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1. Introduction

In 1970, N. Levine [8] introduced and investigated the concept of generalized closed sets in a topological space. He studied

most fundamental properties and also introduced a separation axiom T1/2. The digital line is typical example of a T1/2 space

[2]. After Levine’s works, many authors defined and investigated various notions to Levine’s g-closed sets and related topics

[4]. In 1970, E. Khalimsky [6] introduced digital line. In 1990, K. Kopperman and R. Meyer [5] developed finite analog of

the Jordan curve theorem motivated by a problem in computer graphics (cf. [5, 7]). In this paper, we introduce the concept

of #gα̂-closed sets in a topological space and characterize it using ∗gαo-kernel and τα-closure. Moreover, we investigate the

properties of #gα̂-closed sets in digital plane. We prove that this plane (Z2,# gα̂O) is T1/2 and T3/4. It is well known that

the digital plane (Z2, κ2) is not T1/2, even if (Z, κ) is T1/2.

2. Preliminaries

Throughout this paper, (X, τ) or X denotes the topological spaces. For a subset A of X, the closure, the interior and the

complement of A are denoted by cl(A), int(A) and Ac respectively. We recall some basic definitions that are used in the

sequel.

Definition 2.1. A subset A of a topological space (X, τ) is called α-open [10] if A ⊆ int(cl(int(A))). Moreover, A is said

to be α-closed if X\A is α-open. The collection of all α-open subsets in (X, τ) is denoted by τα. The α-closure of a subset

A is the smallest α-closed set containing A and this is denoted by τα-cl(A) in this paper.
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Definition 2.2. A subset A of a topological space (X, τ) is called ∗gα̂-closed [11] if cl(A) ⊆ U whenever A ⊆ U and U is

an ∗gα-open set in (X, τ). Moreover, A is said to be ∗gα̂-open if X\A is ∗gα̂-closed.

Lemma 2.3 ([9]). For a subset A of (X, τ), the following conditions are equivalent:

(1). A is ∗gα-closed in (X, τ).

(2). τα-cl(A) ⊆ go-Ker(A) holds.

Lemma 2.4 ([9]). Let a subset A of (Z2, κ2).

(1). go-Ker(A) = U(AF2) ∪Amix ∪Aκ2 , where U(AF2) =
⋃
{U(x)|x ∈ AF2}.

(2). For a point x ∈ (Z2)F2 , a subset {x} ∪ (U(x))κ2 is preopen and hence it is α-open in (Z2, κ2).

Definition 2.5 ([2]). A space (X, τ) is T3/4 if and only if every singleton {x} of X is closed or regular open in (X, τ).

3. #gα̂-closed Sets and its Properties

In this section we introduce the concept of #gα̂-closed sets and study some of their properties and relations with other

known classes of subsets.

Definition 3.1. A subset A of a space (X, τ) is called a #gα̂-closed set if τα-cl(A) ⊆ U whenever A ⊆ U and U is a

∗gα-open set in (X, τ). The class of #gα̂-closed subsets of (X, τ) is denoted by #gα̂C(X, τ).

Theorem 3.2. Finite union of #gα̂-closed sets is a #gα̂-closed set in (X, τ).

Proof. Let Ai’s are #gα̂-closed sets, where i = 1, 2, 3, ..., n and n ∈ N. Let
⋃n
i=1Ai ⊆ U , U is a ∗gα-open set xin (X, τ).

Since Ai’s are #gα̂-closed sets, τα-cl(Ai) ⊆ U,∀Ai ⊆ U . This implies that τα-cl(
⋃n
i=1Ai) =

⋃n
i=1 τ

α-cl(Ai) ⊆ U . Therefore⋃n
i=1Ai is #gα̂-closed.

Remark 3.3. Finite intersection of #gα̂-open sets is a #gα̂-open set in (X, τ).

Proof. Proof is obvious, since X\A is #gα̂-open, whenever A is #gα̂-closed.

The following example shows that intersection of two #gα̂-closed sets need not be #gα̂-closed in (X, τ).

Example 3.4. Let X = {a, b, c} and τ = {X, ∅, {a}}. Then, {a, b} and {a, c} are #gα̂-closed but their intersection {a} is

not #gα̂-closed in (X, τ).

