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1. Introduction

The integro-differential equations have attracted more attention of physicists and mathematicians which provide an efficiency
for the description of many practical dynamical arising in engineering and scientific disciplines such as, physics, biology,
electrochemistry, electromagnetic, control theory and viscoelasticity [4, 10, 11]. Recently, many authors focus on the devel-
opment of numerical and analytical techniques for integro-differential equations. For instance, the Homotopy perturbation
method [8], the variational iteration method [10], the combined modified Laplace with Adomian decomposition method
[9, 11-13], the spline collocation method [3], Taylor polynomials [6, 15], Tau method [7], and the method of upper and lower
solutions [1, 14], and the references therein. In [3] is suggested the method of sub-solution and super-solution for a type of
nonlinear Volterra integro-differential equation and proved their convergence. In this paper, we consider a class of boundary

value problems for second-order nonlinear Volterra-Fredholm integro-differential equations of the form
x 1
Au =" (x) + / K(z,t)F(u(t))dt + / K" (z,t)F*(u(t))dt + h(z) = 0, (1)
0 0
subject to,
u(0) = uo, u(l)=u1, (2)

where F, F'* € C[R,R] is a decreasing function, K, K* € C[I x I,RT]| where I = [0, 1], is a positive kernel, h(x) € C[I,R]

and uo,u1 € R and © € I. The purpose of this paper is to employ an efficient method based on the lower and upper
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solutions, to construct two sequences of decreasing upper solutions, {Si}, and increasing lower solutions, {sx}, which are
uniformly convergent to the solution of Egs.(1)-(2). Theoretical analysis of the existence and convergence of those sequences
are discussed. The simplicity, reliability and efficiency of the proposed scheme are demonstrated by discussing two numerical
examples. It should be noted that the present work is partially an extension to the approach described in [2] in order to
solve a class of elliptic equations. The rest of the paper is organized as follows: In Section 2, some preliminaries and basic
definitions related are recalled. In Section 3, the analytical example is presented to illustrate the accuracy of this method.

Finally, the paper concludes with Section 4 which is the report of the study.

2. Preliminaries

The definitions of lower and upper solutions of the problem (1)-(2) are given by

Definition 2.1. A function w € C*[I,R] is called a lower solution of (1)-(2) on I if
Aw / K(z,t)F dt+/ K*(z,t)F*(w(t))dt + h(z) > 0,
and w(0) < ug, w(l) < w1, and v € C*[I,R] is called an upper solution of (1)-(2) on I if
x 1
+/ K(z,t)F(v(t))dt +/ K*(z,t)F* (v(t))dt + h(z) <0,
0 0

and v(0) > uo, v(1) > u1.

Definition 2.2. Ifw,v € C*[I,R] are, respectively, lower and upper solutions of (1)-(2) on I with w(x) < v(z) for allx < T,
then we say that wand vare ordered lower and upper solutions. In the present study, we assume that an initial ordered lower
and upper solutions w and v of (1)-(2) on I withw(x) < v(x) for allx € I are known. The initials w and v can be constructed
by several techniques such as polynomial bounds, eigenfunction expansion bounds or by linearizing the nonlinear part in the
problem, for more details see [2, 14]. Now, we present some theoretical results that should be utilized to construct two

monotone sequences of lower and upper solutions of problem (1)-(2) on I. In what follows, [w,v] = {y € C*(I) : w < y < v}.

Lemma 2.3. Consider the nonlinear Volterra-Fredholm integro-differential equation (1)-(2) with F' and F* are decreasing

and K, K™ >0 in D. If w and v are solutions to (1)-(2) with w(z) < v(z) for allx € I then w =v on I.

Proof. We shall prove that w(z) > v(z) for all x € I. Since w and v are solutions to (1)-(2), we have

/K:ct dt+/ K* (0, ) F* (w(t))dt + h(z) = 0, 3)

w(0) = wo, w(l)=u1, (4)

and
+ /I K(z,t)F(v(t))dt + / K*(z,t)F* (v(t))dt + h(z) = 0, (5)
v(0) = uo, v(1) = wu, (6)
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Subtracting Equation (3) from Equation (5), we obtain

(v —w)"(2) =/Ow K(ﬂt’ﬂf)(F(w(t))—F(v(lﬁ)))dt+/O K™, t)(F" (w(t)) — F*(v(t)))dt. (7)

