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1. Introduction

In the beginning of fixed point theory on complete metric space, one of the most important result is known as Banach

cotraction principle, published in 1922.

Theorem 1.1. Let (X, d) be a metric space and T : X → X be a mapping. Then T is said to be a contraction mapping if

there exists a contant L ∈ [0, 1) called a contraction such that d(Tx, Ty) ≤ Ld(x, y)∀x, y ∈ X.

Banach Contraction Principle says that any contraction self-mappings on a complete metric space has a unique fixed

point.Because of its importance Banach Contraction Principle has been extended and generalized in many direc-

tions([1,2,4,5,6,7,8] etc.). Recently, Wardoski [16] introduced a new concept of contraction and proved a fixed point theorem

which generalizes Banach contraction principle. Further Cosentino and Vetro [10] proved some fixed point results of Hardy-

Rogers Type for a self map on a complete metric space.Motivated by these results we prove some fixed point theorems for

a self map.

2. Preliminaries

Throughout in this article we denote by R, the set of all real numbers, by R+ the set of all positive real numbers and by N

the set of all positive integers.

Definition 2.1 ([16]). Let F : R+ → R be a mapping satisfying:

(F1). F is strictly increasing;

(F2). for each sequence αn ⊂ R+ of positive numbers limn→∞ αn = 0 if and only if limn→F (αn) = −∞;

(F3). there exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0.
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Definition 2.2 ([16]). Let (X, d) be a metric space and T : X → X be a mapping. Then T is said to be an F-contraction

if F ∈ F and there exists τ > 0 such that

∀x, y ∈ X[d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y))]. (1)

Example 2.3 ([16]). Let F1 : (0,∞)→ R be given by F1(α) = lnα. It is clear that F1 ∈ F . Then each self mappings T on

a metric space (X, d) satisfying is an F1−contraction such that

d(Tx, Ty) ≤ e−τd(x, y)∀x, y ∈ X,Tx 6= Ty. (2)

It is clear that for x, y ∈ X such that Tx = Ty the inequality d(Tx, Ty) ≤ e−τd(x, y) also holds. Therefore T satisfies ()

with L = e−τ , thus T is a contraction.

The following theorem is generalization of Banach Contraction Principle given by Wardowski:

Theorem 2.4 ([16]). Let (X, d) be a complete metric space and let T : X → X be an F -contraction.Then T has a unique

fixed point in X.

Lemma 2.5 ([1]). Let f and g be weakly compatible self maps on a set X. If f and g have a unique point of coincidence

w = fx = gx, then w is unique common fixed point of f and g.

3. Main Results

Theorem 3.1. Let (X, d) be a metric space and let S and T be self maps on X. Assume that there exist F ∈ F and τ ∈ R+

such that

d(Sx, Sy) > 0 =⇒ τ + F (d(Sx, Sy)) ≤ F (max{d(Tx, Ty), d(Sx, Tx), d(Sy, Ty)}) (3)

for all x, y ∈ X. If S(X) ⊆ T (X) and T (X) is a complete subspace of X. Then S and T have a unique point of coincidence

in X. Moreover if S and T are weakly compatible, then S and T have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point of X. Since S(X) ⊆ T (X), we construct a sequence {xn} in X such that Sxn = Txn+1

for all n ≥ 0. If there exists an integer N ≥ 0 such that SxN = SxN+1 then TxN+1 = SxN+1 that is S and T have a point

of coincidence. Hence we shall assume that Sxn 6= Sxn+1 for all n ≥ 0. By (3), we have for all n ≥ 0

τ + F (d(Sxn, Sn+1)) ≤ F (max{d(Txn, Txn+1), d(Sxn, Txn), d(Sxn+1, Txn+1)})

that is

τ + F (d(Sxn, Sn+1)) ≤ F (max{d(Sxn−1, Sxn), d(Sxn−1, Sxn), d(Sxn, Sxn+1)})

