

International Journal of *Mathematics* And its Applications

Some Characterization of Fuzzy Soft **F**-Semigroups

V. Chinnadurai¹ and K. Arulmozhi^{1,*}

1 Department of Mathematics, Annamalai University, Annamalainagar, Tamil Nadu, India.

Abstract: The purpose of this paper is to introduce the notion of fuzzy soft prime ideals of Γ -semigroup and fuzzy soft Γ -left quasi regular and also to obtain some interesting properties of them.

Keywords: Soft set, fuzzy set ,
soft prime, fuzzy soft $\Gamma\mbox{-left}$ quasi regular.
 $\hfill \hfill \h$

Accepted on: 01.04.2018

1. Introduction

The concept of fuzzy set was introduced by Zadeh [20]. He studied their properties on the parellel lines to set theory. In 1971, Rosenfeld [13] defined fuzzy subgroups and gave some of its properties. Kuroki [6] introduced fuzzy semigroups as a generalized of classical semigroups. Mordeson [9] obtained some characterization of fuzzy semigroups. Sen and saha [14, 15] have introduced Γ -semigroups and their properties. Soft set theory was proposed by Molotsov [8] in 1999. Maji [7] worked on soft set theory and fuzzy soft set theory. Ali [1] introduced new operations on soft sets. Mukherjee [11] studied about the fuzzy ideals and fuzzy prime ideals. Sujit kumar sardar [17] worked on characterization of prime ideals of Γ -semigroups in terms of fuzzy subsets. Thawhat [18] introduced soft Γ -semigroups and disscused interesting many results. Chinnadurai [2] studied the fuzzy soft Γ -regular semigroup. In this paper we have discussed some properties of prime ideals of Γ -semigroups and fuzzy soft Γ -left quasi regular semigroups.

2. Preliminaries

Definition 2.1 ([14]). Let $S = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two non-empty sets. Then S is called a Γ -semigroup if it satisfies the conditions

(1). $a\alpha b \in S$,

(2). $(a\beta b)\gamma c = a\beta(b\gamma c) \ \forall \ a, b, c \in S \ and \ \alpha, \beta, \gamma \in \Gamma.$

Definition 2.2 ([9]). An ideal I of a Γ -semigroup S is called prime Γ -ideal if for any ideals A and B of S, $A\Gamma B \subseteq I$.

Definition 2.3 ([9]). An ideal I of a Γ -semigroup S is called semiprime Γ -ideal if for any ideals A, if $A\Gamma A \subseteq I$ implies $A \subseteq I$.

^{*} E-mail: arulmozhiems@gmail.com

Definition 2.4 ([18]). Let S be a Γ - semigroup. A non empty subset A of S is said to be idempotent $A\Gamma A = A$.

Definition 2.5 ([10]). A soft semigroup (F, A) over S is called a soft regular semigroup if for each $\alpha \in A, F(\alpha)$ is regular.

Definition 2.6 ([16]). A semigroup S is called left quasi regular if every left ideal of S is idempotent. Also S is left quasi regular if and only if $a \in SaSa$, that is there exist element $x, y \in S$, such that a = xaya.

Definition 2.7 ([8]). Let U be the universel set and E be the set of parameters, P(U) denote the power set of U and A be a non empty subset of E. A pair (F, A) is called a soft set over U, where F is a mapping given by $F : A \to P(U)$.

Definition 2.8 ([1]). The extended union of two fuzzy soft sets (F, A) and (G, B) over a common universe U is fuzzy soft set denoted by $(F, A) \cup_{\epsilon} (G, B)$ defined as $(F, A) \cup_{\epsilon} (G, B) = (H, C)$ where $C = A \cup B$, $\forall c \in C$.

$$H(c) = \begin{cases} llF(c) & \text{if } c \in A - B \\ G(c) & \text{if } c \in B - A \\ F(c) \cup G(c) & \text{if } c \in A \cap B. \end{cases}$$

Definition 2.9 ([1]). The extended intersection of two fuzzy soft sets (F, A) and (G, B) over a common universe U is fuzzy soft set denoted by $(F, A) \cap_{\epsilon} (G, B)$ defined as $(F, A) \cap_{\epsilon} (G, B) = (H, C)$ where $C = A \cup B$, $\forall c \in C$.

$$H(c) = \begin{cases} llF(c) & \text{if } c \in A - B \\ G(c) & \text{if } c \in B - A \\ F(c) \cap G(c) & \text{if } c \in A \cup B. \end{cases}$$

Definition 2.10 ([18]). A soft set (F, A) over S is called a soft Γ -semigroup over S if $(F, A)\tilde{\circ}(F, A)\tilde{\subset}(F, A)$.

