

International Journal of Mathematics And its Applications

Certain Investigations on Digital Plane

S. Pious Missier¹ and K. M. Arifmohammed^{1,*}

1 P.G. and Research Department of Mathematics, V.O.Chidambaram College (Affiliation of Manonmaiam Sundaranar University), Abishekapatti, Tirunelveli, Tamilnadu, India.

Abstract: We introduce the concept of ${}^{\#}g\hat{\alpha}$ -closed sets in a topological space and characterize it using ${}^{*}g\alpha o$ -kernel and τ^{α} -closure. Moreover, we investigate the properties of ${}^{\#}g\hat{\alpha}$ -closed sets in digital plane. The family of all ${}^{\#}g\hat{\alpha}$ -open sets of (\mathbb{Z}^2, κ^2) , forms an alternative topology of \mathbb{Z}^2 . We prove that this plane $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O)$ is $T_{1/2}$ and $T_{3/4}$. It is well known that the digital plane (\mathbb{Z}^2, κ^2) is not $T_{1/2}$, even if (\mathbb{Z}, κ) is $T_{1/2}$.

Keywords: Preopen sets, generalized closed sets, α -open sets, $*g\alpha$ -closed sets, $\#g\hat{\alpha}$ -open sets, $T_{1/2}$ -spaces, digital lines and digital planes.

© JS Publication.

1. Introduction

In 1970, N. Levine [8] introduced and investigated the concept of generalized closed sets in a topological space. He studied most fundamental properties and also introduced a separation axiom $T_{1/2}$. The digital line is typical example of a $T_{1/2}$ space [2]. After Levine's works, many authors defined and investigated various notions to Levine's *g*-closed sets and related topics [4]. In 1970, E. Khalimsky [6] introduced digital line. In 1990, K. Kopperman and R. Meyer [5] developed finite analog of the Jordan curve theorem motivated by a problem in computer graphics (cf. [5, 7]). In this paper, we introduce the concept of $\#g\hat{\alpha}$ -closed sets in a topological space and characterize it using $*g\alpha o$ -kernel and τ^{α} -closure. Moreover, we investigate the properties of $\#g\hat{\alpha}$ -closed sets in digital plane. We prove that this plane ($\mathbb{Z}^2, \# g\hat{\alpha}O$) is $T_{1/2}$ and $T_{3/4}$. It is well known that the digital plane (\mathbb{Z}^2, κ^2) is not $T_{1/2}$, even if (\mathbb{Z}, κ) is $T_{1/2}$.

2. Preliminaries

Throughout this paper, (X, τ) or X denotes the topological spaces. For a subset A of X, the closure, the interior and the complement of A are denoted by cl(A), int(A) and A^c respectively. We recall some basic definitions that are used in the sequel.

Definition 2.1. A subset A of a topological space (X, τ) is called α -open [10] if $A \subseteq int(cl(int(A)))$. Moreover, A is said to be α -closed if $X \setminus A$ is α -open. The collection of all α -open subsets in (X, τ) is denoted by τ^{α} . The α -closure of a subset A is the smallest α -closed set containing A and this is denoted by τ^{α} -cl(A) in this paper.

MSC: 54A05, 54D01, 54F65, 54G05.

Accepted on: 21.04.2018

^{*} E-mail: arifjmc9006@gmail.com (Research Scholar)

Definition 2.2. A subset A of a topological space (X, τ) is called $*g\hat{\alpha}$ -closed [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an $*g\alpha$ -open set in (X, τ) . Moreover, A is said to be $*g\hat{\alpha}$ -open if $X \setminus A$ is $*g\hat{\alpha}$ -closed.

Lemma 2.3 ([9]). For a subset A of (X, τ) , the following conditions are equivalent:

(1). A is $*g\alpha$ -closed in (X, τ) .

(2). τ^{α} -cl(A) \subseteq go-Ker(A) holds.

Lemma 2.4 ([9]). Let a subset A of (\mathbb{Z}^2, κ^2) .

(1). $go-Ker(A) = U(A_{\mathcal{F}^2}) \cup A_{mix} \cup A_{\kappa^2}$, where $U(A_{\mathcal{F}^2}) = \bigcup \{U(x) | x \in A_{\mathcal{F}^2} \}$.

(2). For a point $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, a subset $\{x\} \cup (U(x))_{\kappa^2}$ is preopen and hence it is α -open in (\mathbb{Z}^2, κ^2) .

Definition 2.5 ([2]). A space (X, τ) is $T_{3/4}$ if and only if every singleton $\{x\}$ of X is closed or regular open in (X, τ) .

3. $\#g\hat{\alpha}$ -closed Sets and its Properties

In this section we introduce the concept of $\#g\hat{\alpha}$ -closed sets and study some of their properties and relations with other known classes of subsets.

Definition 3.1. A subset A of a space (X, τ) is called a ${}^{\#}g\hat{\alpha}$ -closed set if τ^{α} -cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is a ${}^{*}g\alpha$ -open set in (X, τ) . The class of ${}^{\#}g\hat{\alpha}$ -closed subsets of (X, τ) is denoted by ${}^{\#}g\hat{\alpha}C(X, \tau)$.

Theorem 3.2. Finite union of ${}^{\#}g\hat{\alpha}$ -closed sets is a ${}^{\#}g\hat{\alpha}$ -closed set in (X, τ) .