= F (max{d(Sxn−1, Sxn), d(Sxn, Sxn+1)}) (4)

If d(Sxn−1, Sxn) < d(Sxn, Sxn+1) for some n ∈ N, then we have

τ + F (d(Sxn, Sn+1)) ≤ F (d(Sxn, Sxn+1),
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a contradiction.Thus d(Sxn−1, Sxn) > d(Sxn, Sxn+1) for all n ∈ N, from (4) we have

τ + F (d(Sxn, Sn+1)) ≤ F (d(Sxn−1, Sxn)

implies

F (d(Sxn, Sn+1)) ≤ F (d(Sxn−1, Sxn)− τ.

Therefore, we have

F (d(Sxn, Sn+1)) ≤ F (d(Sxn−1, Sxn)− τ ≤ F (d(Sxn−2, Sxn−1))− 2τ ≤ .... ≤ F (d(Sx0, Sx1))− nτ (5)

From (5), we get limn→∞ F (d(Sxn, Sxn+1)) = −∞.Thus from (F2), we have limn→∞ d(Sxn, Sxn+1) = 0. From (F3), there

exists k ∈ (0, 1) such that limn→∞ d
k(Sxn, Sxn+1)F (d(Sxn, Sxn+1)) = 0. By (5), the following holds for all n ∈ N

dk(Sxn, Sxn+1)F (d(Sxn, Sxn+1))− dk(Sxn, Sxn+1)F (d(Sx0, Sx1)) ≤ dk(Sxn, Sxn+1)nτ ≤ 0 (6)

Letting n→∞ in (6), we obtain that

limn→∞nd
k(Sxn, Sxn+1) = 0 (7)

From (7), there exists n1 ∈ N such that ndk(Sxn, Sxn+1) ≤ 1 for all n ≥ n1. So, we have for all n ≥ n1

d(Sxn, Sxn+1) =
1

nk
. (8)

In order to show that {Sxn} is Cauchy sequence. Consider m,n ∈ N such that m > n > n1. Using triangular inequality for

metric and from (8), we have

d(Sxn, Sxm) ≤ d(Sxn, Sxn+1) + d(Sxn+1, Sxn+2) + ...+ d(Sxm−1, Sxm)

=
m−1∑
i=n

d(Sxi, Sxi+1) ≤
∞∑
i=n

d(Sxi, Sxi+1) ≤
∞∑
i=n

1

n
1
k
.

By the convergence of the series
∞∑
i=n

1

n
1
k

,as limit n tends to ∞ we get d(Sxn, Sxm)→ 0. This yields that {Sxn} is a Cauchy

sequence in T (x), since T (X) is complete, there exists a z ∈ T (X) such that Sxn → z as n → ∞. Since z ∈ T (X), we can

find p ∈ X such that z = Tp. Now we will prove that z = Sp, on contrary suppose z 6= Sp. Putting x = xn+1 and y = p in

(3), we have

τ + F (d(Sxn+1, Sp)) ≤ F (max{d(Txn+1, Tp), d(Sxn+1, Txn+1), d(Sp, Tp)})

that is

τ + F (d(Sxn+1, Sp)) ≤ F (max{d(Sxn, Tp), d(Sxn+1, Sxn), d(Sp, Tp)})

Taking the limit as n→∞ and using z = Tp, we have

τ + F (d(z, Sp)) ≤ F (max{d(z, z), d(z, z), d(Sp, z)})
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= F (d(z, Sp)),

implies that

F (d(z, Sp)) ≤ F (d(z, Sp))− τ,

a contradiction. Thus z = Sp. Therefore, we have that z = Tp = Sp. Hence p is a coincidence point and z is a point of

coincidence of S and T. We next establish that the point of coincidence is unique. For this, assume that there exists another

point q in X such that z1 = Sq = Tq and suppose that z 6= z1. Then for x = p and y = q, we have

τ + F (d(Sp, Sq)) ≤ F (max{d(Tp, Tq), d(Sp, Tp), d(Sq, Tq)})

that is

τ + F (d(z, z1)) ≤ F (max{d(z1, z1), d(z, z), d(z, z1)})

implies that F (d(z, z1)) ≤ F (d(z, z1)) − τ , a contradiction, which implies that d(z, z1) = 0 i.e., z = z1. Therefore z is the

unique point of coincidence of S and T .Now if S and T are weakly compatible, then by Lemma 2.5, z is unique common

fixed point of S and T .

