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Abstract: The aim of this paper is to introduce and investigate a new class of sets and functions between topological space called

supra ğ-open sets and supra ğ-closed functions respectively, furthermore introduced the concept of supra ğ-open mapping
and supra ğ-closed maps and investigated several properties of them. Additionally, we relate and compare these functions

with some other functions in topological spaces.
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1. Introduction

In 1983, A.S Mashhour [3] introduced the supra topological spaces and studied S-continuous functions and S∗-continuous

functions. In 2008, R.Devi [2] introduced and studied a class of sets and maps between topological space called supra α-open

sets and supra α-continuous maps. In 2010, O.R.Sayed [5] introduced and investigated several properties of supra b-open

set and supra b-continuity on topological space. In 2011, Arokiarani and Trintia pricilla [1] introduced and investigated

several properties of new type of sets called T-closed set and supra T-continuity maps. Now, the concepts of supra ğ-open

sets were introduced and some basic properties of it were studied. Also, we introduced the concept of supra ğ-continuous

maps, supra ğ-open maps and supra ğ-closed maps and investigated several properties for these class of maps. In particular,

we study the relationship between supra ğ-continuous maps and supra ğ-open maps.

2. Preliminaries

Throughout this paper (X, τ), (Y, σ) and (Z, η) or X,Y and Z represent non-empty topological spaces on which no separate

axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ), cl(A) and int(A) denoted closure and

interior of A respectively.

Definition 2.1 ([4]). A subfamily µ of X is said to be supra topology on X, if

(1). X, φ ∈ µ

(2). if Ai ∈ µ for all i ∈ J , then
⋃
Ai ∈ µ. The pair (X,µ) is called supra topological spaces.
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The element of µ are called supra open sets in (X,µ) and the complement of supra open sets is called supra closed sets and

it is denoted by µc.

Definition 2.2 ([4]). The supra closure of a set A is denoted by supra cl(A) and defined as supra cl(A) =
⋂
{B : B is a

supra closed and A ⊆ B}. The supra interior of a set is denoted by supra int(A), and defined as supra int(A),and defined

as supra int (A) =
⋃
{B: B is a supra open and A ⊇ B}.

Definition 2.3 ([5]). Let (X, τ) be a topological space and µ be a supra topology on X. We call µ a supra topology associated

with τ , if τ ⊂ µ.

Definition 2.4. A subset A of a space X is called

(1). supra semi open set [5], if A ⊆ clµ[intµ(A)].

(2). supra α-open set [2], if A ⊆ clµ[clµ(intµ(A)).

(3). supra regular open [2], if A = clµ(intµ(A)).

(4). supra g-closed [4], if clµ(A) ⊆ U whenever A ⊆ U and U is supra open in X.

(5). supra b-open [5], if A ⊆ clµ[intµ(A)]U(intµ(A))clµ(A).

3. Supra ğ-Closed Sets

In this section, I introduce a new class of generalized open sets called supra ğ open sets and discuss some of their properties.

Definition 3.1. A subset A of (X,µ) is said to be supra ğ closed in (X,µ), if clµ(A) ⊆ U whenever A ⊆ U and U is

B-open in (X,µ). The complement of supra ğ-closed is called supra ğ-open set. we denoted the collection of all ğµ closed

(respectively supra ğ-open) in X is denoted by ĞµC(X) (respectively ĞµO(X)). The intersection of all supra ğ-closed sets

containing A is called supra ğ-closure of A and denoted by clµğ (A) and the supra ğ-interior of A is the union of all supra

ğ-open sets contained in A and is denoted by Intµğ (A) in X.

Definition 3.2. A subset A of a space (x, µ) is called a supra ğα-closed set if αclµ(A) ⊆ U whenever A ⊆ U and U is

B-open in (x, µ). The complement of supra ğα-closed set is called supra ğα-open set.

Proposition 3.3. Every supra closed set is ğµ-closed set.

Proof. If A is any supra closed set in X and G is any supra B-open set containing A, then G ⊇ A = clµ(A). Hence A is

ğµ in X.

The converse of proposition need not be true.

Proposition 3.4. Every ğµ-closed set is ğµα-closed.

Proof. If A is a ğµ-closed set in X and G is any supra B-open set containing A, the G ⊇ clµ(A) ⊇ αclµ(A). Hence A is

ğµα-closed.

Proposition 3.5. Every supra ğ-closed set is supra sg-closed.

Proof. If A is a supra ğ-closed in X and G is any supra semi open set containing A, since every supra semi open set is

supra B-open and A is supra ğ-closed set, We have G ⊇ clµ(A) ⊇ scl(A). Hence A is supra sg-closed.
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The converse of proposition need not be true.

Proposition 3.6. Every ğµ-closed set in gµ-closed.

Proof. If A is a supra ğ-closed set is (x, µ) and G is any open set containing A, since every supra open set in supra B-open,

then G ⊇ clµ(A). Hence A is supra g-closed.

The converse of proposition is need not be true.

Proposition 3.7. Every supra ğ-closed set is supra gs-closed.