Since w < v and F, F™ are decreasing, the integrand K (z,¢)(F(w(t)) — F(v(t))) and K*(z,t)(F*(w(t)) — F*(v(t))) must
be positive on the interval [0,z]. If we set Z = v — w then Z” > 0 with Z(0) = Z(1) = 0. Tt follows from the Maximum

Principle that Z < 0 and, therefore, v < w in [ as desired. O

Lemma 2.4. Consider the nonlinear Volterra-Fredholm integro-differential equation (1)-(2) with F' and F* are decreasing
and K, K* > 01in D. Let g1(y), g1 and G1(y), G1(y) be two decreasing functions in the strip [w, v] with g1(y) < F(y) < G1(y),

and g1 (y) < F*(y) < Gi(y). Let s1 and S1 be salisfying

As = s (@) + | " K (o, 001 (0(t)dt + | K@ ngi @+ hiz) = (8)
81(0) S U, 81(1) g ui, (9)
and
ASy = S} () +/IK(x7t)G1(w(t))dt+/ K* (2, )G (w(t))dt + h(z) = 0, (10)
51(0) 2 uo, Sl(l) 2 ut. (11)

If w<s1 and S1 <vin I, then
(i). s1,51 € [w,v].
(i1). s1 and S1 are, respectively, ordered lower and upper solutions of (1)-(2) on I.

Proof. (i) We shall prove that S1 > w and s; < v in I. Since w represents a lower solution of (1)-(2) it must satisfies
x 1
Aw = w" (x) + / K(z,t)F(w(t))dt + / K*(z,t)F*(w(t))dt + h(x) > 0, (12)
0 0
with w(0) < uo, w(1) < uy. Subtracting Equation (10) from Equation (12), we obtain

(w—81)"(z) > /OT K(z, 1) (Gr(w(t)) — F(w(t)))dt + /O K™ (2, t)(G1(w(t)) — F™ (w(t)))dt. (13)

Since (by the assumptions K, K* > 0 and F(y) < G1(y), F*(y) < Gi(y), Yy € [w,v]) the integrand K (z,t)(G1(w(t)) —
F(w(t))) and K*(z,t)(G1(w(t)) — F*(w(t))) are positive on the interval [0, z], the right hand side of (13) should be positive
and therefore (w — S1)” > 0. Setting Z = w — S1 gives Z” > 0 in I with Z(0), Z(1) < 0. It follows from the Maximum
Principle that Z < 0 in I as desired. The proof of s; < v in [ is done in the same way and will not be presented.

(ii) In this part we have to show that

(ii-1) s1 and S are respectively, lower and upper solutions of (1)-(2) on I.

(ii-2) si(x) < Si(z), Vxel.
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To show (ii-1), it suffices to prove that As; > 0 with s1(0) < wo,s1(1) < w1 because the proof of AS; < 0 with S1(0) >

o, S1(1) > wy is similar. Recall
x 1
Asy = 5" (z) + / K (@, t)F(s1(8))dt + / K* (2, ) F* (51 (1))dt + h(z). (14)
0 0
Since g1 < F, g7 < F* and ¢1, g7 are decreasing, we have

AS]_

\Y

sy T)+/ K(z, t)g1(€1(f))df+/ K*(z,t)g7 (s1(t))dt + h(zx)

Y

+/O K(a:,t)gl(v(t))dtJr/O K*(z,t)g7 (v(t))dt + h(zx). (15)

Equation (8)-(9) implies that As; > 0 with $1(0) < uo,s1(1) < u; as desired. To prove (ii-2), we subtract Equation (10)
from (8)

(51— 81)"(2) = w(t)) — g1 (v(t)))dt +/0 K7, 8)(Gr(w(t)) — g1 (v(t)))dt

\Y]

/0 " K (. t)(Gh(
/0 " K (2, 8)(Gr (w(t)) — g1 (w(t)))dt + / K*(2,8)(G1 (w(t)) — g7 (w(t)))dt
0.

v

(16)
Therefore the function Z = sy — Sy is such that Z” > 0 in I and Z(0) < 0, Z(1) < 0. Applying the Maximum Principle
implies Z < 0 which completes the proof. O

The following theorem emphasizes the existence of two monotone sequences of lower and upper solutions to problems (1)-(2)

on I. Also, it describes the construction of those sequences.