Corollary 3.2. Let (X, d) be complete metric space and S and T be self map on X. Assume that there exist F ∈ F and

τ ∈ R+ such that

d(Sx, Sy) > 0 =⇒ τ + F (d(Sx, Sy)) ≤ F (d(Tx, Ty)) (9)

for all x, y ∈ X. If S(X) ⊆ T (X) and T (X) is a complete subspace of X. Then S and T have unique point of coincidence

in X. Moreover if S and T are weakly compatible then S and T have unique common fixed point in X.

Corollary 3.3. Let (X, d) be a complete metric space and S be a self map on X. Assume that there exist F ∈ F and τ ∈ R+

such that

d(Sx, Sy) > 0 =⇒ τ + F (d(Sx, Sy)) ≤ F (d(x, y)) (10)

for all x, y ∈ X. Then S have a fixed point in X.

Theorem 3.4. Let (X, d) be a complete metric space and T be a self map on X also T satisfying following F-contraction

condition if F ∈ F and there exists τ > 0 such that ∀x, y ∈ X d(Tx, Ty) > 0 implies

τ + F (d(Tx, Ty)) ≤ F (k1 max{d(x, y), d(x, Tx)}+ k2 max{d(x, y), d(y, Ty)}+ k3 max{d(x, Ty),
d(x, Ty) + d(y, Tx)

2
}) (11)

for all x, y ∈ X and k1 + k2 + 2k3 = 1. If T or F is continuous, then T has a unique fixed point in X.

Proof. Let x0 be arbitrary point and define sequence {xn} in X by xn = Txn−1 for n ∈ N. If xn0+1 = xn0 for some

n0 ∈ N, then xn0 = Txn0 and so T has a fixed point. Now let xn+1 6= xn for all n ∈ N ∪ 0 and let γn = d(xn, xn+1) for

n ∈ N ∪ 0, then γn > 0 for all n ∈ N ∪ 0.

τ + F (d(Txn−1, Txn)) ≤ F (k1max{d(xn−1, xn), d(xn−1, Txn−1)}+ k2max{d(xn−1, xn), d(xn, Txn)}
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+ k3max{d(xn−1, Txn),
d(xn−1, Txn) + d(xn, Txn−1)

2
})

≤ F (k1max{d(xn−1, xn), d(xn−1, xn)}+ k2max{d(xn−1, xn), d(xn, xn+1)}

+ k3max{d(xn−1, xn+1),
d(xn−1, xn+1) + d(xn, xn)

2
})

≤ F (k1max{d(xn−1, xn), d(xn−1, xn)}+ k2max{d(xn−1, xn), d(xn, xn+1)}

+ k3max{d(xn−1, xn) + d(xn, xn+1),
d(xn−1, xn) + d(xn, xn+1)

2
})

= F (k1max{γn−1, γn−1}+ k2max{γn−1, γn}+ k3max{γn−1 + γn,
γn−1 + γn

2
}) (12)

= F (k1γn−1 + k2max{γn−1, γn}+ k3(γn−1 + γn)). (13)

If γn ≥ γn−1 for some n ∈ N, then from (12) we have F (γn) ≤ F (k1γn−1 + k2γn + 2k3γn) − τ this implies that γn ≤
k1

1−k2−2k3
γn−1 = γn−1. Since k1 + k2 + 2k3 = 1 So γn ≤ γn−1, a contradiction. Thus γn < γn−1 for all n ∈ N and we from

(12) we have

τ + F (γn) ≤ F ((k1 + k2 + 2k3)γn−1)

F (γn) ≤ F (γn−1)− τ∀n ∈ N.

