1, for t ∈ R,

(II). ā2 > r̄2 + c̄2, m(r̄1 − c̄1) > ā1,

(III). The following algebraic equation set Γ =
{

(x, y) : r̄1 − c̄1 − b̄x − ā1y
myγ+x

= 0, − r̄2 − c̄2 + ā2x
myγ+x

= 0
}

has a finite

number of real-valued positive solution.

Then system (5) has at least one positive periodic solution.

As we know, in population dynamics, many evolutionary processes experience short-time rapid change after undergoing

relatively long smooth variation. Examples include annual harvest and stock of species as well as annual immigration.

Incorporating the phenomena gives us impulsive differential systems. A lot of work has been done in this direction to

namely a few see [18, 19] and the references therein. For the theory of impulsive differential equations we refer the reader to

[20–22]. In this paper, we shall consider (5) with impulsive effect, precisely, we consider the following non-selective harvesting

impulsive predator-prey system with multiple delays:

dx(t)
dt

= x(t)
(
r1(t)− b(t)x(t− τ1(t))− a1(t)y(t)

myγ(t)+x(t)

)
− c1(t)x(t), t 6= tk,

dy(t)
dt

= y(t)
(
− r2(t) + a2(t)x(t−τ2(t))

myγ(t)+x(t−τ2(t))

)
− c2(t)y(t), t 6= tk,

∆x(t) = x(t+)− x(t) = d1kx(t), t = tk,

∆y(t) = y(t+)− y(t) = d2ky(t), t = tk, k = 1, 2, 3, · · · , q

(6)
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where a1(t), a2(t), r1(t), r2(t), b(t), c1(t), c2(t), τ1(t), τ2(t) are continuously nonnegative periodic functions with period ω,

m ≥ 0, γ ∈ (0, 1) and d1k, d2k ∈ (−1, 0] (k ∈ N), {tk} is a stricktly increasing sequence with t1 > 0 and limk→∞ tk =∞, we

further assume that there exists q ∈ N such that d1(k+q) = d1k, d2(k+q) = d2k and tk+q = tk+ω for k ∈ N . From the point of

view of mathematical biology, we only consider the positive periodic solutions of (6). By applying the continuation theorem

of coincidence degree theory [23]. We will derive sufficient conditons on the existence of positive periodic solutions. As we

see, our result not only improve but also generalise Theorem (1) in Section 2. Then the result demonstrated by MATLAB

simulation in Section 3.

2. Existence of positive periodic solutions

Before exploring the existence of periodic solutions of system, we will make some preparations. Let X, Y be real Banach

spaces, L : DomL ⊂ X → Y be a linear mapping and N : X → Y be a continuous mapping. The mapping L is said to be a

Fredholm mapping of index zero, if dimKerL=codimImL <+∞ and ImL is closed in Y . If L is a Fredholm mapping of index

zero, then there exists continuous projectors P : X → X and Q : Y → Y such that ImP = KerL, KerQ = ImL = Im(I−Q).

It follows that the restriction LP of L to DomL ∩KerP : (I − P )X → ImL is invertible. Denote the inverse of LP by KP .

Lemma 2.1 ([23]). Let Ω ⊂ X be an open bounded set, L be a Fredholm mapping of index zero and N be L-compact on Ω̄.

Assume

(a). for all λ ∈ (0, 1) and x ∈ ∂Ω ∩DomL, Lx 6= λNx,

(b). for all x ∈ ∂Ω ∩DomL, QNx 6= 0,

(c). deg(JQN,Ω ∩KerL, 0) 6= 0.

Then Lx = Nx has at least one solution in Ω̄ ∩DomL.

Lemma 2.2 ([19]). The set F ⊂ PCω is relatively compact iff

(a). F is bounded, that is ‖φ‖ = supt∈[0,ω] |φ(t)| ≤M for each φ ∈ F and for some M > 0,

(b). F is quasi-equicontinuous.

Lemma 2.3. Let φ ∈ PC′ω. Then for t ∈ [0, ω]

φ(t) ≤ |φ(s)|+ 1

2

[∫ ω

0

|φ′(s)|ds+

∣∣∣∣∣
q∑
k=1

∆φ(tk)

∣∣∣∣∣
]
, φ(t) ≥ |φ(s)| − 1

2

[∫ ω

0

|φ′(s)|ds+

∣∣∣∣∣
q∑
k=1

∆φ(tk)

∣∣∣∣∣
]
.