Theorem 2.5. Consider the nonlinear Volterra-Fredholm integro-differential equation (1)-(2) with F(u), F*(u) are decreas-
ing and K, K* > 0inD. Let so = w and So = v be an initial ordered lower and upper solutions of (1)-(2) on I. Let gi(y), g%

and Gi(y), Gr(y), k > 1, be decreasing functions in [w,v] with

g1(y) < g2(y) <---<grly) - < Fy) <--- < Gr(y) - < Ga(y) < Gily),

G <gpy) < <gry)--<F(y) < <Grly) - < Giy) < GTL(y).

Let s, and Sy for k > 1 be, respectively, the solutions of

sk +/ K(z,t)gr(v )dt+/01 K™ (z,t)gr(v(t))dt + h(z) = 0, (17)
$1(0) < wo, se(l) =s1(1) <wr, Vk>1.

Sy +/ K (x,t)Gr(w(t))dt + /01 K*(2,t)G}(w(t))dt + h(z) =0, (18)
Sk(0) = S1(0) > wo, Sk(1) = S1(1) > w1, Vk>1.

Then we have [14, 16]
(i). {Sk} is a decreasing sequence of upper solutions to (1)-(2) on I.
(ii). {sk} is an increasing sequence of lower solutions to (1)-(2) on I.

(143). sk < Sk, fork>1.
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Proof. (i) Since the proof of (ii) is similar to that of (i) we prove only part (i). To show that {Sk} is a decreasing sequence,
it is suffices to prove

Sk —Sk1<0, Vk>1. (19)

To this end, Equation (19) gives
(S — Se_r)” + / " K (2, ) (Gr(w(®)) — Goon (w(t)))dt + / K (a,£)(Gi(w(t)) — Gi_ (w(t)))dt = 0,

or
x 1
(Sk = Sk-1)" = / K (2, 1) (Gr-1(w(t)) — Gr(w(t)))dt +/ K (2,1) (G- (w(t)) — Gr(w(t)))dt.
0 0
Recalling that K, K* > 0 and Gk—1 > Gj and Gj_; > Gy, ensures the positivity of the integrand K(z,t)(Gr—1(w) —
Gr(w)), K*(z,t)(Gj_1 (w) — G (w)) on the interval [0,z] and therefore the integral in (20) should be positive. Therefore
the function Z = Sy — Sk_1 is such that Z” > 0 in I and Z(0) = Z(1) = 0. The Maximum Principle implies Z > 0;i.e.Sy >

Sk—1, Vk > 1. Now, we show that Si is an upper solution to (1)-(2) on I; hence
T 1
AS, =S80+ / K(z,t)F(Sk(t))dt + / K™ (z,t)F*(Sk(t))dt + h(z)
0 0
T 1
<8y +/ K(z,t)Gr(Sk(t))dt +/ K*(z,t)G5(Sk(t))dt + h(x)
0 0

<S¢+ /O K(z,0)Gr(w(t))dt + /01 K*(z, )Gy (w(t))dt + h(z) = 0,

which together with Sk (0) > uo, Sk(1) > w1 proves that Sk for k > 1 is an upper solution.

(ii) To prove that s < Sy in I, we subtract Equation (19) from (18) to have

(se=50" = [ " K (0, 1)(Grw(t)) — gr(o()dt + | K@) - gt
> / " K, 1)(Gr(w(t) — gu(w(t))dt + / K* (2, )(G(w(t)) — gi (w(t)))dt
> 0.
Applying the Maximum Principle on Z” = (s — Sk)” > 0 with Z(0), Z(1) < 0 implies that s < Sk in I as desired. O

The following theorem discusses the uniform convergence of the sequences {si} and {Si} that already constructed in the

Theorem 2.5.

Theorem 2.6. Consider the nonlinear Volterra-Fredholm integro-differential equation (1)-(2) with F(u(t)), F*(u(t)) are
decreasing and K, K* > 0inD. Let {si} and {Sk} be, respectively, the sequences of lower and upper solutions as constructed
in Theorem 2.5. Then the sequences {si} and {Sk} converge uniformly to s* and S, respectively, with s* < u < S* where

u is the exact solution of (1)-(2).