This implies

F (γn) ≤ F (γn−1)− τ ≤ F (γn−1)− 2τ..... ≤ F (γ0)− nτ, ∀n ∈ N. (14)

From (13) limn→∞F (γn) = −∞. Thus (F2), we have limn→∞γn = 0. From (F3) there exists k ∈ (0, 1) such that

limn→∞γ
k
nF (γn) = 0. By (3) the following hold ∀ n ∈ N

γknF (γn)− γknF (γ0) ≤ −γknnτ ≤ 0. (15)

Letting n→∞, we obtain that

lim
n→∞

nγkn = 0. (16)

From (15) there exists n1 ∈ N such that nγkn ≤ 1 ∀ n ≥ n1. So, we have for all n ≥ n1

γn ≤
1

n
1
k

(17)

In order to show that {xn} is Cauchy sequence.Consider m,n ∈ N such that m > n > n1.Using triangular inequality and

from (16) we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm−1, xm)

= γn + γn+1 + ...+ γm−1

=

m−1∑
i=n

γi ≤
∞∑
i=n

γi ≤
∞∑
i=n

1

n
1
k

By convergence of series
∞∑
i=n

1

n
1
k

as n → ∞ we get d(xn, xm) → 0.This means {xn} is Cauchy in (X,d).Since (X, d) is

complete, so {xn} is converges to some x ∈ X that is limn→∞xn = z. Now if T is continuous, then we have

z = lim
n→∞

xn+1 = lim
n→∞

Txn = T ( lim
n→∞

) = Tz. (18)
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So, z is a fixed point of T . Now, Suppose that F is continuous we claim that z = Tz. Assume the contrary that is z 6= Tz.

In this case, there exists an n0 ∈ N and a subsequence {xnk} of {xn} such that d(Txnk , T z) > 0 for all nk ≥ n0.(otherwise

there exists n1 ∈ N such that xn = Tz for all n ≥ n1, a contraction).Since d(Txnk , T z) > 0 for all nk ≥ n0, then from (11),

we have

τ + F (d(Txnk , T z)) ≤ F (k1 max{d(xnk , z), d(xnk , Txnk )}+ k2 max{d(xnk , z), d(z, Tz)}

+ k3 max{d(xnk , T z),
d(xnk , T z) + d(z, Txnk )

2
}).

Taking k →∞ and using continuity of F we have

τ + F (d(z, Tz)) ≤ F (k1 max{d(z, z), d(z, Tz)}+ k2 max{d(z, z), d(z, Tz)}+ k3 max{d(z, Tz),
d(z, Tz) + d(z, Tz)

2
})

= F ((k1 + k2 + k3)d(z, Tz)).

This implies τ +F (d(z, Tz)) ≤ F (d(z, Tz)), a contradiction.Hence z = Tz. Now, we prove the uniqueness of the fixed point.

Assume that z∗ ∈ X be another fixed point of T different from z. This means that d(z, z∗) > 0. Taking x = z and y = z∗

in (11), we have

τ +F (d(Tz, Tz∗)) ≤ F (k1 max{d(z, z∗), d(z, Tz)}+k2 max{d(z, z∗), d(z∗, T z∗)}+k3 max{d(z, Tz∗),
d(z, Tz∗) + d(z∗, T z)

2
})

this implies that τ + F (d(z, z∗)) ≤ F ((k1 + k2 + k3)d(z, z∗)), which is a contradiction, since k1 + k2 + k3 < 1 and hence

z = z∗. Hence z is unique fixed point of T .