Proof. Let A_i 's are ${}^{\#}g\hat{\alpha}$ -closed sets, where i = 1, 2, 3, ..., n and $n \in \mathbb{N}$. Let $\bigcup_{i=1}^n A_i \subseteq U$, U is a ${}^{*}g\alpha$ -open set xin (X, τ) . Since A_i 's are ${}^{\#}g\hat{\alpha}$ -closed sets, τ^{α} - $cl(A_i) \subseteq U, \forall A_i \subseteq U$. This implies that τ^{α} - $cl(\bigcup_{i=1}^n A_i) = \bigcup_{i=1}^n \tau^{\alpha}$ - $cl(A_i) \subseteq U$. Therefore $\bigcup_{i=1}^n A_i$ is ${}^{\#}g\hat{\alpha}$ -closed.

Remark 3.3. Finite intersection of ${}^{\#}g\hat{\alpha}$ -open sets is a ${}^{\#}g\hat{\alpha}$ -open set in (X, τ) .

Proof. Proof is obvious, since $X \setminus A$ is ${}^{\#}g\hat{\alpha}$ -open, whenever A is ${}^{\#}g\hat{\alpha}$ -closed.

The following example shows that intersection of two ${}^{\#}g\hat{\alpha}$ -closed sets need not be ${}^{\#}g\hat{\alpha}$ -closed in (X, τ) .

Example 3.4. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}$. Then, $\{a, b\}$ and $\{a, c\}$ are $\#g\hat{\alpha}$ -closed but their intersection $\{a\}$ is not $\#g\hat{\alpha}$ -closed in (X, τ) .

Theorem 3.5. If A be a $\#g\hat{\alpha}$ -closed set in (X, τ) , then τ^{α} -cl(A)\A does not contain any non empty $*g\alpha$ -closed set.

Proof. Suppose that A is ${}^{\#}g\hat{\alpha}$ -closed and let F be an non-empty ${}^{*}g\alpha$ -closed set with $F \subseteq \tau^{\alpha}$ - $cl(A) \setminus A$. Then $A \subseteq X \setminus F$ and so τ^{α} - $cl(A) \subseteq X \setminus \tau^{\alpha}$ -cl(A). Hence $F \subseteq X \setminus \tau^{\alpha}$ -cl(A), a contradiction.

Theorem 3.6. Let (X, τ) be a space, A and B subsets.

- (1). If A is $*g\alpha$ -open and $\#g\hat{\alpha}$ -closed, then A is α -closed in (X, τ) .
- (2). If A is ${}^{\#}g\hat{\alpha}$ -closed set of (X, τ) such that $A \subseteq B \subseteq \tau^{\alpha}$ -cl(A), then B is also ${}^{\#}g\hat{\alpha}$ -closed in (X, τ) .
- (3). For each $x \in X$, $\{x\}$ is $*g\alpha$ -closed or $X \setminus \{x\}$ is $\#g\hat{\alpha}$ -closed in (X, τ) .

(4). Every subset is $\#g\hat{\alpha}$ -closed in (X, τ) if and only if every $*g\alpha$ -open set is α -closed.

Proof.

- (1). Since $A \subseteq A$ and A is both $*g\alpha$ -open and $\#g\hat{\alpha}$ -closed, τ^{α} -cl(A) $\subseteq A$. Therefore A is α -closed.
- (2). Let U be a *g α -open set such that $B \subseteq U$. Then we have that τ^{α} - $cl(A) \subseteq U$ and τ^{α} - $cl(B) \subseteq \tau^{\alpha}$ - $cl(A) \subseteq U$. Therefore, B is $\#g\hat{\alpha}$ closed in (X, τ) .
- (3). If $\{x\}$ is not * $g\alpha$ -closed, then $X \setminus \{x\}$ is not * $g\alpha$ -open. Therefore, $X \setminus \{x\}$ is $\#g\hat{\alpha}$ -closed in (X, τ) .
- (4). Necessity: Let U be a $*g\alpha$ -open set. Then we have that $\tau^{\alpha}-cl(U) \subseteq U$ and hence U is α -closed. Sufficiency: Let A be a subset and U a $*g\alpha$ -open set such that $A \subseteq U$. Then $\tau^{\alpha}-cl(A) \subseteq \tau^{\alpha}-cl(U) = U$ and hence A is $\#g\hat{\alpha}$ -closed.

We have a characterization of ${}^{\#}g\hat{\alpha}$ -closed sets. We prepare some notations and a lemma. For a subset *E* of a space (X, τ) , we define the following subsets of *E*:

 $E_{\tau} = \{x \in E | \{x\} \in \tau\}, E_{\mathcal{F}} = \{x \in E | \{x\} \in \tau^c\}, E_{*g\alpha o} = \{x \in E | \{x\} \text{ is } *g\alpha \text{-open in } (X,\tau)\}, E_{*g\alpha c} = \{x \in E | \{x\} \text{ is } *g\alpha \text{-open in } (X,\tau)\}, E_{#g\alpha o} = \{x \in E | \{x\} \text{ is } #g\alpha \text{-open in } (X,\tau)\}, *G\alpha O(X,\tau) = \{U | U \text{ is } *g\alpha \text{-open in } (X,\tau)\} \text{ and } *G\alpha O\text{-ker}(A) = \bigcap\{U | U \in *G\alpha O(X,\tau) \text{ and } A \subseteq U\}.$

Theorem 3.7. Any subset A is ${}^{\#}g\hat{\alpha}$ -closed if and only if τ^{α} -cl(A) $\subseteq {}^{*}G\alpha O$ -ker(A) holds.

