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Abstract: In this paper, the self-adjointness of a general Burgers equation that appears in a wide range of physical applications is
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1. Introduction

Problems involving differential equations arise in various fields of science, mathematics and other related areas. Therefore

the task of determining the self adjointness and constructing the conservation laws for the equations is of great significance as

it plays an essential role in the study of nonlinear physical phenomena. In recent years, intense research has been conducted

in order to find classes of equations that are self-adjoint, quasi-self adjoint or weak self-adjoint. A number of significant

methods have been established for construction of conservation laws, one of them being the Noether’s approach that yields

conservation laws by using Lie symmetries of PDE’s with variable principle [10]. Further, IBragimov [3, 4] established a

theorem which is used to find conservation laws for PDE’s that do not possess Lagrangian. For instance in [3], he introduced

the general concept of nonlinear self-adjointness of differential equations by embracing the strict self-adjointness and quasi

self-adjointness. Moreover, he did show that the equation possessing the nonlinear self-adjointness can be written equivalently

in a strictly self-adjoint form by using appropriate multipliers and that all linear equations possess the property of nonlinear

self-adjointness and hence can be re-written in nonlinear strictly self-adjoint. Furthermore he illustrated the construction

of conservation laws using symmetry. In [6] , Igor and Julio applied the concept of self-adjoint equations formulated by

Ibragimov and Gandariasto to a class of fifth order evolution equations and went further to establish the conservation laws

for the generalized Kawahara equation, simplified Kawahara equation and Modified simplified Kawahara equation using

Ibragimov’s theorem on conservation laws. Other papers of Igor on self-adjointness and conservation laws can be found in

[5, 7, 8].

Researchers such as Jaskiran [9] obtained the conservation laws of variable coefficient time fractional Kawahara equation.
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This was achieved by first deriving the similarity reduction and power series solutions of the equation using Lie symmetry

method. Zhang [11] studied the nonlinear self-adjointness method for constructing conservation laws of partial differential

equations(PDE’s). He showed that any adjoint symmetry of PDE’s is a differential substitution of nonlinear self-adjointness

and vice versa and further illustrated that each symmetry of PDE’s correspond to a conservation law via a formula if the

system of PDE’s is non-linearly self-adjoint with differential substitution. Finally, as a byproduct, he found that the set of

differential substitutions include the set of conservation law multipliers as a subset.

In this paper, we determine the self-adjointness and conservation laws for the general Burgers equation given by:

ut = au2
x + buxx (1)

where u(x, t) is the unknown function, a, b ∈ R and a, b ̸= 0. This equation represent the wave equation combining both the

dissipative and nonlinear effect and thus appears in a wide variety of physical applications [1].

2. Adjoint Equations and Self-adjointness

2.1. Adjoint equation

Consider the system of m differential equations (linear or nonlinear) given by [3]:

F (x, u, v, u(1), v(1), . . . , u(s), v(s)) = 0, α = 1, . . . ,m (2)

with m dependent variables. The adjoint equation is written as

F ∗(x, u, v, u(1), v(1), . . . , u(s), v(s)) = 0, α = 1, . . . ,m (3)

with F ∗ defined by

F ∗(x, u, v, u(1), v(1), . . . , u(s), v(s)) =
δL
δu

= 0 (4)

where L, the formal lagrangian for equations (2) is given by

L = vF (5)

such that v = v(x) and

δ

δu
=

∂

∂u
+

∞∑
i=1

(−1)iDi1 . . . Dis
∂

∂uα
i1...is

(6)

2.2. Self-adjointness

Definition 2.1 ([3]). Equation (2) is said to be self-adjoint if the adjoint equation (3) becomes equivalent to the original

equation (2) upon the substitution of v = u.

Definition 2.2 ([6]). Equation (2) is called quasi self-adjoint or nonlinear self-adjoint if the adjoint equation (3) become

equivalent to (2) upon the substitution of the form v = ϕ(x, u) with ϕu ̸= 0.