Definition 2.11 ([12]). The restricted product (H, C) of two fuzzy soft sets (F, A) and (G, B) over a semigroup S is defined as $(H, C) = (F, A) \tilde{\circ}(G, B)$ where $C = A \cap B$ by $H(c) = F(c) \tilde{\circ} G(c), \forall c \in C$.

Definition 2.12 ([20]). Let X be a non-empty set. A fuzzy subset μ of X is a function from X into the closed unit interval [0,1]. The set of all fuzzy subset of X is called the fuzzy power set of X and is denoted by FP(X).

Definition 2.13 ([9]). A semigroup S is called a fuzzy left(right) duo if every fuzzy left(right) ideal of S is a fuzzy ideal of S

Definition 2.14 ([9]). A fuzzy ideal f of S is called prime if for any two fuzzy ideals g and $h, g \circ h \subseteq f$ implies $g \subseteq f$ or $h \subseteq f$.

Definition 2.15 ([9]). A fuzzy subset f of a semigroup S is called a fuzzy semiprime if $f(a) \ge f(a^2) \forall a \in S$.

Definition 2.16 ([3]). Let X be non empty set and A be subset of X. Then the characteristic function $\chi_A : X \to [0,1]$ is defined by

$$\chi_A(x) = \begin{cases} ll1 & if \ x \in A \\ 0 & if \ x \notin A \end{cases}$$

3. Prime Fuzzy Soft Ideals of Γ-semigroups

In this section, the notion of prime fuzzy soft ideals of Γ -semigroup introduced. We have also obtained equivalent conditions simple soft Γ -semigroups.

Definition 3.1. Let (F, A) be fuzzy soft Γ -ideal of S is called prime fuzzy soft Γ -ideal if and only if it is prime fuzzy Γ -ideal of S, (i.e) for each $e \in A$ satisfied the condition $F(e)(p) = F(e)(p\gamma q) \forall p, q \in S$ and $\gamma \in \Gamma$.

Definition 3.2. Let (F, A) be fuzzy soft Γ -ideal of S is called semiprime fuzzy soft Γ -ideal if and only if it is semiprime fuzzy Γ -ideal of S, (i.e) for each $e \in A$ satisfied the condition $F(e)(p) = F(e)(p\gamma q) \forall p \in S$ and $\gamma \in \Gamma$.

Theorem 3.3. A soft set (F, A) over S is a prime soft Γ -ideal of S if and only if $(\chi_{F(e)}, A)$ is a prime fuzzy soft Γ - ideal of S.

Proof. Suppose that (F, A) is a prime soft Γ - ideal of S. Since F(e) is a Γ -prime ideal of S. Let $a \in S$ such that $p\gamma q \in F(e)$, then $\chi_{F(e)}(p\gamma q) = 1 \forall e \in A$. Since F(e) is a Γ -prime ideal of $S, p\gamma q \in F(e) \Rightarrow p \in F(e)$ and $q \in F(e)$ and $\chi_{F(e)}(p) = 1 = \chi_{F(e)}(p\gamma q)$ and $\chi_{F(e)}(q) = 1 = \chi_{F(e)}(p\gamma q)$. If $p\gamma q \neq F(e)$ then we have $\chi_{F(e)}(p) = 0 = \chi_{F(e)}(p\gamma q)$ and $\chi_{F(e)}(q) = 0 = \chi_{F(e)}(p\gamma q)$. Hence $(\chi_{F(e)}, A)$ is a prime fuzzy soft Γ - ideal of S.

Conversely, assume that $(\chi_{F(e)}, A)$ is a prime fuzzy soft Γ - ideal of S. Let $p\gamma q \in F(e) \forall e \in A$. Then $\chi_{F(e)}(p\gamma q) = 1$ and by hypothesis we have, $\chi_{F(e)}(p) = \chi_{F(e)}(p\gamma q) = 1$ and $\chi_{F(e)}(q) = \chi_{F(e)}(p\gamma q) = 1$. It follows that $\chi_{F(e)}(p) = 1, \chi_{F(e)}(q) = 1$ and so $p, q \in F(e)$. Hence F(e) is prime soft Γ -ideal of S. Hence (F, A) is a prime soft Γ -ideal of S.

Theorem 3.4. If (F, A), (G, B) and (H, C) be fuzzy soft sets over a Γ -semigroup S such that $(F, A) \subseteq (G, B)$. If $B \cap C$ is non-empty or $C \subseteq A$ then $(F \circ H, A \cup C) \subseteq (G \circ H, B \cup C)$ and $(H \circ F, C \cup A) \subseteq (H \circ G, C \cup B)$.