Proof. Necessary: We know that $A \subseteq {}^*G\alpha O \cdot ker(A)$. Since A is ${}^\#g\hat{\alpha}$ -closed, $\tau^{\alpha} \cdot cl(A) \subseteq {}^*G\alpha O \cdot ker(A)$. Sufficiency: Let $A \subseteq U$ and U is ${}^*g\alpha$ -open. Given that $\tau^{\alpha} \cdot cl(A) \subseteq {}^*G\alpha O \cdot ker(A)$. If $\tau^{\alpha} \cdot cl(A) \notin U$, then $\tau^{\alpha} \cdot cl(A) \notin {}^*G\alpha O \cdot ker(A)$, which is a contradiction. Therefore A is ${}^\#g\hat{\alpha}$ -closed.

Lemma 3.8. For any space (X, τ) , $X = X_{*g\alpha c} \cup X_{\#_{g\hat{\alpha}o}}$ holds.

Proof. Let $x \in X$. By Theorem 3.6(3), $\{x\} \in X_{*g\alpha c}$ or $\{x\} \in X_{\#g\dot{\alpha}\dot{c}}$.

4. $\#g\hat{\alpha}$ -closed Sets in the Digital Plane

In the digital plane, we investigate explicit forms of $*g\alpha o$ -Kernal and Kernal of a subset. The digital line or the so called Khalimsky line is the set of the integers \mathbb{Z} , equipped with the topology κ having $\{\{2n-1, 2n, 2n+1\} | n \in \mathbb{Z}\}$ as a subbase. This is denoted by (\mathbb{Z}, κ) . Thus a subset U is open in (\mathbb{Z}, κ) if and only if whenever $x \in U$ is an even integer, then $x - 1, x + 1 \in U$. Let (\mathbb{Z}^2, κ^2) be the topological product of two digital lines (\mathbb{Z}, κ) , where $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$ and $\kappa^2 = \kappa \times \kappa$. This space is called the digital plane in the present paper (cf. [5], [7]). We note that for each point $x \in \mathbb{Z}^2$ there exists the smallest open set containing x, say U(x). For the case of $x = (2n+1, 2m+1), U(x) = \{2n+1\} \times \{2m+1\}$; for the case x = (2n, 2m), U(x) = $\{2n-1, 2n, 2n+1\} \times \{2m-1, 2m, 2m+1\}$; for the case $x = (2n, 2m+1), U(x) = \{2n-1, 2n, 2n+1\} \times \{2m+1\}$; for the case $x = (2n+1, 2m), U(x) = \{2n+1\} \times \{2m-1, 2m, 2m+1\}$, where $n, m \in \mathbb{Z}$. For a subset E of (\mathbb{Z}^2, κ^2) , we define the following three subsets as follows: $E_{\mathcal{F}^2} = \{x \in E | \{x\} \text{ is closed in } (\mathbb{Z}^2, \kappa^2)\}$; $E_{\kappa^2} = \{x \in E | \{x\} \text{ is open in}$ $(\mathbb{Z}^2, \kappa^2)\}$; $E_{mix} = E \setminus (E_{\mathcal{F}^2} \cup E_{\kappa^2})$.

Lemma 4.1. Let A and E be subsets of (\mathbb{Z}^2, κ^2) .

- (1). If E be non-empty $*g\alpha$ -closed set, then $E_{\mathcal{F}^2} \neq \emptyset$ [1].
- (2). If E is $*g\alpha$ -closed and $E \subseteq B_{mix} \cup B_{\kappa^2}$ holds for some subset B of (\mathbb{Z}^2, κ^2) , then $E = \emptyset$ [1].
- (3). The set $U(A_{\mathcal{F}^2}) \cup A_{mix} \cup A_{\kappa^2}$ is a ${}^{\#}g\hat{\alpha}$ -open set containing A.

Proof. (3) First we claim that $A_{mix} \cup A_{\kappa^2}$ is ${}^{\#}g\hat{\alpha}$ -open set. Let F be a non-empty ${}^{*}g\alpha$ -closed set such that $F \subseteq A_{mix} \cup A_{\kappa^2}$. Then by (2), $F = \emptyset$. Thus, we have that $F \subseteq \tau^{\alpha}$ -int $(A_{mix} \cup A_{\kappa^2})$. Therefore $A_{mix} \cup A_{\kappa^2}$ is ${}^{\#}g\hat{\alpha}$ -open. Since every open set is ${}^{\#}g\hat{\alpha}$ -open, $U(A_{\mathcal{F}^2})$ is ${}^{\#}g\hat{\alpha}$ -open. Since union of two ${}^{\#}g\hat{\alpha}$ -open sets is ${}^{\#}g\hat{\alpha}$ -open, $U(A_{\mathcal{F}^2}) \cup A_{mix} \cup A_{\kappa^2}$ is a ${}^{\#}g\hat{\alpha}$ -open set containing A.

Theorem 4.2 ([1]). Let E be a subset of (\mathbb{Z}^2, κ^2) .

- (1). If E is a non-empty $*g\alpha$ -closed set, then $E_{\mathcal{F}^2} \neq \emptyset$.
- (2). If E is a *ga-closed set and $E \subseteq B_{mix} \cup B^2_{\kappa}$ holds for some subset B of (\mathbb{Z}^2, κ^2) , then $E = \emptyset$.

Theorem 4.3 ([1]). Let E be a subset of (\mathbb{Z}^2, κ^2) .

(1). $^*G\alpha O$ -ker $(A) = U(A_{\mathcal{F}^2}) \cup A_{mix} \cup A_{\kappa^2}, U(A_{\mathcal{F}^2}) = \bigcup \{U(x) | x \in A_{\mathcal{F}^2} \}.$

(2). $G\alpha O$ -ker $(A) = U(A_{\mathcal{F}^2}), U(A_{\mathcal{F}^2}) = \bigcup \{U(x) | x \in A_{\mathcal{F}^2} \}.$

Theorem 4.4. Let B be a non-empty subset of (\mathbb{Z}^2, κ^2) . If $B_{\mathcal{F}^2} = \emptyset$, then B is ${}^{\#}g\hat{\alpha}$ -open.