Theorem 3.5. If A be a #gα̂-closed set in (X, τ), then τα-cl(A)\A does not contain any non empty ∗gα-closed set.

Proof. Suppose that A is #gα̂-closed and let F be an non-empty ∗gα-closed set with F ⊆ τα-cl(A)\A. Then A ⊆ X\F

ans so τα-cl(A) ⊆ X\τα-cl(A). Henece F ⊆ X\τα-cl(A), a contradiction.

Theorem 3.6. Let (X, τ) be a space, A and B subsets.

(1). If A is ∗gα-open and #gα̂-closed, then A is α-closed in (X, τ).

(2). If A is #gα̂-closed set of (X, τ) such that A ⊆ B ⊆ τα-cl(A), then B is also #gα̂-closed in (X, τ).

(3). For each x ∈ X, {x} is ∗gα-closed or X\{x} is #gα̂-closed in (X, τ).
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(4). Every subset is #gα̂-closed in (X, τ) if and only if every ∗gα-open set is α-closed.

Proof.

(1). Since A ⊆ A and A is both ∗gα-open and #gα̂-closed, τα-cl(A) ⊆ A. Therefore A is α-closed.

(2). Let U be a ∗gα-open set such that B ⊆ U . Then we have that τα-cl(A) ⊆ U and τα-cl(B) ⊆ τα-cl(A) ⊆ U . Therefore,

B is #gα̂ closed in (X, τ).

(3). If {x} is not ∗gα-closed, then X\{x} is not ∗gα-open. Therefore, X\{x} is #gα̂-closed in (X, τ).

(4). Necessity: Let U be a ∗gα-open set. Then we have that τα-cl(U) ⊆ U and hence U is α-closed. Sufficiency: Let A

be a subset and U a ∗gα-open set such that A ⊆ U . Then τα-cl(A) ⊆ τα-cl(U) = U and hence A is #gα̂-closed.

We have a characterization of #gα̂-closed sets. We prepare some notations and a lemma. For a subset E of a space (X, τ),

we define the following subsets of E:

Eτ = {x ∈ E|{x} ∈ τ}, EF = {x ∈ E|{x} ∈ τ c}, E∗gαo = {x ∈ E|{x} is ∗gα-open in (X, τ)}, E∗gαc = {x ∈ E|{x}

is ∗gα-closed in (X, τ)}, E#gα̂o = {x ∈ E|{x} is #gα̂-open in (X, τ)}, ∗GαO(X, τ) = {U |U is ∗gα-open in (X, τ)} and

∗GαO-ker(A) =
⋂
{U |U ∈ ∗GαO(X, τ) and A ⊆ U}.

Theorem 3.7. Any subset A is #gα̂-closed if and only if τα-cl(A) ⊆ ∗GαO-ker(A) holds.

Proof. Necessary: We know that A ⊆ ∗GαO-ker(A). Since A is #gα̂-closed, τα-cl(A) ⊆ ∗GαO-ker(A). Sufficiency:

Let A ⊆ U and U is ∗gα-open. Given that τα-cl(A) ⊆ ∗GαO-ker(A). If τα-cl(A) * U , then τα-cl(A) * ∗GαO-ker(A),

which is a contradiction. Therefore A is #gα̂-closed.

Lemma 3.8. For any space (X, τ), X = X∗gαc ∪X#gα̂o holds.

Proof. Let x ∈ X. By Theorem 3.6(3), {x} ∈ X∗gαc or {x} ∈ X#gα̂o.

4. #gα̂-closed Sets in the Digital Plane

In the digital plane, we investigate explicite forms of ∗gαo-Kernal and Kernal of a subset. The digital line or the so called

Khalimsky line is the set of the integers Z, equipped with the topology κ having {{2n−1, 2n, 2n+1}|n ∈ Z} as a subbase. This

is denoted by (Z, κ). Thus a subset U is open in (Z, κ) if and only if whenever x ∈ U is an even integer, then x−1, x+1 ∈ U .