Proof. Note that $A \cup C \subseteq B \cup C$. Suppose $B \cap C$ is non-empty, let $e \in A \cup C$. If $e \in A$, $e \notin C$, we have $e \in B \cup C$, but $e \neq C$, and hence $e \in B$. Therefore $(F \circ H)(e) = F(e) \leq G(e) = (G \circ H)(e)$. Hence $(F \circ H)(e) \leq (G \circ H)(e)$. If $e \in C$, $e \notin A$ thus $(F \circ H)(e) = H(e)$ and $(G \circ H)(e) = H(e)$. Assume that $C \subseteq A$. If $e \in A \cap C$, then $(F \circ H)(e) = F(e) \circ H(e) \leq G(e) \circ H(e) = (G \circ H)(e)$. Therefore $(F \circ H)(e) \leq (G \circ H)(e)$. If $e \in A$, $e \notin C$, we have $e \in B \cup C$, but $e \neq C$, hence $e \in B$. Therefore $(F \circ H)(e) \leq (G \circ H)(e)$. Hence $(F \circ H)(e) \leq (G \circ H)(e)$. Hence $(F \circ H)(e) \leq (G \circ H)(e)$. Therefore $(F \circ H)(e) = F(e) \leq G(e) = (G \circ H)(e)$. Hence $(F \circ H)(e) \leq (G \circ H)(e)$. Therefore $(F \circ H), A \cap C) \subseteq (G \circ H), B \cap C$. Similarly $(H \circ F, C \cup A) \subseteq (H \circ G), C \cup B$. □

Note that, converse of Theorem 3.4 is not true in general, which is shows in the following example.

Example 3.5. Let $S = \{z_1, z_2, z_3, z_4\}$ and $\Gamma = \{\alpha, \beta\}$, where α, β is defined on S with the following Cayley table:

α	z_1	z_2	z_3	z_4	β	z_1	z_2	z_3	z_4
z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1
z_2	z_1	z_1	z_2	z_1	z_2	z_1	z_1	z_1	z_1
z_3	z_1	z_1	z_3	z_1	z_3	z_1	z_1	z_1	z_1
z_4	z_1	z_2	z_1	z_4	z_4	z_1	z_2	z_1	z_4

Consider $E = \{e_1, e_2, e_3, e_4\}$, and $A = \{e_1, e_2\}, B = \{e_1, e_2, e_3\}, C = \{e_1, e_3\}, B \cap C \neq \phi$ and $C \not\subseteq A$, consider fuzzy soft sets over a soft Γ -semigroup S.

 $(F,A) = \{F(e_1) = \{(z_1,0.8), (z_2,0.5), (z_3,0.7), (z_4,0.5)\}, F(e_2) = \{(z_1,0.7), (z_2,0.3), (z_3,0.5), (z_4,0.3)\}\}; (G,B) = \{G(e_1) = \{(z_1,0.5), (z_2,0.2), (z_3,0.4), (z_4,0.2)\}, G(e_2) = \{(z_1,0.6), (z_2,0.2), (z_3,0.4), (z_4,0.2)\}, G(e_3) = \{(z_1,0.5), (z_2,0.1), (z_3,0.3), (z_4,0.1)\}\}; (H,C) = \{H(e_1) = \{(z_1,0.9), (z_2,0.6), (z_3,0.8), (z_4,0.6)\}, H(e_3) = \{(z_1,0.6), (z_2,0.3), (z_3,0.3), (z_4,0.1)\}\}; (H,C) = \{H(e_1) = \{(z_1,0.9), (z_2,0.6), (z_3,0.8), (z_4,0.6)\}, H(e_3) = \{(z_1,0.6), (z_2,0.3), (z_3,0.3), (z_4,0.2)\}\}$

 $(z_3, 0.4), (z_4, 0.3)\}$. Consider $(F, A) \tilde{\circ}(H, C) = (F \tilde{\circ} H, A \cup C)$.