Proof. Let F be a $*g\alpha$ -closed set such that $F \subseteq B$. Since $B_{\mathcal{F}^2} = \emptyset$, we have $B = B_{mix} \cup B^2_{\kappa}$. Then by Theorem 4.2(2), we get $F = \emptyset \Rightarrow F \subseteq \tau^{\alpha}$ -int(B). Therefore, B is $\#g\hat{\alpha}$ -open.

Theorem 4.5. Let B be a non-empty subset of (\mathbb{Z}^2, κ^2) , the following are equivalent:

- (1). The subset B is ${}^{\#}g\hat{\alpha}$ -open set of (\mathbb{Z}^2, κ^2) ,
- (2). $(U(x))_{\kappa^2} \subseteq B$ holds for each point $x \in B_{\mathcal{F}^2}$.

Proof. (1) \Rightarrow (2) Let $x \in B_{\mathcal{F}^2}$. Since $\{x\}$ is closed, $\{x\}$ is $*g\alpha$ -closed set and $\{x\} \subseteq B$. By (1), $\{x\} \subset \tau^{\alpha}$ -int $(B) = B \cap int(cl(int(B)))$ and so $x \in int(cl(int(B)))$. Namely, x is an interior point of the set cl(int(B)). Thus, we have that, for the smallest open set U(x) containing x, $U(x) \subset cl(int(B))$. We can set x = (2s, 2u) for some integers s and u, because $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$. Since $U((2s, 2u)) = \{2s - 1, 2s, 2s + 1\} \times \{2u - 1, 2u, 2u + 1\}$, it is shown that $(U(x))_{\kappa^2} = \{(x_1, x_2) \in U(x) | x_1$ and x_2 are odd $\} = \{p_1, p_2, p_3, p_4\}$, where $p_1 = (2s - 1, 2u - 1)$, $p_2 = (2s - 1, 2u + 1)$, $p_3 = (2s + 1, 2u + 1)$, $p_4 = (2s + 1, 2u + 1)$. For each point $p_i(1 \le i \le 4)$, $p_i \in cl(int(B))$ and so $\{p_i\} \cap int(B) \ne \emptyset$. Therefore, $p_i \in B$ for each i with $1 \le i \le 4$ and hence $(U(x))_{\kappa^2} \subset B$.

 $(2) \Rightarrow (1) \text{ It follows from the assumption that, for each point } x \in B_{\mathcal{F}^2}, \{x\} \cup (U(x))_{\kappa^2} \subset B \text{ and so } \bigcup \{\{x\} \cup (U(x))_{\kappa^2} | x \in B_{\mathcal{F}^2}\} \subset B. \text{ Put } V_B = \bigcup \{\{x\} \cup (U(x))_{\kappa^2} | x \in B_{\mathcal{F}^2}\} \text{ and so } V_B \neq \emptyset, V_B \subset B. \text{ By Lemma } 2.4(2), V_B \text{ is preopen and it is } \alpha \text{-open.}$ We have that $B = V_B \cup (B \setminus V_B) = V_B \cup \{(B \setminus V_B)_{\mathcal{F}^2} \cup (B \setminus V_B)_{\kappa^2} \cup (B \setminus V_B)_{mix}\} = V_B \cup (B \setminus V_B)_{\kappa^2} \cup (B \setminus V_B)_{mix}, \text{ we note that,}$ for a point $y \in (B \setminus V_B)_{mix}, U(y) \subset B$ or $U(y) \notin B$. we put $(B \setminus V_B)_{mix}^1 = \{y \in (B \setminus V_B)_{mix} | U(y) \subseteq B\}, U((B \setminus V_B)_{mix}^1) = \bigcup \{U(y) | y \in (B \setminus V_B)_{mix}\}, (B \setminus V_B)_{mix}^2 = \{y \in (B \setminus V_B)_{mix} | U(y) \notin B\}.$ Then, $(B \setminus V_B)_{mix}$ is decomposed as $(B \setminus V_B)_{mix} = (B \setminus V_B)_{mix}^1 \cup (B \setminus V_B)_{mix}^2.$ Thus, we have that:

(*¹) $B = V_B \cup (B \setminus V_B)_{\kappa^2} \cup (B \setminus V_B)_{mix}^1 \cup (B \setminus V_B)_{mix}^2$. Here, V_B is α -open in (\mathbb{Z}^2, κ^2) ; the set $(B \setminus V_B)_{\kappa^2}$ is open and so α -open in (\mathbb{Z}^2, κ^2) ; $U((B \setminus V_B)_{mix}^1)$ is open and so α -open in (\mathbb{Z}^2, κ^2) . Thus, we have that:

 $(*^2)$ the subset $V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)^1_{mix})$ is α -open in (\mathbb{Z}^2, κ^2) .

Moreover, we conclude that:

 $(*^3) B = V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)^1_{mix}) \cup (B \setminus V_B)^2_{mix}$ holds.

Proof of $(*^3)$: Since $(B \setminus V_B)_{mix}^1 \subseteq U((B \setminus V_B)_{mix}^1)$, it is shown that $B \subseteq V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)_{mix}^1) \cup (B \setminus V_B)_{mix}^2$ (c.f *¹). Conversely we have that $V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)_{mix}^1) \cup (B \setminus V_B)_{mix}^2 \subseteq B$, because $U((B \setminus V_B)_{mix}^1) \subseteq B$, $V_B \subseteq B$,

 $(B \setminus V_B)_{\kappa^2} \subseteq B$ and $(B \setminus V_B)^2_{mix} \subseteq B$ hold. Thus, we have the required equality $(*^3)$. Let F be a nonempty $*g\alpha$ -closed set of (\mathbb{Z}^2, κ^2) such that $F \subseteq B$. We claim that:

(*⁴) $F \cap ((B \setminus V_B)^2_{mix}) = \emptyset$ holds.