Lemma 2.4 ([16]). If τ ∈ C′(R,R) with (i) τ(t+ ω) ≡ τ(t) and (ii) dτ(t)
dt

< 1 for t ∈ [0, ω], then function µ(t) = t− τ(t)

has a unique inverse µ−1(t) satisfying µ ∈ C(R,R) with µ−1(s+ ω) ≡ µ−1(s) + ω for s ∈ [0, ω].

In what follows, for convenience, we shall use the notation ḡ = 1
ω

∫ ω
0
g(t)dt, gM = maxt∈[0, ω] g(t), gL = mint∈[0, ω] g(t),

where g is piecewise continuous function with period ω.

Theorem 2.5. For system (6), assume that:

(I). τ ′1(t) < 1 and τ ′2(t) < 1, for t ∈ R,

(II). ā2 > r̄2 + c̄2 − d2
ω

, m(r̄1 − c̄1 + d1
ω

) > ā1,
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(III). The following algebraic equation set Γ =
{

(x,y) : d1
ω

+ r̄1 − c̄1 − b̄x− ā1y
myγ+x

= 0, d2
ω
− r̄2 − c̄2 + ā2x

myγ+x
= 0
}

has a

finite number of real-valued positive solution.

Then system (6) has at least one postive periodic solution.

Proof. By the biological meaning, we only focus on the positive periodic solutions to system (6). Let x(t) = eu1(t) and

y(t) = eu2(t). Then system (6) becomes:



u′1(t) = r1(t)− c1(t)− b(t)eu1(t−τ1(t)) − a1(t)eu2(t)

meγu2(t)+eu1(t) ,

u′2(t) = −(r2(t) + c2(t)) + a2(t)eu1(t−τ2(t))

meγu2(t)+eu1(t−τ2(t)) ,

∆u1(t) = log(1 + d1k),

∆u2(t) = log(1 + d2k).

(7)

In order to apply Lemma 2.1 to study the existence of positive periodic solutions to above system, we set

X = {u(t) = (u1(t), u2(t))T ∈ PCω(R,R2) : ui(t+ ω) = ui(t), i = 1, 2}, Y = X ×R2q, q = 1, 2, 3 . . . k.

and

‖u‖X = sup
t∈[0, ω]

|u1(t)|+ sup
t∈[0, ω]

|u2(t)|.

‖u‖Y = ‖u‖X + ‖y‖, u ∈ X, y ∈ R2q.

Then both (X, ‖.‖X) and (Y, ‖.‖Y ) are Banach spaces. Define

DomL = {u(t) = (u1(t), u2(t))T ∈ PCω(R,R2) : ui ∈ PC′ω, i = 1, 2}.

L : DomL ∩X → Y,Lu(t) = (u′1(t), u′2(t),∆u1(tk),∆u2(tk))T .

N : X → Y,

N

u1(t)

u2(t)

 =


r1(t)− c1(t)− b(t)eu1(t−τ1(t)) − a1(t)eu2(t)

meγu2(t)+eu1(t)

−(r2(t) + c2(t)) + a2(t)eu1(t−τ2(t))

meγu2(t)+eu1(t−τ2(t))

 ,


log(1 + d1k

log(1 + d2k



q

k=1

 .

P : X → X, P ((u1, u2)T ) = (ū1, ū2)T .

Q : Y → Y,

Q


u1

u2

 ,


mk

nk



q

k=1

 =




1
ω

∫ ω
0

u1(t) dt+ 1
ω

q∑
k=1

mk

1
ω

∫ ω
0

u2(t) dt+ 1
ω

q∑
k=1

nk

 ,


0

0



q

k=1

 .

It is not difficult to see that

KerL = {u = (u1, u2)T ∈ X : ∃ c ∈ R2, (u1(t), u2(t)) = c, for t ∈ R}.