 $(F \circ H, A \cup C) = \{\{(F \circ H)(e_1) = (z_1, 0.8), (z_2, 0.5), (z_3, 0.7), (z_4, 0.5) = (H \circ F)(e_1); \{(F \circ H)(e_2) = (z_1, 0.7), (z_2, 0.3), (z_3, 0.5), (z_4, 0.3) = (H \circ F)(e_2)\}; \{(F \circ H)(e_3) = (z_1, 0.6), (z_2, 0.3), (z_3, 0.4), (z_4, 0.3) = (H \circ F)(e_3)\}\} and consider (G \circ H, B \cup C) = \{\{(G \circ H)(e_1) = (z_1, 0.5), (z_2, 0.2), (z_3, 0.4), (z_4, 0.2) = (H \circ G)(e_1), \{(G \circ H)(e_2) = (z_1, 0.6), (z_2, 0.2), (z_3, 0.4), (z_4, 0.2) = (H \circ G)(e_3)\}\}. Since (F \circ H)(e_i) \not\leq (G \circ H)(e_i), (H \circ F)(e_i) \not\leq (H \circ G)(e_i) \forall i = 1, 2, 3. Hence (F \circ H, A \cup C) \not\subseteq (G \circ H, B \cup C), (H \circ F, C \cup A) \not\subseteq (H \circ G, C \cup B).$

Theorem 3.6. A soft set (F, A) over S is a semiprime soft Γ -ideal of S if and only if $(\chi_{F(e)}, A)$ is a semiprime fuzzy soft Γ - ideal of S.

Proof. Suppose that (F, A) is a semiprime soft Γ - ideal of S. Since F(e) is a Γ -semiprime ideal of S.Let $a \in S$ such that $p\gamma p \in F(e)$, then $\chi_{F(e)}(p\gamma p) = 1 \forall e \in A$. Since F(e) is a Γ -semiprime ideal of $S, p\gamma q \in F(e) \Rightarrow p \in F(e)$ and $q \in F(e)$ and $\chi_{F(e)}(p) = 1 = \chi_{F(e)}(p\gamma p)$. If $p\gamma p \neq F(e)$ then $\chi_{F(e)}(p) = 0 = \chi_{F(e)}(p\gamma p)$. Hence $(\chi_{F(e)}, A)$ is a semiprime fuzzy soft Γ -ideal of S.

Conversely assume that $(\chi_{F(e)}, A)$ is a fuzzy soft Γ -semiprime ideal of S. Let $p\gamma p \in F(e)$, $\forall e \in A$. Then $\chi_{F(e)}(p\gamma p) = 1$ and by hypothesis we have, $\chi_{F(e)}(p) = \chi_{F(e)}(p\gamma p) = 1$, it follows that $\chi_{F(e)}(p) = 1$, which implies $p \in F(e)$. Hence F(e) is semiprime soft Γ -ideal of S, therefore (F, A) is a semiprime Γ -ideal of S.

Theorem 3.7. Let (F, A), (G, B) and (H, C) be fuzzy soft -bi-ideals over a Γ -semigroup S, suppose that (F, A) is a prime fuzzy soft Γ -bi-ideal with $(G \circ H, B \cup C) \subseteq (F, A)$, then the following conditions are satisfied.

- (i). If $|(B \cap C)|$ is empty, then $(G, B) \subseteq (F, A)$ and $(H, C) \subseteq (F, A)$.
- (ii). If $|(B \cap C)|$ is non-empty, then $(G, B) \subseteq (F, A)$ or $(H, C) \subseteq (F, A)$.

Proof. Suppose that $(G \circ H, B \cup C) \subseteq (F, A)$, that is $B \cup C \subseteq A$ and $(G \circ H)(e) \leq F(e)$ for all $e \in B \cup C$. Since $B \cup C \subseteq A$, implies that $B \subseteq A$ and $C \subseteq A$.

(i). Assume that $|(B \cap C)|$ is empty $e \in B$, then $G(e) = (G\tilde{\circ}H)(e) \leq F(e)$. That is $(G, B) \subseteq (F, A)$, and similarly $e' \in C$, then $H(e') = (G\tilde{\circ}H)(e') \leq F(e')$. Therefore $(H, C) \subseteq (F, A)$.

(ii). Assume that $|(B \cap C)|$ is not empty, suppose $(G, B) \not\subseteq (F, A)$, then there exists $e^{'} \in B$ such that $G(e^{'}) \not\leq F(e^{'})$. If $e^{'} \notin C$ then $G(e^{'}) = (G \circ H)(e^{'}) \leq F(e^{'})$. Therefore $q \in B \cap C$. Let $e^{"} \in C$.

Claim: $H(e^{"}) \leq F(e^{"})$. If $e^{"} \in C$, and $e^{"} \notin B$, then $H(e^{"}) = (G \circ H)(e^{"}) \leq F(e^{"})$. If $e^{"} \in C$, and $e^{"} \in B$, then $e^{"} = e^{'}$. Hence $G(e^{"}) \circ H(e^{"}) = (G \circ H)(e^{"}) \leq F(e^{"})$. Since (F, A) is a prime fuzzy soft Γ -bi-ideal over a Γ semigroup S.That is $G(e^{"}) \leq F(e^{"})$ or $H(e^{"}) \leq F(e^{"})$, but $G(e^{"}) \not\leq F(e^{"})$, and hence $H(e^{"}) \leq F(e^{"})$. Therefore $(H, C) \subseteq (F, A)$.