Proof of $(*^4)$: Suppose that there exists a point $y \in F \cap ((B \setminus V_B)^2_{mix})$. Then we have that:

 $(**)y \in B_{mix}, y \in F_{mix} \text{ and } U(y) \nsubseteq B.$

By Theorem 2.4[12] for a ${}^*g\alpha$ -closed set F and the point $y \in F_{mix}$, it is obtained that $cl(\{y\}) \setminus \{y\} \subseteq F$. Since $y \in (\mathbb{Z}^2)_{mix}$, we may put $y = (2s, 2u + 1)(\text{resp. } y = (2s + 1, 2u)), y^+ = (2s, 2u + 2)(\text{resp. } y^+ = (2s + 2, 2u)), y^- = (2s, 2u)(\text{resp.}$ $y^- = (2s, 2u)),$ where $s, u \in \mathbb{Z}$. Then $cl(\{y\}) = \{y^+, y, y^-\}$. Thus, we have that $cl(\{y\}) \setminus \{y\} = \{y^+, y^-\} \subseteq F$. Since $F \subseteq B$, we have that $y^+ \subseteq B_{\mathcal{F}^2}$ and $y^- \subseteq B_{\mathcal{F}^2}$. For the point y^+ , it follows form the assumption (2) that $\{y^+\} \cup (U(y^+))_{\kappa^2} \subseteq B$ and so $U(y) \subseteq B$ which a contradiction to (**). Thus, we have that $F \cap ((B \setminus V_B)_{mix}^2) = \emptyset$. By using (*³) and (*⁴), it is shown that, for the ${}^*g\alpha$ -closed set F such that $F \subseteq B, F = B \cap F = [V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)_{mix}^1) \cup (B \setminus V_B)_{mix}^2] \cap F \subseteq$ $V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)_{mix}^1)$. We put $E = V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)_{mix}^1)$ and so $F \subseteq E \subseteq B$ and E is α -open. Using (*²) and (*³), we have that $F \subseteq E \subseteq \tau^{\alpha}$ -int(B) holds. Namely, B is ${}^#g\hat{\alpha}$ -open in (\mathbb{Z}^2, κ^2) .

Theorem 4.6.

(1). The union of any collection of ${}^{\#}g\hat{\alpha}$ -open sets of (\mathbb{Z}^2, κ^2) is ${}^{\#}g\hat{\alpha}$ -open set in (\mathbb{Z}^2, κ^2) .

(2). The intersection of any collection of ${}^{\#}g\hat{\alpha}$ -closed sets of (\mathbb{Z}^2, κ^2) is ${}^{\#}g\hat{\alpha}$ -closed set in (\mathbb{Z}^2, κ^2) .

Proof.

- (1). Let $\{B_i | i \in J\}$ be a collection of ${}^{\#}g\hat{\alpha}$ -open sets of (\mathbb{Z}^2, κ^2) , where J is an index set and put $V = \bigcup \{B_i | i \in J\}$. First we assume that $V_{\mathcal{F}^2} \neq \emptyset$, there exists a point $x \in (B_j)_{\mathcal{F}^2}$ for some $j \in J$. By Theorem 4.5, it is obtained that $(U(x))_{\kappa^2} \subset B_j$ and hence $(U(x))_{\kappa^2} \subset V$. Again using Theorem 4.5, we conclude that V is ${}^{\#}g\hat{\alpha}$ -open. Finally we assume that $V_{\mathcal{F}^2} = \emptyset$. Then by Theorem 4.4, V is ${}^{\#}g\hat{\alpha}$ -open.
- (2). We recall that a subset E is ${}^{\#}g\hat{\alpha}$ -closed if and only if the complement of E is ${}^{\#}g\hat{\alpha}$ -open. It follows from (1) and definition that the intersection of any collection of ${}^{\#}g\hat{\alpha}$ -closed sets is ${}^{\#}g\hat{\alpha}$ -closed in (\mathbb{Z}^2, κ^2) .

Proposition 4.7. Let x be a point of (\mathbb{Z}^2, κ^2) . The following properties on the singleton $\{x\}$ hold.

- (1). If $x \in (\mathbb{Z}^2)_{\kappa^2}$, then $\{x\}$ is ${}^{\#}g\hat{\alpha}$ -open; it is not ${}^{\#}g\hat{\alpha}$ -closed in (\mathbb{Z}^2, κ^2) .
- (2). If $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, then $\{x\}$ is $\#g\hat{\alpha}$ -closed; it is not $\#g\hat{\alpha}$ -open in (\mathbb{Z}^2, κ^2) .
- (3). If $x \in (\mathbb{Z}^2)_{mix}$, then $\{x\}$ is ${}^{\#}g\hat{\alpha}$ -is both ${}^{\#}g\hat{\alpha}$ -closed and ${}^{\#}g\hat{\alpha}$ -open in (\mathbb{Z}^2, κ^2) .

Proof.