Let (Z2, κ2) be the topological product of two digital lines (Z, κ), where Z2 = Z × Z and κ2 = κ × κ. This space is called

the digital plane in the present paper (cf. [5], [7]). We note that for each point x ∈ Z2 there exists the smallest open set

containing x, say U(x). For the case of x = (2n+ 1, 2m+ 1), U(x) = {2n+ 1}×{2m+ 1}; for the case x = (2n, 2m), U(x) =

{2n − 1, 2n, 2n + 1} × {2m − 1, 2m, 2m + 1}; for the case x = (2n, 2m + 1), U(x) = {2n − 1, 2n, 2n + 1} × {2m + 1}; for

the case x = (2n + 1, 2m), U(x) = {2n + 1} × {2m − 1, 2m, 2m + 1}, where n,m ∈ Z. For a subset E of (Z2, κ2), we

define the following three subsets as follows: EF2 = {x ∈ E|{x} is closed in (Z2, κ2)}; Eκ2 = {x ∈ E|{x} is open in

(Z2, κ2)}; Emix = E\(EF2 ∪ Eκ2).

Lemma 4.1. Let A and E be subsets of (Z2, κ2).

(1). If E be non-empty ∗gα-closed set, then EF2 6= ∅ [1].

(2). If E is ∗gα-closed and E ⊆ Bmix ∪Bκ2 holds for some subset B of (Z2, κ2), then E = ∅ [1].

(3). The set U(AF2) ∪Amix ∪Aκ2 is a #gα̂-open set containing A.
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Proof. (3) First we claim that Amix∪Aκ2 is #gα̂-open set. Let F be a non-empty ∗gα-closed set such that F ⊆ Amix∪Aκ2 .

Then by (2), F = ∅. Thus, we have that F ⊆ τα-int(Amix ∪Aκ2). Therefore Amix ∪Aκ2 is #gα̂-open. Since every open set

is #gα̂-open, U(AF2) is #gα̂-open. Since union of two #gα̂-open sets is #gα̂-open, U(AF2)∪Amix ∪Aκ2 is a #gα̂-open set

containing A.

Theorem 4.2 ([1]). Let E be a subset of (Z2, κ2).

(1). If E is a non-empty ∗gα-closed set, then EF2 6= ∅.

(2). If E is a ∗gα-closed set and E ⊆ Bmix ∪B2
κ holds for some subset B of (Z2, κ2), then E = ∅.

Theorem 4.3 ([1]). Let E be a subset of (Z2, κ2).

(1). ∗GαO-ker(A) = U(AF2) ∪Amix ∪Aκ2 , U(AF2) =
⋃
{U(x)|x ∈ AF2}.

(2). GαO-ker(A) = U(AF2), U(AF2) =
⋃
{U(x)|x ∈ AF2}.

Theorem 4.4. Let B be a non-empty subset of (Z2, κ2). If BF2 = ∅, then B is #gα̂-open.

Proof. Let F be a ∗gα-closed set such that F ⊆ B. Since BF2 = ∅, we have B = Bmix ∪ B2
κ. Then by Theorem 4.2(2),

we get F = ∅ ⇒ F ⊆ τα-int(B). Therefore, B is #gα̂-open.

Theorem 4.5. Let B be a non-empty subset of (Z2, κ2), the following are equivalent:

(1). The subset B is #gα̂-open set of (Z2, κ2),

(2). (U(x))κ2 ⊆ B holds for each point x ∈ BF2 .

Proof. (1) ⇒ (2) Let x ∈ BF2 . Since {x} is closed, {x} is ∗gα-closed set and {x} ⊆ B. By (1), {x} ⊂ τα-int(B) =

B ∩ int(cl(int(B))) and so x ∈ int(cl(int(B))). Namely, x is an interior point of the set cl(int(B)). Thus, we have that,

for the smallest open set U(x) containing x, U(x) ⊂ cl(int(B)). We can set x = (2s, 2u) for some integers s and u, because

x ∈ (Z2)F2 . Since U((2s, 2u)) = {2s− 1, 2s, 2s+ 1} × {2u− 1, 2u, 2u+ 1}, it is shown that (U(x))κ2 = {(x1, x2) ∈ U(x)|x1

and x2 are odd} = {p1, p2, p3, p4}, where p1 = (2s−1, 2u−1), p2 = (2s−1, 2u+1), p3 = (2s+1, 2u+1), p4 = (2s+1, 2u+1).

For each point pi(1 ≤ i ≤ 4), pi ∈ cl(int(B)) and so {pi} ∩ int(B) 6= ∅. Therefore, pi ∈ B for each i with 1 ≤ i ≤ 4 and

hence (U(x))κ2 ⊂ B.