Proof.  The sequence {Si} is monotonically decreasing and bounded below by so = w, therefore it is convergent to a
continuous function S*. Also, since the sequence {sx} is monotonically increasing and bounded above by So = v, it is
convergent to a continuous function s*. Moreover, since {s;} and {S;} are sequences of continuous real-valued functions
on the compact set I := [0, 1], Dini’s theorem [5] implies that the convergence of those sequences is uniform. To show that
s* < 8%, recall part (iii) of Theorem 2.5 then take the limit of both sides, we arrive at

s = lim sy <u< lim Sp=S5",
k— o0 k— 00

as desired. O
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Note that, it can be easily verified that s* and S* are, respectively, lower and upper solutions to (1)-(2) on I. A possible
improvement in the method of constructing monotone sequences of lower and upper solutions to problem (1)-(2) on I can
be done by reconsidering Egs. (18) and (19) by calculating the new iterates, say s; and Si, using the previously computed

ones sx—1 and Si_1, respectively. The following theorem is a modified version of Theorem 2.5.

Theorem 2.7. Consider the nonlinear Volterra-Fredholm integro-differential equation (1)-(2) with F(u(t)), F*(u(t)) are
decreasing and K, K* > 0inD. Let so = w and So = v be an initial ordered lower and upper solutions of (1)-(2) on I. Let

gk (y) and Gi(y),k > 1, be decreasing functions in [w, v] with

Let s and Sk for k > 1 be, respectively, the solutions of

sk + / " K (e, )98 (S ()dt + /0 K™ (,1)gk (Sk—1(t))dt + h(z) = 0, (20)
Sk(O) = 81(0) S uo, Sk(l) = 31(1) S ui, Vk 2 1.
Sy + /m K (2,1)G(sk—1(t))dt +/ K*(2,t)G} (551 (t))dt + h(z) = 0, (21)

Sk(O) = 51(0) 2 uo, Sk(l) = 51(1) Z Uy, Vk‘ Z 1.

Then we have
(i). sg < Sk, fork>1.

(i1). {sk} and {Sk} are, respectively, increasing sequence of lower solutions and decreasing sequence of upper solutions to

(1)-(2) on I.

Proof. (i) To prove that s < Sy in I, we implement the method of mathematical induction. The case when k = 1 follows
from Lemma 2.3. If we assume that s,, < S,, in [ for k = n then we must prove that s,+1 < S,+1. Subtracting Equation

(22) from (21) at k =n + 1, we have

(sn41 = Snt1)” / K(2,8)(Gn1(5n (1) = gn+1(Sn(t) )dt+/ K™ (2, )(Grra(sn(t)) = gnia (Sn(1)))dt. (22)

Applying the mean value theorem after using the property gn4+1(Sn) < Gnt1(Sn), gnt1(Sn) < Gr41(Sn) in Equation (22),

we obtain

8G71 —+1

(sni1 — Snin) > / " K(nt) (A2)(sn(t) — Su())dt,  (23)

2L (A1) (s (£) = Sa() )dt+/ Kz, GGZH

where A1, X2 € [sn,Sn]. Since Gny1,Gy 1 are decreasmg with respect to y in [w,v], 2 "“ (M) <O and 2 ”*1 (A2) < 0.

Therefore, the integrand aG”“ (M) (sn(t) — Su(?)) and 2 ”*1 (A2)(sn(t) — Sn(t)) are positive on the interval [0,z] and,

hence, (Spt+1 — Sn+1)” > 0in T with s,41(0) — S,41(0) < 0 and s,+1(1) — Spt1(1) < 0. By the Maximum Principle we have
Snt+1 — Snt+1 < 0in I, and the result follows.
(ii) Note that, from Equations (21) and (22), the construction of si or Sk requires knowledge of both s, and Sk—1. To

prove (ii), we utilized the method of mathematical induction to show that

Sk — Sk 1<0, Vk>1. (24)
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and

Sk — Sk—1 Z 0, Vk 2 1. (25)
The case when k = 1 follows from Lemma 2.3 where we showed that S; < v = Sp and s1 > w = sg. If we assume that the
statements (24) and (25) hold for k¥ = n then we must prove that (24) and (25) are true for k = n + 1. Since the proof of
(25) is similar to that of (24) we prove only (24). To this end, Equation (22) gives
x 1
(S =82 = [ K@ 0(Galsn1() = G (st + | K (@0.0(G(50-1(0) = G on (1)
0 0
T 1
> [ K@ OG5 () = Galon )t + [ K (@G (6) = G (oo (0)
0 0

> 0.