ImL = {y = (f, a1, a2, ..., aq) ∈ Y : ∃ f ∈ DomL,

∫ ω

0

f(s)ds+

q∑
k=1

ak = 0}.
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Since ImL is closed in Y . ImP = KerL, KerQ = ImL, and dimkerL = codimL = 2. We know that L is a Fredholm mapping

of index zero. Moreover, the generalized inverse (to L) Kp : ImL→ KerP ∩DomL is

Kp(u) =

∫ ω

0

u(s) ds+
∑

0<tk<t

ak −
1

ω

∫ ω

0

∫ t

0

u(s) dsdt−
q∑
k=1

ak.

Then direct computation gives us

QN(u) =




1
ω

∫ ω
0

[
r1(t)− c1(t)− b(t)eu1(t−τ1(t)) − a1(t)eu2(t)

meγu2(t)+eu1(t)

]
dt+ 1

ω

q∑
k=1

log(1 + d1k)

1
ω

∫ ω
0

[
− (r2(t) + c2(t)) + a2(t)eu1(t−τ2(t))

meγu2(t)+eu1(t−τ2(t))

]
dt+ 1

ω

q∑
k=1

log(1 + d2k)

 ,


0

0



q

k=1


and

Kp(I −Q)Nu =


∫ t

0

[
r1(s)− c1(s)− b(s)eu1(s−τ1(s)) − a1(s)eu2(s)

meγu2(s)+eu1(s)

]
ds+

∑
o<tk<t

log(1 + d1k)

∫ t
0

[
− (r2(s) + c2(s)) + a2(s)eu1(s−τ2(s))

meγu2(s)+eu1(s−τ2(s))

]
ds+

∑
o<tk<t

log(1 + d2k)



−


1
ω

∫ ω
0

∫ t
0

[
r1(s)− c1(s)− b(s)eu1(s−τ1(s)) − a1(s)eu2(s)

meγu2(s)+eu1(s)

]
dsdt+

q∑
k=1

log(1 + d1k)

1
ω

∫ ω
0

∫ t
0

[
− (r2(s) + c2(s)) + a2(s)eu1(s−τ2(s))

meγu2(s)+eu1(s−τ2(s))

]
dsdt+

q∑
k=1

log(1 + d2k)



−


( t
ω
− 1

2
)
∫ ω

0

[
r1(t)− c1(t)− b(t)eu1(t−τ1(t)) − a1(t)eu2(t)

meγu2(t)+eu1(t)

]
dt+

q∑
k=1

log(1 + d1k)

( t
ω
− 1

2
)
∫ ω

0

[
− (r2(t) + c2(t)) + a2(t)eu1(t−τ2(t))

meγu2(t)+eu1(t−τ2(t))

]
dt+

q∑
k=1

log(1 + d2k)

 .

By Lebesque covergence theorem, QN and Kp(I−Q)N are continuous. Furthermore, it follows from Lemma 2.2 that QN(Ω̄)

and Kp(I −Q)N(Ω̄) are relatively compact for any open bounded set Ω ⊂ X. Therefore, N is L-compact on Ω̄ for any open

bounded set Ω ⊂ X. In the following, we consider the operator equation, Lu = λNu, λ ∈ (0, 1), that is,



u′1(t) = λ
[
r1(t)− c1(t)− b(t)eu1(t−τ1(t)) − a1(t)eu2(t)

meγu2(t)+eu1(t)

]
,

u′2(t) = λ
[
− (r2(t) + c2(t)) + a2(t)eu1(t−τ2(t))

meγu2(t)+eu1(t−τ2(t))

]
,

∆u1(t) = λ[log(1 + d1k)],

∆u2(t) = λ[log(1 + d2k)].

(8)

Integrating of both sides of of the first equation in equations (8) gives

ω(r̄1 − c̄1) + d1 =

∫ ω

0

[
b(t)eu1(t−τ1(t)) +

a1(t)eu2(t)

meγu2(t) + eu1(t)

]
dt (9)

In view of Lemma 2.4, conditions (i) and (ii), we obtain

∫ ω

0

b(t)eu1(t−τ1(t))dt =

∫ ω

0

b(µ−1(t))eu1(t)

1− τ ′1(µ−1(t))
dt,

which together with (9) gives

ω(r̄1 − c̄1) + d1 =

∫ ω

0

[ b(µ−1(t))eu1(t)

1− τ ′1(µ−1(t))
+

a1(t)eu2(t)

meγu2(t) + eu1(t)