Thus equation (3) is said to be nonlinear self-adjoint if there exists a function ϕ = ϕ(x, u) such that

F ∗|v=ϕ = λ(x, u, . . . )F (7)

for some differential functions λ = λ(x, u, . . . )
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2.3. Determination of the self-adjointness of equation (1)

Let

F = ut − au2
x − buxx (8)

The corresponding lagrangian of (1) is given by

L = vF = v(ut − au2
x − buxx) (9)

Substituting (9) into (4), we have

F ∗ =
δL
δu

=
δ

δu

[
v(ut − au2

x − buxx)
]

=
∂

∂u

[
v(ut − au2

x − buxx)
]
−Dt

∂

∂ut

[
v(ut − au2

x − buxx)
]

−Dx
∂

∂ux

[
v(ut − au2

x − buxx)
]
+D2

x
∂

∂uxx

[
v(ut − au2

x − buxx)
]

= 0−Dt(v)−Dx(−2avux) +D2
x(−bv)

= −vt + 2avxux + 2avuxx − bvxx = 0 (10)

Remark 2.3. Note that equation (10) is not equivalent to equation (8) upon the substitution of v = u. Thus equation (1)

is not self adjoint.

Substituting v = ϕ(x, t, u) into (10) with its derivatives expressed as follows,

vt =
( ∂

∂t
+ ut

∂

∂u

)
ϕ

=
∂ϕ

∂t
+ ut

∂ϕ

∂u

= ϕt + ϕuut

vx =
( ∂

∂x
+ ux

∂

∂u

)
ϕ

= ϕx + ϕuux

vxx =
( ∂

∂x
+ ux

∂

∂u
+ ..

)
(ϕx + ϕuux)

=
∂

∂x

(
ϕx + ϕuux

)
+ ux

∂

∂u

(
ϕx + ϕuux

)
= ϕxx + ϕxuux + ϕuuxx + ux(ϕxu + ϕuuux)

= ϕxx + ϕxuux + ϕuuxx + ϕxuux + ϕuuu
2
x

= ϕxx + ϕuuxx + 2ϕxuux + ϕuuu
2
x

we obtain

F ∗ = −ϕt − ϕuut + 2aux(ϕx + ϕuux) + 2aϕuxx − b(ϕxx + ϕuuxx + 2ϕxuux + ϕuuu
2
x)

= −ϕt − bϕxx − ϕuut + (2aϕx − 2bϕxu)ux + (2aϕu − bϕuu)u
2
x + (2aϕ− bϕu)uxx (11)

Substituting (8) and (11) into (7), we have

− ϕt − bϕxx − ϕuut + (2aϕx − 2bϕxu)ux + (2aϕu − bϕuu)u
2
x + (2aϕ− bϕu)uxx

= λ(ut − au2
x − buxx) (12)

Equating the coefficients of various monomials in the first and second partial derivatives of u, we obtain the following

determining equations.
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Monomial terms Equation

ut −ϕu = λ (a)

uxx 2aϕ− bϕu = −λb (b)

u2
x 2aϕu − bϕuu = −λa (c)

ux 2aϕx − 2bϕxu = 0 (d)

1 −ϕt − bϕxx = 0 (e)

Substituting (a) into (b), we have

2aϕ− bϕu = bϕu

=⇒ 2aϕ = 2bϕu

=⇒ ϕu =
a

b
ϕ

=⇒ dϕ

du
=

a

b
ϕ

=⇒ dϕ

ϕ
=

a

b
du

=⇒ lnϕ =
a

b
u+ C

ϕ = Ce
a
b
u

where C is a constant of integration. Thus

v = ϕ = Ce
a
b
u (13)

Inserting (13) into (10), with its derivatives given by

vt =
a

b
Ce

a
b
uut

vx =
a

b
Ce

a
b
uux

vxx =
a2

b2
Ce

a
b
uu2

x +
a

b
Ce

a
b
uuxx

we have

−a

b
Ce a

b
uut + 2

a2

b
Ce

a
b
uu2

x + 2aCe
a
b
uuxx − a2

b
Ce

a
b
uu2

x − aCe
a
b
uuxx = 0 (14)

Diving equation (14) throughout by aCe
a
b
u and simplifying further, we obtain

−ut + au2
x + buxx = 0

⇒ ut − au2
x − buxx = 0 (15)

Remark 2.4. Note that equation (10) becomes equivalent to equation (8) upon the substitution of (13). Therefore equation

(1) is quasi self-adjoint.