- (1). It follows from the assumption that $\{x\}$ is open in (\mathbb{Z}^2, κ^2) and so it is ${}^{\#}g\hat{\alpha}$ -open in (\mathbb{Z}^2, κ^2) . Since $\{x\}$ is ${}^{*}g\alpha$ -open, then there exists a ${}^{*}g\alpha$ -open set $U = \{x\}$ such that τ^{α} - $cl(\{x\}) \notin \{x\}$. By Definition 3.1 $\{x\}$ is not ${}^{\#}g\hat{\alpha}$ -closed in (\mathbb{Z}^2, κ^2) .
- (2). It follows from the assumption that $\{x\}$ is closed in (\mathbb{Z}^2, κ^2) and so it is ${}^{\#}g\hat{\alpha}$ -closed in (\mathbb{Z}^2, κ^2) . Since $\{x\}$ is ${}^{*}g\alpha$ -closed, then there exists a ${}^{*}g\alpha$ -closed set $B = \{x\}$ such that $\{x\} \notin \tau^{\alpha}$ -int($\{x\}$). Therefore $\{x\}$ is not ${}^{\#}g\hat{\alpha}$ -open in (\mathbb{Z}^2, κ^2) .
- (3). Let $x \in (\mathbb{Z}^2)_{mix}$, *i.e.*, x = (2s + 1, 2u) such that $\tau^{\alpha} cl(\{x\}) = \{x\} \notin \{x\} = U$, U is $*g\alpha$ -open set. Therefore, $\{x\}$ is $\#g\hat{\alpha}$ -closed. Let x = (2s + 1, 2u) such that $F = \emptyset \subseteq (2s + 1, 2u)$, where F is $*g\alpha$ -closed set $\Rightarrow \emptyset \subseteq int(\{x\}) = \emptyset$. Hence $\{x\}$ is $\#g\hat{\alpha}$ -open in (\mathbb{Z}^2, κ^2) . Similarly we can prove this statement for x = (2s, 2u + 1).

It is well known that the digital line (\mathbb{Z}, κ) is $T_{1/2}$ but the digital plane (\mathbb{Z}^2, κ^2) is not $T_{1/2}$. By Theorem 4.6 and Remark 3.3, we have a new topology, say ${}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2)$ of \mathbb{Z}^2 .

Corollary 4.8. Let ${}^{\#}g\hat{\alpha}O(\mathbb{Z}^2,\kappa^2)$ be the family of all ${}^{\#}g\hat{\alpha}$ -open sets in (\mathbb{Z}^2,κ^2) . Then, the following properties hold.

- (1). The family ${}^{\#}g\hat{\alpha}O(\mathbb{Z}^2,\kappa^2)$ is a topology of \mathbb{Z}^2 .
- (2). Let $(\mathbb{Z}^2, \#g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$ be topological space obtained by changing the topology κ^2 of the digital plane (\mathbb{Z}^2, κ^2) by $\#g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2)$. Then $(\mathbb{Z}^2, \#g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$ is a $T_{1/2}$ -topological space.

Proof.

- (1). It is obvious form Theorem 4.6 and Remark 3.3 that the family ${}^{\#}g\hat{\alpha}O(\mathbb{Z}^2,\kappa^2)$ is topology of \mathbb{Z}^2 .
- (2). Let $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$ be topological space with new topology ${}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2)$. Then, it is claimed that the topological space $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$ is $T_{1/2}$. By Proposition 4.7, a singleton set $\{x\}$ is open or closed in $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$ and by Theorem 3.1(ii) [3]. Hence the space $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$ is $T_{1/2}$.

Sometimes, we abbreviate the topology ${}^{\#}g\hat{\alpha}O(\mathbb{Z}^2,\kappa^2)$ by ${}^{\#}g\hat{\alpha}O$. For a subset A of \mathbb{Z}^2 , we denote the closure of A, interior of A and the kernel of A with respect to ${}^{\#}g\hat{\alpha}O(\mathbb{Z}^2,\kappa^2)$ by ${}^{\#}g\hat{\alpha}O\text{-}cl(A)$, ${}^{\#}g\hat{\alpha}O\text{-}int(A)$ and ${}^{\#}g\hat{\alpha}O\text{-}ker(A)$ respectively. The kernel is defined by ${}^{\#}g\hat{\alpha}O\text{-}ker(A) = \bigcap\{V|V \in {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2,\kappa^2), A \subset V\}.$

Proposition 4.9. For the topological space $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$, we have the properties on the singletons as follows. Let x be a point of \mathbb{Z}^2 and $s, u \in \mathbb{Z}$.

- (1). (a) If $x \in (\mathbb{Z}^2)_{\kappa^2}$, then ${}^{\#}g\hat{\alpha}O$ -ker $(\{x\}) = \{x\}$ and ${}^{\#}g\hat{\alpha}O$ -ker $(\{x\}) \in {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2,\kappa^2)$.
 - (b) If $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, then ${}^{\#}g\hat{\alpha}O$ -ker $(\{x\}) = \{x\} \cup (U(x))_{\kappa^2} = \{2s, 2u\} \cup \{(2s+1, 2u+1), (2s+1, 2u-1), (2s-1, 2u-1), (2$
 - (c) If $x \in (\mathbb{Z}^2)_{mix}$, then ${}^{\#}g\hat{\alpha}O\text{-}ker(\{x\}) = \{x\}$ and ${}^{\#}g\hat{\alpha}O\text{-}ker(\{x\}) \in {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2,\kappa^2)$.
- (2). (a) If $x \in (\mathbb{Z}^2)_{\kappa^2}$, then $\#g\hat{\alpha}O\text{-}cl(\{x\}) = \{(2s+1, 2u+1), (2s, 2u+2), (2s, 2u), (2s+2, 2u+2), (2s+2, 2u)\}$ and hence $\{x\}$ is not closed in $(\mathbb{Z}^2, \#g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2)).$
 - (b) If $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, then ${}^{\#}g\hat{\alpha}O\text{-}cl(\{x\}) = \{x\}$.
 - (c) If $x \in (\mathbb{Z}^2)_{mix}$, then ${}^{\#}g\hat{\alpha}O\text{-}cl(\{x\}) = \{x\}$.
- (3). (a) If $x \in (\mathbb{Z}^2)_{\kappa^2}$, then ${}^{\#}g\hat{\alpha}O\text{-int}(\{x\}) = \{x\}$.
 - (b) If $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, then $\#g\hat{\alpha}O\text{-int}(\{x\}) = \emptyset$.
 - (c) If $x \in (\mathbb{Z}^2)_{mix}$, then ${}^{\#}g\hat{\alpha}O\text{-int}(\{x\}) = \{x\}$.