]
dt, (10)
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which yields, ∫ ω

0

eu1(t)dt ≤
ω(r̄1 − c̄1 + d1

ω
)

ΛL1

M
= ωN1, (11)

where Λ1 = b(µ−1(t))

1−τ ′1(µ−1(t))
. Multiplying both sides of the second equation of equations (8) by eγu2(t) and integrating them

from 0 to ω, we have

∫ ω

0

(r2(t) + c2(t)− d2)eγu2(t)dt =

∫ ω

0

a2(t)eu1(t−τ2(t))+γu2(t)

meγu2(t) + eu1(t−τ2(t))
dt,

<
aM2
m

∫ ω

0

eu1(t−τ2(t))dt,

=
aM2
m

∫ ω

0

eu1(t)

1− τ ′2(µ−1(t))
dt,

<
aM2 ΛM2
m

∫ ω

0

eu1(t)dt,

where Λ2 = 1
1−τ ′1(µ−1(t))

. Together with (11) gives

∫ ω

0

eγu2(t)dt <
aM2 ΛaM2

m(rL2 + cL2 − d2)

∫ ω

0

eu1(t)dt,

≤ ω
[ (r̄1 − c̄1 + d1

ω
)aM2 ΛM2

mΛL1 (rL2 + cL2 − d2)

]
,

M
= ωN2. (12)

If u2(t) ≥ 0, then eγu2(t) ≥ 1 and (11) gives

N2 ≥
1

ω

∫ ω

0

eγu2(t)dt ≥ 1,

which implies that there must be a constant β1 ∈ [0, ω] such that

u2(β1) ≤ logN2

γ
, (13)

which together with (11) and (12) yields

N1 ≥
1

ω

∫ ω

0

eu1(t)dt,

>
m(rL2 + cL2 − d2)

ωaM2 ΛM2

∫ ω

0

eγu2(t)dt,

≥ m(rL2 + cL2 − d2)

aM2 ΛM2
,

which yields that there is a constant α1 ∈ [0, ω] such that

u1(α1) ≤ max
{
| logN1|,

∣∣∣ log
m(rL2 + cL2 − d2)

aM2 ΛM2

∣∣∣}. (14)

On the other hand, if u2(t) < 0 (10) yields

ω(r̄1 − c̄1) + d1 ≤ ΛM1

∫ ω

0

eu1(t)dt+
1

m

∫ ω

0

a1(t)e(1−γ)u2(t)dt, (15)

and 0 < e(1−γ)u2(t) ≤ 1, it follows from (15) that

ω(r̄1 − c̄1) + d1 ≤ ΛM1

∫ ω

0

eu1(t)dt+
ωā1

m
,
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together with condition (II), we have

∫ ω

0

eu1(t)dt >
ω

mΛM1

[
m(r̄1 − c̄1 +

d1

ω
)− ā1)

]
M
= ωk1 > 0, (16)

and by (11), we get

N1 ≥
1

ω

∫ ω

0

eu1(t)dt ≥ k1,

which yields that there is a constant α2 ∈ [0, ω] such that

u1(α2) ≤ max{| logN1|, | log k1|}. (17)

By (14) and (17), we know that there exists constant α ∈ [0, ω] such that

u1(α) ≤ max
{
| logN1|, | log k1|,

∣∣∣ log
m(rL2 + cL2 − d2)

aM2 ΛM2

∣∣∣} M
= H1. (18)

Meanwhile, from condition (II), and the second equation of (8) and (16) we obtain

0 < ω
[
ā2 −

(
r̄2 + c̄2 −

d2

ω

)]
=

∫ ω

0

ma2(t)eγu2(t)

meγu2(t) + eu1(t−τ2(t))
dt,

≤ maM2
∫ ω

0

eγu2(t)

eu1(t−τ2(t))
dt,

≤ maM2
(
∫ ω

0
e2γu2(t))

1
2

(
∫ ω

0
e2u1(t−τ2(t)))

1
2

,

= maM2
(
∫ ω

0
e2γu2(t))

1
2

(
∫ ω

0
Λ2e2u1(t))

1
2

,

≤ maM2
(
∫ ω

0
e2γu2(t))

1
2

(ΛL2 )
1
2 (
∫ ω

0
e2γu1(t))

1
2

,

≤ maM2

k1(ωΛL2 )
1
2

(∫ ω

0

e2γu2(t)
) 1

2
.