(2) ⇒ (1) It follows from the assumption that, for each point x ∈ BF2 , {x} ∪ (U(x))κ2 ⊂ B and so
⋃
{{x} ∪ (U(x))κ2 |x ∈

BF2} ⊂ B. Put VB =
⋃
{{x}∪(U(x))κ2 |x ∈ BF2} and so VB 6= ∅, VB ⊂ B. By Lemma 2.4(2), VB is preopen and it is α-open.

We have that B = VB ∪ (B\VB) = VB ∪{(B\VB)F2 ∪ (B\VB)κ2 ∪ (B\VB)mix} = VB ∪ (B\VB)κ2 ∪ (B\VB)mix, we note that,

for a point y ∈ (B\VB)mix, U(y) ⊂ B or U(y) * B. we put (B\VB)1mix = {y ∈ (B\VB)mix|U(y) ⊆ B}, U((B\VB)1mix) =⋃
{U(y)|y ∈ (B\VB)1mix}, (B\VB)2mix = {y ∈ (B\VB)mix|U(y) * B}. Then, (B\VB)mix is decomposed as (B\VB)mix =

(B\VB)1mix ∪ (B\VB)2mix. Thus, we have that:

(∗1) B = VB ∪ (B\VB)κ2 ∪ (B\VB)1mix∪ (B\VB)2mix. Here, VB is α-open in (Z2, κ2); the set (B\VB)κ2 is open and so α-open

in (Z2, κ2); U((B\VB)1mix) is open and so α-open in (Z2, κ2). Thus, we have that:

(∗2) the subset VB ∪ (B\VB)κ2 ∪ U((B\VB)1mix) is α-open in (Z2, κ2).

Moreover, we conclude that:

(∗3) B = VB ∪ (B\VB)κ2 ∪ U((B\VB)1mix) ∪ (B\VB)2mix holds.

Proof of (∗3): Since (B\VB)1mix ⊆ U((B\VB)1mix), it is shown that B ⊆ VB ∪ (B\VB)κ2 ∪ U((B\VB)1mix) ∪ (B\VB)2mix(c.f

∗1). Conversely we have that VB ∪ (B\VB)κ2 ∪ U((B\VB)1mix) ∪ (B\VB)2mix ⊆ B, because U((B\VB)1mix) ⊆ B, VB ⊆ B,
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(B\VB)κ2 ⊆ B and (B\VB)2mix ⊆ B hold. Thus, we have the required equality (∗3). Let F be a nonempty ∗gα-closed set

of (Z2, κ2) such that F ⊆ B. We claim that:

(∗4) F ∩ ((B\VB)2mix) = ∅ holds.

Proof of (∗4): Suppose that there exists a point y ∈ F ∩ ((B\VB)2mix). Then we have that:

(∗∗)y ∈ Bmix, y ∈ Fmix and U(y) * B.

By Theorem 2.4[12] for a ∗gα-closed set F and the point y ∈ Fmix, it is obtained that cl({y})\{y} ⊆ F . Since y ∈ (Z2)mix,

we may put y = (2s, 2u + 1)(resp. y = (2s + 1, 2u)), y+ = (2s, 2u + 2)(resp. y+ = (2s + 2, 2u)),y− = (2s, 2u)(resp.

y− = (2s, 2u)), where s, u ∈ Z. Then cl({y}) = {y+, y, y−}. Thus, we have that cl({y})\{y} = {y+, y−} ⊆ F . Since F ⊆ B,

we have that y+ ⊆ BF2 and y− ⊆ BF2 . For the point y+, it follows form the assumption (2) that {y+} ∪ (U(y+))κ2 ⊆ B

and so U(y) ⊆ B which a contradiction to (∗∗). Thus, we have that F ∩ ((B\VB)2mix) = ∅. By using (∗3) and (∗4), it is

shown that, for the ∗gα-closed set F such that F ⊆ B, F = B ∩ F = [VB ∪ (B\VB)κ2 ∪ U((B\VB)1mix) ∪ (B\VB)2mix] ∩ F ⊆

VB ∪ (B\VB)κ2 ∪ U((B\VB)1mix). We put E = VB ∪ (B\VB)κ2 ∪ U((B\VB)1mix) and so F ⊆ E ⊆ B and E is α-open. Using

(∗2) and (∗3), we have that F ⊆ E ⊆ τα-int(B) holds. Namely, B is #gα̂-open in (Z2, κ2).