Proof. (1)(a) For a point $x \in (\mathbb{Z}^2)_{\kappa^2}$, by Proposition 4.7(1), $\{x\}$ is ${}^{\#}g\hat{\alpha}$ -open in (\mathbb{Z}^2, κ^2) . Then, we have that ${}^{\#}g\hat{\alpha}O$ - $ker(\{x\}) = \{x\}$ and ${}^{\#}g\hat{\alpha}O$ - $ker(\{x\}) \in {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2)$.

(1)(b) Let *B* be any ${}^{\#}g\hat{\alpha}$ -open set of (\mathbb{Z}^2, κ^2) containing the point $x = (2s, 2u) \in (\mathbb{Z}^2)_{\mathcal{F}^2}$. Then, by Theorem 4.5, $\{x\} \cup (U(x))_{\kappa^2} \subset B$ holds and $\{x\} \cup (U(x))_{\kappa^2} \in {}^{\#}g\hat{\alpha}O$. Thus, we have that ${}^{\#}g\hat{\alpha}O$ -ker $(\{x\}) = \{x\} \cup (U(x))_{\kappa^2} = \{2s, 2u\} \cup \{(2s+1, 2u+1), (2s+1, 2u-1), (2s-1, 2u-1), (2s-1, 2u+1)\}$. By Lemma 2.4(2) and the fact that $(\kappa^2)^{\alpha} \subset {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2)$, the kernel ${}^{\#}g\hat{\alpha}O$ -ker $(\{x\}) \in {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2)$.

(1)(c) Let $x \in (\mathbb{Z}^2)_{mix}$. The sigleton set $\{x\}$ is $\#g\hat{\alpha}$ -open, because $(\{x\})_{\mathcal{F}^2} = \emptyset$. Thus, we have that $\#g\hat{\alpha}O\text{-}ker(\{x\}) = \{x\}$ and $\#g\hat{\alpha}O\text{-}ker(\{x\}) \in \#g\hat{\alpha}O(\mathbb{Z}^2,\kappa^2)$.

(2)(a) Let $x \in (\mathbb{Z}^2)$. By (1), it is shown that, for a point $y \in \mathbb{Z}^2$, $y \in {}^{\#}g\hat{\alpha}O\text{-}cl(\{x\})$ holds if and only if $x \in {}^{\#}g\hat{\alpha}O\text{-}ker(\{y\})$ holds. For a point $x \in (\mathbb{Z}^2)_{\kappa^2}$, we put x = (2s + 1, 2u + 1), where $s, u \in \mathbb{Z}$. For a point $y \in {}^{\#}g\hat{\alpha}O\text{-}cl(\{x\})$ holds (i.e., $(y \in {}^{\#}g\hat{\alpha}O\text{-}cl(\{x\}))_{\kappa^2})$ if and only if $x \in {}^{\#}g\hat{\alpha}O\text{-}ker(\{y\})$ holds (cf. (1)(a)). Thus we have that ${}^{\#}g\hat{\alpha}O\text{-}cl(\{x\}))_{\kappa^2} = \{x\}$. For a point $y \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, $y \in {}^{\#}g\hat{\alpha}O\text{-}cl(\{x\})$ holds (i.e., $y \in ({}^{\#}g\hat{\alpha}O\text{-}cl(\{x\}))_{\mathcal{F}^2})$ if and only if $x \in {}^{\#}g\hat{\alpha}O\text{-}ker(\{y\})$ holds (i.e., $x \in \{y\} \cup U(y)_{\kappa^2}$ and $x \neq y$ holds) (cf. (1)(b)). Thus, we have that $({}^{\#}g\hat{\alpha}O\text{-}cl(\{x\}))_{\mathcal{F}^2} = \{y \in (\mathbb{Z}^2)_{\mathcal{F}^2} | x \in \{y\} \cup U(y)_{\kappa^2}\} = W_x$, where $W_x = \{(2s, 2u), (2s, 2u + 2), (2s + 2, 2u), (2s + 2, 2u + 2)\}$ and x = (2s + 1, 2u + 1). For a point $y \in (\mathbb{Z}^2)_{mix}$, $y \in {}^{\#}g\hat{\alpha}O\text{-}cl(\{x\}))_{mix}$ if and only if $x \in {}^{\#}g\hat{\alpha}O\text{-}cl(\{y\}) = \{y\}$ holds (cf. 1(c)). Since $y \neq x$, we have that $({}^{\#}g\hat{\alpha}O\text{-}cl(\{x\}))_{mix} = \emptyset$. Therefore we obtain ${}^{\#}g\hat{\alpha}O\text{-}cl(\{x\}) = \{x\} \cup W_x$. (2)(b) For a point $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, by Proposition 4.7(2), it is obtained that ${}^{\#}g\hat{\alpha}O\text{-}cl(\{x\}) = \{x\}$.