3. Conservation Laws for Equation (1)

Let

V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
(16)

be a Lie point symmetry generator of equation (1) and the formal lagrangian L given by (5). The Ibragimov’s theorem on

conservation laws provides a conservation law of equation (1) written in the form [6].

DtC
0 +DxC

1 = 0 (17)
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where C0, C1 are called the conserved vectors if they satisfy the conservation equation (17) on all solutions of equation (1).

The conserved vectors C0 and C1 are expressed as follows:

C0 = τL+W
∂L
∂ut

C1 = ξL+W
[ ∂L
∂ux

−Dx
∂L
∂uxx

]
+Dx(W )

∂L
∂uxx

(18)

where W = η − τut − ξux. The Lie point symmetry generators for equation (1) are spanned by the following vector fields

[1].

V1 =
∂

∂x

V2 =
∂

∂t

V3 =
∂

∂u

V4 = x
∂

∂x
+ 2t

∂

∂t

V5 = 2at
∂

∂x
− x

∂

∂u

V6 = 4axt
∂

∂x
+ 4at2

∂

∂t
− (x2 + 2bt)

∂

∂u

3.1. Case 1: V1 =
∂
∂x

Here

ξ = 1, τ = 0, η = 0 (19)

and thus the characteristic function W is of the form

W = −ux (20)

Substituting (9), (19) and (20) into (18), we have

C0 = 0(vut − avu2
x − bvuxx)− ux

∂

∂ut
(vut − avu2

x − bvuxx)

= −vux

C1 = 1(vut − avu2
x − bvuxx)− ux

[
−2avux −Dx(−bv)

]
− bvDx(−ux)

= vut − avu2
x − bvuxx + 2avu2

x − bvxux + bvuxx

= vut + avu2
x − bvxux (21)

3.2. Case 2: V2 =
∂
∂t

Here

ξ = 0, τ = 1, η = 0 (22)

and thus the characteristic function W is of the form

W = −ut (23)

Substituting (9), (22) and (23) into (18), we have

C0 = 0(vut − avu2
x − bvuxx)− ut

∂

∂ut
(vut − avu2

x − bvuxx)
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= vut − avu2
x − bvuxx − vut

= −avu2
x − bvuxx

C1 = 0(vut − avu2
x − bvuxx)− ut

[
−2avux −Dx(−bv)

]
− bvDx(−ut)

= −ut(−2avux + bvx) + bvuxt

= 2avutux − bvxut + bvuxt (24)

3.3. Case 3: V3 =
∂
∂u

In this case we have that:

ξ = 0, τ = 0, η = 1 (25)

and the function W is of the form

W = 1 (26)

Substituting (9), (25) and (26) into (18), we have

C0 = 0 +
∂

∂ut

(
vut − avu2

x − bvuxx

)
= v

C1 = 0 + 1
[
−2avux −Dx(−bv)

]
+ (−bv)Dx(1)

= −2avux + bvx (27)

3.4. Case 4: V4 = x ∂
∂x

+ 2t ∂
∂t

Here

ξ = x, τ = 2t, η = 0 (28)

and the function W takes the form

W = −xux − 2tut (29)

Substituting (9), (28) and (29) into (18), we have

C0 = 2t(vut − avu2
x − bvuxx) + (−xux − 2tut)v

= 2tvut − 2atv2ux − 2btvuxx − xvux − 2tvut

= −2atvu2
x − 2btvuxx − xvux

C1 = x(vut − avu2
x − bvuxx) + (−xux − 2tut)[−2avux −Dx(−bv)] + (−bv)Dx(−xux − 2tut)

= xvut − axvu2
x − bxvuxx + (−xux − 2tut)(−2avux + bvx) + bv(ux + xuxx + 2tuxt)