Theorem 4.6.

(1). The union of any collection of #gα̂-open sets of (Z2, κ2) is #gα̂-open set in (Z2, κ2).

(2). The intersection of any collection of #gα̂-closed sets of (Z2, κ2) is #gα̂-closed set in (Z2, κ2).

Proof.

(1). Let {Bi|i ∈ J} be a collection of #gα̂-open sets of (Z2, κ2), where J is an index set and put V =
⋃
{Bi|i ∈ J}. First

we assume that VF2 6= ∅, there exists a point x ∈ (Bj)F2 for some j ∈ J . By Theorem 4.5, it is obtained that

(U(x))κ2 ⊂ Bj and hence (U(x))κ2 ⊂ V . Again using Theorem 4.5, we conclude that V is #gα̂-open. Finally we

assume that VF2 = ∅. Then by Theorem 4.4, V is #gα̂-open.

(2). We recall that a subset E is #gα̂-closed if and only if the complement of E is #gα̂-open. It follows from (1) and

definition that the intersection of any collection of #gα̂-closed sets is #gα̂-closed in (Z2, κ2).

Proposition 4.7. Let x be a point of (Z2, κ2). The following properties on the singleton {x} hold.

(1). If x ∈ (Z2)κ2 , then {x} is #gα̂-open; it is not #gα̂-closed in (Z2, κ2).

(2). If x ∈ (Z2)F2 , then {x} is #gα̂-closed; it is not #gα̂-open in (Z2, κ2).

(3). If x ∈ (Z2)mix, then {x} is #gα̂-is both #gα̂-closed and #gα̂-open in (Z2, κ2).

Proof.

(1). It follows from the assumption that {x} is open in (Z2, κ2) and so it is #gα̂-open in (Z2, κ2). Since {x} is ∗gα-open,

then there exists a ∗gα-open set U = {x} such that τα-cl({x}) * {x}. By Definition 3.1 {x} is not #gα̂-closed in

(Z2, κ2).

(2). It follows from the assumption that {x} is closed in (Z2, κ2) and so it is #gα̂-closed in (Z2, κ2). Since {x} is ∗gα-closed,

then there exists a ∗gα-closed set B = {x} such that {x} * τα-int({x}). Therefore {x} is not #gα̂-open in (Z2, κ2).

(3). Let x ∈ (Z2)mix, i.e, x = (2s + 1, 2u) such that τα-cl({x}) = {x} * {x} = U , U is ∗gα-open set. Therefore, {x} is

#gα̂-closed. Let x = (2s+ 1, 2u) such that F = ∅ ⊆ (2s+ 1, 2u), where F is ∗gα-closed set⇒ ∅ ⊆ int({x}) = ∅. Hence

{x} is #gα̂-open in (Z2, κ2). Similarly we can prove this statement for x = (2s, 2u+ 1).
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It is well known that the digital line (Z, κ) is T1/2 but the digital plane (Z2, κ2) is not T1/2. By Theorem 4.6 and Remark

3.3, we have a new topology, say #gα̂O(Z2, κ2) of Z2.

Corollary 4.8. Let #gα̂O(Z2, κ2) be the family of all #gα̂-open sets in (Z2, κ2). Then, the following properties hold.

(1). The family #gα̂O(Z2, κ2) is a topology of Z2.

(2). Let (Z2,#gα̂O(Z2, κ2)) be topological space obtained by changing the topology κ2 of the digital plane (Z2, κ2) by

#gα̂O(Z2, κ2). Then (Z2,#gα̂O(Z2, κ2)) is a T1/2-topological space.

Proof.

(1). It is obvious form Theorem 4.6 and Remark 3.3 that the family #gα̂O(Z2, κ2) is topology of Z2.

(2). Let (Z2,#gα̂O(Z2, κ2)) be topological space with new topology #gα̂O(Z2, κ2). Then, it is claimed that the topological

space (Z2,#gα̂O(Z2, κ2)) is T1/2. By Proposition 4.7, a singleton set {x} is open or closed in (Z2,#gα̂O(Z2, κ2)) and

by Theorem 3.1(ii) [3]. Hence the space (Z2,#gα̂O(Z2, κ2)) is T1/2.