Example 3.8. From the Example 3.5, consider $E = \{e_1, e_2, e_3, e_4\}$, and $A = \{e_1, e_2, e_3, e_4\}$, $B = \{e_1, e_2\}$, $C = \{e_1, e_2, e_4\}$. Let $(F, A) = \{F(e_1) = \{(z_1, 0.8), (z_2, 0.4), (z_3, 0.2), (z_4, 0.5)\}$, $F(e_2) = \{(z_1, 0.9), (z_2, 0.5), (z_3, 0.1), (z_4, 0.7)\}$, $F(e_3) = \{(z_1, 1), (z_2, 0.6), (z_3, 0.5), (z_4, 0.8)\}$, $F(e_4) = \{(z_1, 0.7), (z_2, 0.5), (z_3, 0.4), (z_4, 0.6)\}\}$. Let $(G, B) = \{G(e_1) = \{(z_1, 0.9), (z_2, 0.7), (z_3, 0.5), (z_4, 0.8)\}$, $G(e_2) = \{(z_1, 0.8), (z_2, 0.4), (z_3, 0.1), (z_4, 0.7)\}\}$. Let $(H, C) = \{H(e_1) = \{(z_1, 0.7), (z_2, 0.3), (z_3, 0.1), (z_4, 0.4)\}$, $H(e_2) = \{(z_1, 0.6), (z_2, 0.3), (z_3, 0), (z_4, 0.5)\}$, $H(e_4) = \{(z_1, 0.6), (z_2, 0.4), (z_3, 0.2), (z_4, 0.5)\}\}$. Consider $(G, B)\delta(H, C) = (G\delta(H, B \cup C))$.

 $(G\tilde{\circ}H, B \cup C) = \{ (G\tilde{\circ}H)(e_1) = \{ (z_1, 0.7), (z_2, 0.3), (z_3, 0.1), (z_4, 0.4) \}, \ (G\tilde{\circ}H)(e_2) = \{ (z_1, 0.6), (z_2, 0.3), (z_3, 0), (z_4, 0.5) \}, \\ (G\tilde{\circ}H)(e_4) = \{ (z_1, 0.6), (z_2, 0.4), (z_3, 0.2), (z_4, 0.5) \} \}.$ Thus $(G\tilde{\circ}H, B \cup C) \subseteq (F, A)$, since $|(B \cap C)|$ is non-empty, and $(G, B) \not\subseteq (F, A)$ hence $(H, C) \subseteq (F, A)$

4. Fuzzy Soft Γ-left Quasi Regular Semigroups

In this section S denotes fuzzy soft $\Gamma\text{-}$ left quasi regular semigroup.

Definition 4.1. A soft Γ -semigroup S is called soft left quasi regular if every soft Γ -left ideal of S is idempotent.

Example 4.2. Let $S = \{z_1, z_2, z_3, z_4\}$ and $\Gamma = \{\alpha, \beta, \gamma\}$, where α, β, γ is defined on S with the following Cayley table:

α	z_1	z_2	z_3	z_4	β	z_1	z_2	z_3	z_4	γ	z_1	z_2	z_3	z_4
$ z_1 $	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1
z_2	z_1	z_2	z_3	z_4	z_2	z_1	z_2	z_3	z_4	z_2	z_1	z_3	z_3	z_3
z_3	z_1	z_3	z_3	z_3	z_3	z_1	z_3	z_3	z_3	z_3	z_1	z_3	z_3	z_3
z_4	z_1	z_3	z_3	z_3	z_4	z_1	z_2	z_3	z_4	z_4	z_1	z_2	z_3	z_4

Consider $E = \{e_1, e_2, e_3, e_4\}$, and $A = \{e_1, e_2, e_3, e_4\}F(e_1) = \{z_1, z_3\}, F(e_2) = \{z_1, z_2, z_3\}, F(e_3) = \{z_1, z_3, z_4\}, F(e_4) = \{z_1, z_2, z_3, z_4\}$. Here (F, S) is soft Γ -left quasi regular semigroup.

Theorem 4.3. Let (F, A) be a soft Γ -left quasi regular then every fuzzy soft Γ -left ideal is idempotent.