Thus, we have

1

ω

∫ ω

0

e2γu2(t)dt ≥ ΛL2

[
ωk1

(
ā2 −

(
r̄2 + c̄2 − d2

ω

))
maM2

]2

M
= k2

2, (19)

which yield that there is a constant β2 ∈ [0, ω] such that

u2(β2) ≥ log k2

γ
. (20)

Thus by (13) and (20), there must be a constant β ∈ [0, ω] such that

u2(β) ≤ max

{∣∣∣ logN2

γ

∣∣∣, ∣∣∣ log k2

γ

∣∣∣} M
= H2. (21)

Now, by (8), (18) and (21), we obtain

|u1(t)| ≤ |u1(α)|+ 1

2

(∫ ω

0

|u′1(t)|dt+

∣∣∣∣∣
q∑
k=1

log(1 + d1k

∣∣∣∣∣
)

≤ H1 + ω(r̄1 − c̄1) +
1

2

(
q∑
k=1

log(1 + d1k) +

∣∣∣∣∣
q∑
k=1

log(1 + d1k)

∣∣∣∣∣
)

M
= M1 (22)

|u2(t)| ≤ |u1(β)|+ 1

2

(∫ ω

0

|u′2(t)|dt+

∣∣∣∣∣
q∑
k=1

log(1 + d2k)

∣∣∣∣∣
)

≤ H2 + ω(r̄2 + c̄2)− 1

2

(
q∑
k=1

log(1 + d2k)−

∣∣∣∣∣
q∑
k=1

log(1 + d2k)

∣∣∣∣∣
)

M
= M2. (23)
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From condition (II), we denote by (u∗1i(t)), (u
∗
2i(t)), i = 1, 2, . . . q, all the real-valued solutions of the following algebraic

solution set 
d1
ω

+ r̄1 − c̄1 − b̄eu1(t) − µ
[

ā1e
u2(t)

meγu2(t)+eu1(t)

]
= 0,

d2
ω
− r̄2 − c̄2 + ā2eu1(t)

meγu2(t)+eu1(t) = 0.

(24)

Let use take

M0
M
= e

{
max1≤i≤k,t∈[0,ω]{(u∗1i(t)), (u∗2i(t)}

}
. (25)

And, now together with (22), (23) and (25) we can set M = M1 +M2 +M0 and take Ω = {u = (u1(t), u2(t))T : ‖u‖ < D}.

It is clear that Ω verifies the requirement in Lemma 2.1. If u ∈ ∂Ω ∩KerL = ∂Ω ∩ R2, then u is a constant vector in R2

with ‖u‖ = D satisfying

QN

u1(t)

u2(t)

 =

 d1
ω

+ r̄1 − c̄1 − b̄eu1(t) − ā1eu2(t)

meγu2(t)+eu1(t)

d2
ω
− r̄2 − c̄2 + ā2eu1(t)

meγu2(t)+eu1(t)

 6=
0

0

 .

Consider a homotopy Bµ((u1, u2)T ) = µJQN((u1, u2)T ) + (1− µ)φ((u1, u2)T ). By a direct computation and the invariance

property of homotopy, one has deg{JQN,KerL ∩ ∂Ω, 0} = deg{φ,KerL ∩ ∂Ω, 0} = l > 0. By now we have proved

that Ω verifies all the requirements in Lemma 2.1. Then, we get that equations (8) have at least one periodic solution

(u∗1(t)), (u∗2(t))T with period ω in DomL ∩ Ω̄, which implies that at least one positive periodic solution (eu
∗
1(t), eu

∗
2(t)) with

period ω. This completes the proof of theorem.

3. Examples

We illustrative the theorem with few examples.

Example 3.1. In system (6)



dx(t)
dt

= x(t)
[
(4− 0.2 cos t)− (2− 0.1 cos t)x(t− 0.25)− (2+0.1 cos t)y(t)

y
1
2 (t)+x(t)

− (1− 0.1 sin t)
]
, t 6= tk,

dy(t)
dt

= y(t)
[
− (1 + 0.3 cos t) + (3+0.1 sin t)x(t−0.2)

y
1
2 (t)+x(t−0.2)

− (1 + 0.2 cos t)
]
, t 6= tk,

∆x(t) = ( 1
e
− 1)x(t), t = tk,

∆y(t) = ( 1
e
− 1)y(t), t = tk, k = 1, 2, 3, · · · , q.