Sometimes, we abbreviate the topology #gα̂O(Z2, κ2) by #gα̂O. For a subset A of Z2, we denote the closure of A, interior

of A and the kernel of A with respect to #gα̂O(Z2, κ2) by #gα̂O-cl(A), #gα̂O-int(A) and #gα̂O-ker(A) respectively. The

kernel is defined by #gα̂O-ker(A) =
⋂
{V |V ∈ #gα̂O(Z2, κ2), A ⊂ V }.

Proposition 4.9. For the topological space (Z2,#gα̂O(Z2, κ2)), we have the properties on the singletons as follows. Let x

be a point of Z2 and s, u ∈ Z.

(1). (a) If x ∈ (Z2)κ2 , then #gα̂O-ker({x}) = {x} and #gα̂O-ker({x}) ∈ #gα̂O(Z2, κ2).

(b) If x ∈ (Z2)F2 , then #gα̂O-ker({x}) = {x} ∪ (U(x))κ2 = {2s, 2u} ∪ {(2s+ 1, 2u+ 1), (2s+ 1, 2u− 1), (2s− 1, 2u−

1), (2s− 1, 2u+ 1)} where x = (2s, 2u) and #gα̂O-ker({x}) ∈ #gα̂O(Z2, κ2).

(c) If x ∈ (Z2)mix, then #gα̂O-ker({x}) = {x} and #gα̂O-ker({x}) ∈ #gα̂O(Z2, κ2).

(2). (a) If x ∈ (Z2)κ2 , then #gα̂O-cl({x}) = {(2s+ 1, 2u+ 1), (2s, 2u+ 2), (2s, 2u), (2s+ 2, 2u+ 2), (2s+ 2, 2u)} and hence

{x} is not closed in (Z2,#gα̂O(Z2, κ2)).

(b) If x ∈ (Z2)F2 , then #gα̂O-cl({x}) = {x}.

(c) If x ∈ (Z2)mix, then #gα̂O-cl({x}) = {x}.

(3). (a) If x ∈ (Z2)κ2 , then #gα̂O-int({x}) = {x}.

(b) If x ∈ (Z2)F2 , then #gα̂O-int({x}) = ∅.

(c) If x ∈ (Z2)mix, then #gα̂O-int({x}) = {x}.

Proof. (1)(a) For a point x ∈ (Z2)κ2 , by Proposition 4.7(1), {x} is #gα̂-open in (Z2, κ2). Then, we have that #gα̂O-

ker({x}) = {x} and #gα̂O-ker({x}) ∈ #gα̂O(Z2, κ2).

(1)(b) Let B be any #gα̂-open set of (Z2, κ2) containing the point x = (2s, 2u) ∈ (Z2)F2 . Then, by Theorem 4.5, {x} ∪

(U(x))κ2 ⊂ B holds and {x} ∪ (U(x))κ2 ∈ #gα̂O. Thus, we have that #gα̂O-ker({x}) = {x} ∪ (U(x))κ2 = {2s, 2u} ∪ {(2s+

1, 2u+ 1), (2s+ 1, 2u− 1), (2s− 1, 2u− 1), (2s− 1, 2u+ 1)}. By Lemma 2.4(2) and the fact that (κ2)α ⊂ #gα̂O(Z2, κ2), the

kernel #gα̂O-ker({x}) ∈ #gα̂O(Z2, κ2).

(1)(c) Let x ∈ (Z2)mix. The sigleton set {x} is #gα̂-open, because ({x})F2 = ∅. Thus, we have that #gα̂O-ker({x}) = {x}

and #gα̂O-ker({x}) ∈ #gα̂O(Z2, κ2).
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(2)(a) Let x ∈ (Z2). By (1), it is shown that, for a point y ∈ Z2, y ∈ #gα̂O-cl({x}) holds if and only if x ∈ #gα̂O-ker({y})

holds. For a point x ∈ (Z2)κ2 , we put x = (2s + 1, 2u + 1), where s, u ∈ Z. For a point y ∈ #gα̂O-cl({x}) holds (i.e.,

(y ∈ #gα̂O-cl({x}))κ2) if and only if x ∈ #gα̂O-ker({y}) holds (cf. (1)(a)). Thus we have that #gα̂O-cl({x}))κ2 = {x}.