Proof. Let (F, A) be a soft Γ -left quasi regular semigroup and F(e) be fuzzy soft Γ -left ideal of S. Let $a \in S$ there exists $p, q \in S$ such that $a = p\alpha a\beta q\gamma a$, and $\alpha, \beta, \gamma \in \Gamma, \forall e \in A$. Thus

$$(F(e)\tilde{\circ}F(e))(a) = \sup_{a=x\Gamma y} \min\{F(e)(x), F(e)(y)\}$$

$$\geq \min\{F(e)(p\alpha a), F(e)(q\gamma a)\}$$

$$\geq \min\{F(e)(a), F(e)(a)\}$$

$$= F(e)(a)$$

That is $(F, A) \tilde{\circ}(F, A) \supseteq (F, A)$. Since F(e) is a fuzzy soft Γ - left ideal of S, then $(F, A) \tilde{\circ}(F, A) \subseteq (F, A)$. Hence $(F, A) \tilde{\circ}(F, A) = (F, A)$, this imples that (F, A) is a soft idempotent.

Theorem 4.4. If (F, A) is both soft Γ -intra regular and soft Γ -left quasi regular, then $(F, A) \cap_{\epsilon} (G, A) \cap_{\epsilon} (H, B) \subseteq (F, A) \tilde{\circ}(G, A) \tilde{\circ}(H, B)$ for every fuzzy soft Γ -generalized bi-ideal, (H, B) every fuzzy soft Γ -left ideal, (F, A) and every fuzzy soft Γ -right ideal of (G, A) of S.

Proof. Assume that (F, A) is both soft Γ -intra regular and soft Γ -left quasi regular, let (H, B) be any fuzzy soft Γ generalized bi-ideal, (F, A) and every fuzzy soft Γ -left ideal, (G, A) be fuzzy soft Γ -right ideal of S. Let $a \in S, (F, A) \cap_{\epsilon}$ $(G, A) \cap_{\epsilon} (H, B) = K_1, A \cup B$ and $(F, A) \cap_{\epsilon} (G, A) \cap_{\epsilon} (H, B) = K_2, A \cup B$ for any $e \in A \cup B$. By using the cases

Case 1: If $e \in A - B$ then $K_1(e) = A \cap B \cap (H, B) = K_2(e), A \cap B \forall e \in A \cap B$, we have $K_1(e) = K_2(e)$

Case 2: If $e \in B - A$ then $K_1(e) = H(e) = K_1(e)$

Case 3: If $e \in A \cap B$ then $K_1(e) = F(e) \cap G(e) \cap H(e)$ and $K_2(e) = F(e) \circ G(e) \circ H(e)$.

To prove $(F, A) \cap_{\epsilon} (G, A) \cap_{\epsilon} (H, B) \subseteq (F, A) \tilde{\circ}(G, A) \tilde{\circ}(H, B)$, since S is soft Γ -intra regular, then there exists $p, q \in S$ such that $a = p\delta a\lambda a\eta q$ and since S is soft Γ -left quasi regular, then there exists $m, n \in S$ such that $a = m\alpha a\beta n\gamma a = m\alpha (p\delta a\lambda a\eta q)\beta n\gamma a = ((m\alpha p)\delta a)(\lambda a\eta (q\beta n)\gamma a)$. Consider

$$\begin{aligned} (F(e) \tilde{\circ} G(e) \tilde{\circ} H(e))(x) &= \sup_{a=x \Gamma y} \min\{F(e)(x), G(e) \tilde{\circ} H(e))(y)\} \\ &\geq \min\{F(e)((m\alpha p)\delta a), (G(e) \tilde{\circ} H(e))((\lambda a \eta(q\beta n)\gamma a))\} \end{aligned}$$

15

 $\geq \min \{F(e)(a), \sup_{a=x\Gamma y} \min\{G(e)(x), H(e)(y)\}\}$ $\geq \min\{F(e)(a), G(e)(\lambda a \eta q \beta n), H(e)(a)\}\}$ $\geq \min\{F(e)(a), \min\{G(e), H(e)(a)\}\}$ $= \min\{F(e), G(e), H(e)\}(a)$ $= (F(e) \cap G(e) \cap H(e))(a)$

Therefore $(F, A) \cap_{\epsilon} (G, A) \cap_{\epsilon} (H, B) \subseteq (F, A) \tilde{\circ}(G, A) \tilde{\circ}(H, B).$

Definition 4.5. A soft Γ -regular semigroup (F, A) is called fuzzy soft duo if it is fuzzy soft Γ - left duo and fuzzy soft Γ -right duo.

Example 4.6. From the Example 4.2 (β and γ). Consider $E = \{e_1, e_2, e_3, e_4\}$ and $A = \{e_1, e_2, e_3, e_4\}$, $F(e_1) = F(e_3) = \{z_1, z_3\}$, $F(e_2) = F(e_4) = \{z_1, z_2, z_3, z_4\}$. Hence (F, S) is soft regular duo Γ - semigroup.