Thus, we have (Sp+1 — Sp)” > 0in I. Setting Z = Sy41 — Sn gives Z” > 0 in I with Z(0) = 0,Z(1) = 0. It follows from

the Maximum Principle that Z < 0 in I as desired. Now, we show that Sk is an upper solution to (1)-(2) on I.

ASy = S,;’+/I K(z,t)F(Sk(t))dt+/1 K*(z,t)F" (Sk(t))dt + h(z)

IN

x 1
S+ / K (2, )G (S (8))dt + / K* (2, )GL(Su (4))dt + (). (26)
0 0
Using the result of part (i) in (26), we have

AS, < s,’;+/z K(m,t)Gk(sk(t))dt—l—/1K*(w,t)GZ(sk(t))dt+h(az) ~0,

IN

T 1
Sy + / K(x,t)Gr(sp—1(t))dt + / K*(z,t)Gf (sk—1(t))dt + h(z) = 0. (27)
0 0
Consequently, the result of (27) with the associate conditions S (0) = v(0) > uo, Sk(1) = v(1) > w1 proves that S, for k > 1
is an upper solution. Similarly, we can prove that si,k > 1, is a lower solution. O

It should be noted that the sequences {s;} and {Si} constructed in Theorem 2.6 converge uniformly to s* and S™, respec-
tively, with s* < u < S* where u is the exact solution of (1)—(2). Moreover, s* and S* are lower and upper solutions to

(1)—(2) respectively.

3. Numerical Results

In this section, we solve nonlinear Volterra-Fredholm integro-differential equations by using the monotone iterative technique

to demonstrate the performance and efficiency of this technique.

Example 3.1. Consider the Volterra-Fredholm integro-differential equation (1) with

K(z,t) = (z —t)>, K*(2,t) = 0, F(u) = F*(u) = e

hiz) == (e“%(ls —8x) + ¢ Az — 2) + e Va(de — e — 1) x erfi (; - 9:) R4z — Dz — erfi (%)) ,

with the boundary conditions

Here erfi(x) is the imaginary error function.
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The exact solution is

u(z) = & — 2°.

—u 2

Obviously, K is a positive on I x I and F(u) = e™“ is a decreasing function. The functions w(z) = 0 and v(z) =1 — =z

form, respectively, an initial ordered lower and upper solutions of our problem on I. The decreasing functions gx(u) and

—u

Gi(u),k > 1, on [w,v] are constructed using Taylor series expansion for F(u) = e~ about u = 0, we choose them to have

the forms
2k 2k—1
—1 n " 1 n n
gr(u) = (m)u, Gr(u) =) (n!)"’ k> 1.
n=0 n=0

Therefore, Theorem 2.7 applies. Solving Eqgs.(21)-(22) for k = 1, we obtain

1

si(x) = Z;);; (—210e” % (20(42° — 62 — 7) + 9) + € (42(8723 — 4z)
x(22° — 420z + 2835)) — 105e” /7 (8z(z(2(x — 2)x — 3) +5) + 1)erﬁ(% — )
F105¢" VA (20 (40(2(x — 2)7 — 3) +19) + Derfi(3)),
Si(z) = %(—meﬁ*i (20(42° — 62 — 7) +9) + "7 7 (90 — 4z (8z* — 8027 + 540z — 423))
56t /A (8 (x(2(z — 2)a — 3) + 5) + l)erﬁ(% — )
+5e” /(2 (4x(2(x — 2)x — 3) +19) + 1)erﬁ(%)).
025 0..’.5;
k=1 _ k=2
020f 020f
0151 0asf
010f o0f
0051 0055—
0‘..’. Of-l 0‘() 0?8 1.0 Ot.’. Oi'l Of(v 0{8 1.0

Figure 1. The graphs of the exact and approximate solutions for k =1, 2.

Remark 3.2. The results show that the error bounds for k = 0,1,2. It certainly appears that the convergence of the lower
solution (si (dashed)) and upper solution (S (solid)) to the exact solution (u (dotted)) is very rapid and the error is almost

negligible after only three iterations.

4. Conclusions

In this paper, we have established an efficient algorithm based on a monotone iterative sequences for the solution of a class
of nonlinear Volterra-Fredholm integro-differential equations. This algorithm involves a clear description of constructing
two sequences of increasing lower solutions, {si} and decreasing upper solutions, {S;}, which are uniformly convergent.
Numerical results has proved the efficiency of the proposed algorithm in terms of accuracy and rapid convergence of the

proposed technique.
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