(26)

It is obvious that conditons (i) and (ii) hold. In addition the algebraic set Γ has only positive real valued solution (x, y) =

( 1003
798

, 50152

135662 ), which together with Theorem (2.5) yields that System 26 has atleast one positive periodic solution. Take

the initial value by (f(0), g(0)) = (1, 1). Fig.1 shows the dynamic behaviors of the solution (x(t), y(t)), which is a positive

periodic solution of System 26.
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Figure 1. Evolution of the positive periodic solution of System 26

Example 3.2. In system (6)



dx(t)
dt

= x(t)
[
(4− 0.2 cos t)− (2− 0.1 cos t)x(t− 0.25)− (4+0.1 cos t)y(t)

y
1
2 (t)+x(t)

− (1− 0.1 sin t)
]
, t 6= tk,

dy(t)
dt

= y(t)
[
− (1 + 0.3 cos t) + (2.4+0.1 cos t)x(t−0.2)

y
1
2 (t)+x(t−0.2)

− (2 + 0.1 cos t)
]
, t 6= tk,

∆x(t) = ( 1
e
− 1)x(t), t = tk,

∆y(t) = ( 1
e
− 1)y(t), t = tk, k = 1, 2, 3, · · · , q.

(27)

In this system conditions (i) and (iii) are hold and condition (ii) fails. Fig.2 shows the details of the dynamic behaviour of

the solution (x(t), y(t)) to System 27 with the same initial value as that in System 26, which shows that the integral curve of

the prey is periodic, but the predator is finally extinct.
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Figure 2. Evolution of the solution of System 27

Example 3.3. In system (6)



dx(t)
dt

= x(t)
[
(4− 0.2 cos t)− (2− 0.1 cos t)x(t− 0.25)− ( 59

22
+0.1 cos t)y(t)

y
1
2 (t)+x(t)

− (1− 0.1 sin t)
]
, t 6= tk,

dy(t)
dt

= y(t)
[
− (1 + 0.3 cos t) +

( 51
22

+0.1 sin t)x(t−0.2)

y
1
2 (t)+x(t−0.2)

− (1 + 0.2 cos t)
]
, t 6= tk,

∆x(t) = ( 1
e
− 1)x(t), t = tk,

∆y(t) = ( 1
e
− 1)y(t), t = tk, k = 1, 2, 3, · · · , q.

(28)

In this system condition (i) hold. But the algebraic set has no positive solution and condition (ii) satisfied for equality.

Choosing the same initial value as in System 26 we can get the detail of its dynamic behaviour of the solutions are (x(t), y(t))

in fig.3, which shows that the solution of the prey is periodic and the extinction of the predator, that is there is no positive

periodic solution of the System 28
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Figure 3. Evolution the solution of System 28

391



Existence of Positive Periodic Solutions in a Non-selective Harvesting Impulsive Predator-prey System with Multiple Delays

Example 3.4. In system (6)



dx(t)
dt

= x(t)
[
(4− 0.2 cos t)− (2− 0.1 cos t)x(t− 0.3)− (2+0.1 cos t)y(t)

y
1
2 (t)+x(t)

− (1− 0.1 sin t)
]
, t 6= tk,

dy(t)
dt

= y(t)
[
− (1 + 0.3 cos t) + (3+0.1 sin t)x(t−(1−0.25 cos 4t)

y
1
2 (t)+x(t−(1−0.25 cos 4t)

− (2 + 0.1 cos t)
]
, t 6= tk,

∆x(t) = ( 1
e
− 1)x(t), t = tk,

∆y(t) = ( 1
e
− 1)y(t), t = tk, k = 1, 2, 3, · · · , q.

(29)

In this system does not satisfy condition (i) but the conditions (i) and (ii) hold. From fig.4 shows that the solution of the

prey and predator are both periodic.
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Figure 4. Evolution of the positive periodic solution of System 29
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