Theorem 4.7. In a soft regular right duo(left duo, duo) Γ -semigroup S, the following conditions are equivalent

- (i). (F, A) is a fuzzy soft Γ -left ideal(right) of S.
- (ii). (F, A) is a fuzzy soft Γ bi-ideal of S.

Proof. Let F(e) be a fuzzy soft left Γ -ideal of S, and let $p, q, r \in S, \alpha, \beta \in \Gamma$ and $e \in A$. Consider

$$F(e)(p\alpha q\beta r) = F(e)((p\alpha q)\beta r)$$

$$\geq F(e)(r)$$

$$\geq \min\{F(e)(p), F(e)(r)\}$$

Hence F(e) is a fuzzy soft bi-ideal of S.

Conversely, let F(e) be a fuzzy soft bi-ideal of S, and $p, q \in S, \gamma \in \Gamma$ and $e \in A$. Then $p\gamma q \in S$, since S is soft Γ -regular and right duo, then $p\gamma q \in S\Gamma(q\Gamma S\Gamma q) \subseteq q\Gamma S\Gamma q$, consequently then there exist $r \in S, \alpha, \beta \in \Gamma$ and $e \in A$ such that $p\gamma q = q\alpha r\beta q$. Consider

$$F(e)(p\gamma q) = F(e)(q\alpha r\beta q)$$

$$\geq \min\{F(e)(q), F(e)(q)\}$$

$$= F(e)(q)$$

Hence F(e) is a fuzzy soft Γ -left ideal of S. Similarly we can prove that (ii).

Example 4.8. From example 4.6, $F(e_1) = \{(z_1, 0.4), (z_2, 0.1), (z_3, 0.2), (z_4, 0.1)\}; F(e_3) = \{(z_1, 0.5), (z_2, 0.2), (z_3, 0.3), (z_4, 0.2)\}$. Thus (F, A) is a fuzzy soft Γ -ideal and bi-ideal of regular duo Γ -semigroup S.

Theorem 4.9. In a soft regular left duo Γ -semigroup S, the following conditions are equivalent

- (i). (F, A) is a fuzzy soft Γ bi-ideal of S.
- (ii). (F, A) is a fuzzy soft Γ -(1, 2)-ideal of S.

Proof. Let F(e) be a fuzzy soft Γ -bi-ideal of S, and let $p, s, q, r \in S, \alpha, \beta \in \Gamma$ and $a \in A$. Consider

$$F(e)(p\alpha s\beta(q\gamma r)) = F(e)((p\alpha s\beta q)\gamma r)$$

$$\geq \min\{F(e)(p\alpha s\beta q), F(e)(r)\}$$

$$\geq \min\{\min\{F(e)(p), F(e)(q)\}, F(e)(r)\}$$

$$= \min\{F(e)(p), F(e)(q), F(e)(r)\}$$

Hence F(e) is a fuzzy soft Γ -(1, 2)-ideal of S.

Conversely, assume that F(e) is a fuzzy soft Γ -(1, 2)-ideal of S, and S be a soft regular left duo Γ -semigroup S. Let $p, s, q \in S, \alpha, \eta \in \Gamma$ and $e \in A$. Then $p\gamma q \in S$ since S is soft Γ -regular and left duo, then $p\gamma q \in S\Gamma(p\alpha s) \in (p\Gamma S\Gamma p)\Gamma S \subseteq (p\Gamma S\Gamma p)$, this equivalent to $p\alpha s = p\beta s\gamma p, s \in S$ and $\beta, \gamma \in \Gamma, e \in A$. Consider

$$F(e)(p\alpha s\eta q) = F(e)((p\beta s\gamma p)\eta q)$$

= $F(e)(p\beta s\gamma (p\eta q))$
 $\geq \min\{F(e)(p), F(e)(p), F(e)(q)\}$
= $\min\{F(e)(p), F(e)(q)\}$

Therefore F(e) is a fuzzy soft Γ -bi- ideal of S.