Corollary 3.5. Let (X, d) be a complete metric space and T be a self map on X.Assume that there exist F ∈ F and τ ∈ R+

such that

τ + F (d(Tx, Ty)) ≤ F (k1d(x, y) + k2d(x, Tx) + k3d(y, Ty) + k4d(x, Ty) + k5d(y, Tx)),

for all x, y ∈ X, Tx 6= Ty, where k1 + k2 + k3 + 2k4 = 1, k3 6= 1 and L ≥ 0. Then T has a fixed point.Moreover, if

k1 + k4 + k5 ≤ 1, then the fixed point of T is unique.

4. Applications

In this section, we present an application on dynamic programming. The existence of solution of functional equations

and system of functional equations arising in dynamic programming which have been studied by using various fixed point

theorems.We will prove the extension of a common solution for class of functional equations. Here we assume that U and

V are Banach spaces, W ⊆ U is a state space and D ⊆ V is a decision space. In particular, we are interested in solving the

following two functional equations arising in dynamic programming:

r(x) = sup
y∈D
{f(x, y) +G(x, y, r(τ(x, y)))}, x ∈W (19)

r(x) = sup
y∈D
{f(x, y) +Q(x, y, r(τ(x, y)))}, x ∈W (20)

Where τ : W × D → W , f : W × D → R, and G,Q : W × D × R → R.Here we study the existence and uniqueness of

h∗ ∈ B(W ) a common solution of the functional equations (18) & (19). Let B(W ) denote the set of all bounded real-valued
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functions on W . We know that B(W ) endowed with metric d(h, k) = sup|h(x) − k(x)|, h, k ∈ B(W ) is a complete metric

space. Consider S, T : B(W )→ B(W ) such that

S(h)(x) = sup
y∈D
{f(x, y) +G(x, y, h(τ(x, y)))}, x ∈W (21)

T (h)(x) = sup
y∈D
{f(x, y) +Q(x, y, h(τ(x, y)))}, x ∈W (22)

It is clear that if f , G and Q are bounded, then the operation S and T are well defined.

Theorem 4.1. Suppose that there exists k ∈ (0, 1) such that for all (x, y) ∈W ×D and h1, h2 ∈ B(W ), we have

|G(x, y, h(τ(x, y)))−Q(x, y, h2(τ(x, y)))| ≤ kM(h1, h2), (23)

where M(h1, h2) = max{d(Th1, Th2), d(Sh1, Th1), d(Sh2, Th2)}. Then S and T have a unique common fixed point in B(W ).

Proof. Let λ > 0 be arbitrary positive real number x ∈W , h1, h2 ∈ B(W ). Then by (20) and (21), there exist y1, y2 ∈ D

such that

S(h1)(x) < f(x, y1) +G(x, y1, h1(τ(x, y1))) + λ (24)

T (h2)(x) < f(x, y2) +Q(x, y2, h2(τ(x, y2))) + λ (25)

S(h1)(x) ≥ f(x, y2) +G(x, y2, h1(τ(x, y2))) (26)

T (h2)(x) ≥ f(x, y1) +Q(x, y1, h2(τ(x, y1)))} (27)

Form (23) and (26), it follows that

S(h1)(x)− T (h2)(x) ≤ G(x, y1, h1(τ(x, y1)))−Q(x, y1, h2(τ(x, y1))) + λ

≤ |G(x, y1, h1(τ(x, y1)))−Q(x, y1, h2(τ(x, y1)))|+ λ ≤ kM(h1, h2) + λ

Similarly T (h2)(x)− S(h1)(x) ≤ kM(h1, h2) + λ. Consequently

|S(h1)(x)− T (h2)(x)| ≤ kM(h1, h2) + λ (28)

Since the inequality (27) is true for any x ∈W , we get

d(S(h1), T (h2)) ≤ kM(h1, h2) + λ (29)

Finally, λ is arbitrary, so

d(S(h1), T (h2)) ≤ kM(h1, h2) (30)

that is (29) hold by taking τ = −ln(k) and F (t) = ln(t). Applying the Theorem 3.1, the mappings S and T have a unique

common fixed point that is the functional equation (18) and (19) have unique common solution h∗ ∈ B(W ).
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