For a point y ∈ (Z2)F2 , y ∈ #gα̂O-cl({x}) holds (i.e., y ∈ (#gα̂O-cl({x}))F2) if and only if x ∈ #gα̂O-ker({y}) holds (i.e.,

x ∈ {y} ∪ U(y)κ2 and x 6= y holds) (cf. (1)(b)). Thus, we have that (#gα̂O-cl({x}))F2 = {y ∈ (Z2)F2 |x ∈ {y} ∪ U(y)κ2} =

Wx, where Wx = {(2s, 2u), (2s, 2u + 2), (2s + 2, 2u), (2s + 2, 2u + 2)} and x = (2s + 1, 2u + 1). For a point y ∈ (Z2)mix,

y ∈ #gα̂O-cl({x}) holds (i.e., y ∈ (#gα̂O-cl({x}))mix) if and only if x ∈ #gα̂O-ker({y}) = {y} holds (cf, 1(c)). Since y 6= x,

we have that (#gα̂O-cl({x}))mix = ∅. Therefore we obtain #gα̂O-cl({x}) = {x} ∪Wx.

(2)(b) For a point x ∈ (Z2)F2 , by Proposition 4.7(2), it is obtained that #gα̂O-cl({x}) = {x}.

(2)(c) Let a point x =∈ (Z2)mix, by Proposition 4.7(2), it is obtained that #gα̂O-cl({x}) = {x}.

(3) For a point x ∈ (Z2)κ2 (res. x ∈ (Z2)F2 , x ∈ (Z2)mix), by Proposition 4.7(1) (res. (2), (3)), it is shown that

#gα̂O-int({x}) = {x} (res. #gα̂O-int({x}) = ∅, #gα̂O-int({x}) = {x}) holds.

Theorem 4.10. If x ∈ (Z2)mix, i.e., x = (2s, 2u + 1) or (2s + 1, 2u), then {x} is both regular open and regular closed in

(Z2,#gα̂O(Z2, κ2)).

Proof. For a point x ∈ (Z2)mix, by Proposition 4.9(2(c) and 3(c)), #gα̂O-cl(#gα̂O-int({x})) = {x}. Therefore {x} is

regular closed in (Z2,#gα̂O(Z2, κ2)). Similarly we have, #gα̂O-int(#gα̂O-cl({x})) = {x}. Therefore, {x} is regular open in

(Z2,#gα̂O(Z2, κ2)).

Theorem 4.11. If x ∈ (Z2)κ2 , i.e., x = (2s + 1, 2u + 1), then {x} is not regular closed, moreover {x} is semi open and

regular open in (Z2,#gα̂O(Z2, κ2)).

Proof. Let x ∈ (Z2)κ2 , by Proposition 4.9(2(a) and 3(a)), #gα̂O-cl(#gα̂O-int({x})) = #gα̂O-cl({x}) ⊇ {x}, where

x = (2s + 1, 2u + 1). Therefore {x} is not regular closed and hence it is semi-open. By Proposition 4.9(2(a) and 3(a)),

#gα̂O-int(#gα̂O-cl({x})) = {x}. Therefore, {x} is regular open in (Z2,#gα̂O(Z2, κ2)).

Theorem 4.12. The space (Z2,#gα̂O(Z2, κ2)) is T3/4 but not T1.

Proof. By Theorem 4.11, a singleton {x} is regular open in (Z2,#gα̂O(Z2, κ2)), where x ∈ (Z2)κ2 ; by Proposition 4.9(2(b)),

a singleton {x} is closed in (Z2,#gα̂O(Z2, κ2)), where x ∈ (Z2)F2 ; by Theorem 4.10, a singleton {x} is closed in

(Z2,#gα̂O(Z2, κ2)), where x ∈ (Z2)mix. Therefore, every singleton {x} is regular open of closed in (Z2,#gα̂O(Z2, κ2)).

Namely, it is a T3/4. Moreover, it is not T1. Indeed, by Proposition 4.9(2(a)), a singleton {(2s+ 1, 2u+ 1)} is not closed in

(Z2,#gα̂O(Z2, κ2)), where s, u ∈ Z.
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