Example 4.10. Let $S = \{z_1, z_2, z_3, z_4\}$ and $\Gamma = \{\alpha, \beta, \gamma\}$, where α, β, γ is defined on S with the following Cayley table:

α	z_1	z_2	z_3	z_4	β	z_1	z_2	z_3	z_4	γ	z_1	z_2	z_3	z_4
z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1	z_1
$\overline{z_2}$	$\overline{z_1}$	$\overline{z_1}$	$\overline{z_2}$	$\overline{z_1}$	z_2	$\overline{z_1}$	$\overline{z_1}$	$\overline{z_1}$	$\overline{z_1}$	$\overline{z_2}$	$\overline{z_1}$	$\overline{z_1}$	$\overline{z_1}$	$\overline{z_1}$
z_3	$\overline{z_1}$	$\overline{z_1}$	z_3	$\overline{z_1}$	z_3	z_1	$\overline{z_1}$	$\overline{z_1}$	z_1	z_3	$\overline{z_1}$	z_1	$\overline{z_1}$	z_1
z_4	z_1	z_2	z_1	z_4	z_4	z_1	z_2	z_1	z_4	z_4	z_1	z_1	z_2	z_1

Consider $E = \{e_1, e_2, e_3, e_4\}$ and $A = \{e_1, e_2, e_3\}$, $F(e_1) = \{z_1, z_2\}$, $F(e_2) = F(e_3) = \{z_1, z_2, z_3\}$. Hence (F, S) is soft regular duo Γ - semigroup. Consider $F(e_1) = \{(z_1, 0.6), (z_2, 0.2), (z_3, 0.1), (z_4, 0.4)\}$; $F(e_2) = \{(z_1, 0.7), (z_2, 0.3), (z_3, 0.2), (z_4, 0.5)\}$. Thus (F, A) is a fuzzy soft Γ -(1, 2)-ideal and Γ -bi-ideal of regular duo Γ -semigroup S.

Acknowledgement

The research of the second author is partially supported by UGC-BSR grant : F.25-1/2014-15(BSR)/7 - 254/2009(BSR) dated 20-01-2015 in India.

References

M. I. Ali, F. Feng, X. Y.Liu and M. Shabir, On some new operations in soft set theory, Comput Math. Appl., 57(2009), 1547-1553.

^[2] V. Chinnadurai and K. Arulmozhi, Fuzzy soft Γ- regular semigroups, International Journal of Multidisciplinary Research and Modern Education, 2(3)(2016), 238-250.

^[3] V. Chinnadurai, Fuzzy ideals in algebraic structures, LAP LAMBERT Academic publishing, (2013).

- [4] Chinram and Jirojkul, On bi-Γ-ideals in Γ-semigroups, Songklanakarin Sci. Technol Journal., 29(2007), 231-234.
- [5] T. K. Dutta and N.C. Adhikari, On Prime Radical of A-Semigroup, Bull. Cal. Math. Soc., 86(5)(1994), 437-444.
- [6] N. Kuroki, On fuzzy semigroups, Inform. Sci., 53(1991), 203236.
- [7] P. K. Maji, R. Biswas and R. Roy, Soft set theory, Comput. Math. Appl., 45(2003), 555-562.
- [8] D. Molodtsov, Soft set theory first results, Comput. Math. Appl., 37(1999), 19-31.
- [9] J. N. Mordeson, D. S. Malik and N. Kuroki, Fuzzy semigroups, Springer-Verlag Berlin Heidelberg GmbH, (2003).
- [10] Muhammad Ifran Ali, Muhammad Shabir and K. P. Shum, On soft ideals over semigroups, Southeast Asian Bulletion of Mathematics, 34(2010), 595-610.
- [11] T. K. Mukherjee and M. K. Sen, On fuzzy ideals of a ring, Proceedings, Seminar on Fuzzy Systems and Non-standard Logic, Calcutta, May, (1984).
- [12] Munazza Naz, On fuzzy soft semigroup, World Applied Science Journal, 22(special issue of applied Math)(2013), 62-83.
- [13] Rosenfeld, Fuzzu groups, J.Math. Anal. Appl., 35(1971), 512-517.
- [14] M. K. Sen, On Γ-semigroups, Proceedings of International conference on Algebra and its Application Decker publication, New yark, 301(1981).
- [15] M. K. Sen and N. K Saha, On Γ- semigroup I, Bull. Calcutta Math. Soc., 78(1986), 180-186.
- [16] A. Sezgin Sezer, N. C. Atgman, A. O. Atagun, M. I. Ali and E. Turkmen, Title?, Filomat, 29(5)(2015), 917946.
- [17] Sujit Kumar Sardar, On Fuzzy Ideals in Γ-Semigroups, International Journal of Algebra, 3(16)(2009), 775-784.
- [18] Thawhat Changphas and Boonyen Thongkam, On soft Γ-semigroups, Annals of Fuzzy Mathematics and Informatics, 4(2)(2012), 217-223.
- [19] M. Uckun, M. A. Ozturk and Y. B. Jun, Intuitionistic fuzzy sets in Γ-semigroups, Bull. Korean Math. Soc., 44(2)(2007), 359367.
- [20] L. A Zadeh, Fuzzy sets, Inform and Control, 8(1965), 338-353.