(2)(c) Let a point $x \in (\mathbb{Z}^2)_{mix}$, by Proposition 4.7(2), it is obtained that ${}^{\#}g\hat{\alpha}O\text{-}cl(\{x\}) = \{x\}$.

(3) For a point $x \in (\mathbb{Z}^2)_{\kappa^2}$ (res. $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, $x \in (\mathbb{Z}^2)_{mix}$), by Proposition 4.7(1) (res. (2), (3)), it is shown that ${}^{\#}g\hat{\alpha}O\text{-}int(\{x\}) = \{x\}$ (res. ${}^{\#}g\hat{\alpha}O\text{-}int(\{x\}) = \emptyset$, ${}^{\#}g\hat{\alpha}O\text{-}int(\{x\}) = \{x\}$) holds.

Theorem 4.10. If $x \in (\mathbb{Z}^2)_{mix}$, *i.e.*, x = (2s, 2u + 1) or (2s + 1, 2u), then $\{x\}$ is both regular open and regular closed in $(\mathbb{Z}^2, \#g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2)).$

Proof. For a point $x \in (\mathbb{Z}^2)_{mix}$, by Proposition 4.9(2(c) and 3(c)), ${}^{\#}g\hat{\alpha}O\text{-}cl({}^{\#}g\hat{\alpha}O\text{-}int(\{x\})) = \{x\}$. Therefore $\{x\}$ is regular closed in $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$. Similarly we have, ${}^{\#}g\hat{\alpha}O\text{-}int({}^{\#}g\hat{\alpha}O\text{-}cl(\{x\})) = \{x\}$. Therefore, $\{x\}$ is regular open in $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$.

Theorem 4.11. If $x \in (\mathbb{Z}^2)_{\kappa^2}$, *i.e.*, x = (2s + 1, 2u + 1), then $\{x\}$ is not regular closed, moreover $\{x\}$ is semi open and regular open in $(\mathbb{Z}^2, \#g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$.

Proof. Let $x \in (\mathbb{Z}^2)_{\kappa^2}$, by Proposition 4.9(2(a) and 3(a)), ${}^{\#}g\hat{\alpha}O\text{-}cl({}^{\#}g\hat{\alpha}O\text{-}int({}x{})) = {}^{\#}g\hat{\alpha}O\text{-}cl({}x{}) \supseteq {}^{x}$, where x = (2s + 1, 2u + 1). Therefore x is not regular closed and hence it is semi-open. By Proposition 4.9(2(a) and 3(a)), ${}^{\#}g\hat{\alpha}O\text{-}int({}^{\#}g\hat{\alpha}O\text{-}cl({}x{})) = {}^{x}$. Therefore, x is regular open in $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$.

Theorem 4.12. The space $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$ is $T_{3/4}$ but not T_1 .

Proof. By Theorem 4.11, a singleton $\{x\}$ is regular open in $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$, where $x \in (\mathbb{Z}^2)_{\kappa^2}$; by Proposition 4.9(2(b)), a singleton $\{x\}$ is closed in $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$, where $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$; by Theorem 4.10, a singleton $\{x\}$ is closed in $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$, where $x \in (\mathbb{Z}^2)_{mix}$. Therefore, every singleton $\{x\}$ is regular open of closed in $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$. Namely, it is a $T_{3/4}$. Moreover, it is not T_1 . Indeed, by Proposition 4.9(2(a)), a singleton $\{(2s+1, 2u+1)\}$ is not closed in $(\mathbb{Z}^2, {}^{\#}g\hat{\alpha}O(\mathbb{Z}^2, \kappa^2))$, where $s, u \in \mathbb{Z}$.

Acknowledgment

The first author is thankful to University Grants Commission, New Delhi, for sponsoring this work under grants of Major Research Project-MRP-MATH-MAJOR-2013-30929. F.No. 43-433/2014(SR) Dt. 11.09.2015.

References

R. Devi and M. Vigneshwaran, *GαO-Kernal in the Digital Plane, Internatioal Journal of Computer Application, 3(6)(2010), 24-26.

- [2] J. Dontchev and M. Ganster, On δ-generalized closed sets and T_{3/4}-spaces, Mem. Fac. Kochi. Univ. Ser A. Math., 15(1997), 259-266.
- [3] W. Dunham, T_{1/2}-space, Koyunpook Math. J., 17(1977), 161-169.
- [4] J. Cao, S. Ganster and I. Reilly, On generalized closed sets, Topology Appl., 123(2002), 37-46.
- [5] E. D. Khalimsky, R. Kopperman and P. R. Meyer, Computer graphics and connected topologies in finite ordered sets, Topology Appl., 36(1990), 1-17.
- [6] E. D. Khalimsky, Application of connected ordered topological spaces in topology, Conference of Math. Dept. of Povolsia, (1970).
- [7] T. Y. Kong, R. Kopperman and P. R. Meyer, A topological approach to digital topology, Amer. Math. Monthly, 98(1991), 901-907.
- [8] N. Levine. Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [9] K. Nôno, R. Devi, M. Devipriya, K. Muthukumaraswamy and H. Maki, On *gα-closed sets and the digital plane, Bulletin of Fukuoka University of Education, 53(III)(2004), 15-24.
- [10] O. Njastad, On some classes of nearly open sets, Pacif. J. Math., 15(1965), 961-970.
- [11] S. Pious Missier and K. M. Arifmohammed, On $*g\hat{\alpha}$ -closed sets in digital plane, Jordan Journal of Mathematics and statistics(communicated).
- [12] M. Vigneshwaran and R. Devi, More on $*g\alpha$ -closed and $*g\alpha$ -open sets in the digital plane, Journal of Global Research in Mathematical Arichives, 1(1)(2013), 39-48.