= xvut − axvu2
x − bxvuxx + 2axvu2

x − bxvxux + 4atvutux − 2btvxux + bvux + bxvuxx + 2btvuxt

= xvut + axvu2
x − bxvxux + 4atvutux − 2btvxut + bvux + 2btvuxt (30)

3.5. Case 5: V5 = 2at ∂
∂x

− x ∂
∂u

Here

ξ = 2at, τ = 0, η = −x (31)
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and the function W takes the form

W = −x− 2atux (32)

Substituting (9), (31) and (32) into (18), we have

C0 = 0 + (−x− 2atux)v

= −xv − 2atvux

C1 = 2at(vut − avu2
x − bvuxx) + (−x− 2atux)[−2avux −Dx(−bv)] + (−bv)Dx(−x− 2atux)

= 2atvut − 2a2tvu2
x − 2abtvuxx + (−x− 2atux)(−2avux + bvx) + bv(1 + 2atuxx)

= 2atvut − 2a2tvu2
x − 2abtvuxx + 2axvux − bxvx + 4a2tvu2

x − 2abtvxux + bv + 2abtvuxx

= 2atvut + 2a2tvu2
x + 2axvux − bxvx − 2abtvxux + bv (33)

3.6. Case 6: V6 = 4axt ∂
∂x

+ 4at2 ∂
∂u

− (x2 + 2bt) ∂
∂u

Here

ξ = 4axt, τ = 4at2, η = −x2 − 2bt (34)

and the function W takes the form

W = −x2 − 2bt− 4at2ut − 4axtux (35)

Substituting (9), (33) and (35) into (18), we obtain

C0 = 4at2(vut − avu2
x − bvuxx) + (−x2 − 2bt− 4at2ut − 4axtux)v

= 4at2vut − 4a2t2vu2
x − 4abt2vuxx − x2v − 2btv − 4at2vut − 4axtvux

= −4a2t2vu2
x − 4abt2vuxx − x2v − 2btv − 4axtvux

C1 = 4axt(vut − avu2
x − bvuxx) + (−x2 − 2bt− 4at2ut − 4axtux)[−2avux −Dx(−bv)]

+(−bv)Dx(−x2 − 2bt− 4at2ut − 4axtux)

= 4axtvut − 4a2xtvu2
x − 4abxtvuxx(−x2 − 2bt− 4at2ut − 4axtux)(−2avux + bvx)

+bv(2x+ 4at2uxt + 4atux + 4axtuxx)

= 4axtvut − 4a2xtvu2
x − 4abxtvuxx + 2ax2vux + 4abtvux + 8a2t2vutux + 8a2xtvxu

2

−bx2vx − 2b2tvx − 4abt2vxut − 4abxtvxux + 2bxv + 4abt2vuxt + 4abtvux + 4abxtvuxx

= 4axtvut + 4a2xtvu2
x + 2ax2vux + 8abtvux + 8a2t2vutux − bx2vx − 2b2tvx

−4abt2vxut − 4abxtvxux + 2bxv + 4abt2vuxt (36)

Using the value of v in (13) and setting C = 1, the conserved vectors (21), (24), (27), (30), (33) and (36) can, respectively,

be expressed as follows:

C0 = −e
a
b
uux

C1 = e
a
b
uut (37)

C0 = −e
a
b
u(au2

x + buxx

)
C1 = e

a
b
u(autux + buxt

)
(38)
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C0 = e
a
b
u

C1 = −ae
a
b
uux (39)

C0 = −e
a
b
u(2atu2

x + 2btuxx + xux

)
C1 = e

a
b
u(xux + 2atutux + bux + 2btuxt

)
(40)

C0 = −e
a
b
u(x+ 2atux

)
C1 = e

a
b
u(2atut + axux + b

)
(41)

C0 = −e
a
b
u(4a2t2u2

x + 4abt2uxx + x2 + 2bt+ 4xtux

)
C1 = e

a
b
u(4axtut + ax2ux + 6abtux + 4a2t2uxut + 2bx+ 4at2uxt

)
(42)

4. Conclusion

In this paper, we have investigated the self-adjointness of a general Burgers equation and thereafter used the Ibragimov’s

theorem on conservation laws to construct some of the conservation laws of the equation.
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