Proof. If A is a supra ğ-closed set in X and G is any supra open set containing A, since every supra open set is supra

B-open, then G ⊇ clµ(A) ⊇ sclµ(A). Hence A is supra gs-closed.

The converse of proposition is need not to be true.

Proposition 3.8. Every supra ğ-closed set is supra gsp-closed.

Proof. If A is a supra ğ-closed set in X and G is any supra open set containing A, since every supra open set is supra

B-open, then G ⊇ clµ(A) ⊇ spclµ(A). Hence A is supra gsp-closed.

The converse of proposition is need not be true.

Definition 3.9. The intersection of all supra B-open subsets in (X,µ) containing A is called supra B-kernel of A and is

denoted by Bµ − ker(A).

Lemma 3.10. A subset A of (X,µ) is supra ğ-closed if and only if clµ(A) ⊆ Bµ − ker(A).

Proof. Suppose that A is ğµ -closed, then clµ ⊆ U whenever A ⊆ U and U is supra B-open. Let x ∈ clµ(A). If

x /∈ Bµ − ker(A), then there is Bµ-open set U containing A such that x /∈ U . Since U is an Bµ-open set containing A,

then x /∈ clµ(A) and this is a contradiction. Conversely, let clµ(A) ⊆ Bµ-ker(A), if U is any Bµ-open set containing A, then

clµ(A) ⊆ Bµ −Ker(A) ⊆ U . Therefore, A is ğµ-closed.

Proposition 3.11. If A and B are ğµ-closed set in (X,µ), then A
⋃
B is ğµ-closed in (X,µ).

Proof. If A
⋃
B ⊆ G and G is Bµ-open, then A ⊆ G and B ⊆ G. since A and B are ğµ-closed, G ⊇ clµ(A) and G ⊇ clµ(B)

and hence G ⊇ clµ(A)
⋃
clµ(B) = cl(A

⋃
B). Thus A

⋃
B is ğµ-closed sets in (X,µ).

4. Supra ğ-Continuous

In this section, I introduce a new type of continuous functions called supra ğ-continuous function and obtain some of their

properties and characterizations.

Definition 4.1. Let (X, τ) and (X,σ) be two topological spaces and µ be an associated supra topology with τ . A map

f : (X, τ)→ (Y, σ) is called supra ğ-continuous maps, if the inverse image of each open in Y is supra ğ-open set in X.

Theorem 4.2. Every continuous map is supra ğ-continuous.

Proof. Let (X, τ) and (Y, σ) be two supra topological spaces. Let f : (X, τ)→ (Y, σ) be continues map and A is open in

Y. then f−1(A) is an open set in X. since µ is associated with τ , then τ ⊂ µ. Therefore, f−1(A) is supra open set in X.

Hence f is supra ğ continuous.
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The converse of the above theorem is not true as shown in the following examples.

Theorem 4.3. Let (X, τ) and (Y, σ) be two topological spaces and µ be an associated supra topology with τ . Let f be a map

from X into Y, then the following are equivalent:

(1). f is a supra ğ-continuous map.

(2). The inverse image of a closed set in Y is a supra ğ-closed set in X.

(3). The inverse image of a open set in Y is a supra ğ-open set in X.

(4). clµğ (f−1(A) ⊆ f−1(cl(A))) for every set A in Y.

(5). f(clµğ (A) ⊆ cl(f(A)) for every set in X.

(6). f−1(int(B)) ⊆ intµğ (f−1(B)) for every B in Y.

Proof. (i)⇒ (ii). Let A be a closed set in Y.Then Y-A is open set in Y then f−1(Y −A) = X− f−1(A) is a supra ğ-open

set in X. It follows that f−1(A) is a supra ğ-closed subset of X.

(ii) ⇒ (iii) Let A be any subset of Y. Since cl(A) is closed in Y, Then f−1(cl(A) is supra ğ closed in X. Therefore

clµğ ⊂ cl
µ
ğ (f−1(cl(A))) = f−1(cl(A)).

(iii)⇒ (iv) Let A be any subset of X.By (3) we have f−1(cl(f(A))) ⊇ clµğ (f−1(f(A)) ⊇ clµğ (A).Therefore f(clµğ ) ⊆ cl(f(A).

(iv) ⇒ (v). Let B be any subset of Y. By (iv), f(clµğ (X − f−1(B))) ⊆ cl(f(x − f−1(B))) and f(X − intµğ (f−1(B))) ⊆

cl(Y −B) = Y − int(B).

Therefore we have X − intµğ f
−1(B) ⊆ f−1(Y − int(B)) and f−1(int(B)) ⊂ intµğ (f−1(B)).

Theorem 4.4. Let (X, τ), (Y, σ) and (Z, v) be three topological spaces. If a map f : (X, τ) → (Y, σ) is supra ğ-continuous

and g : (Y, σ)→ (Z, v) is a continuous map,then g ◦ f : (X, τ)→ (z, v) is supra ğ-continuous.

Proof. Let F be any closed set in (Z, v). Since g : (Y, σ) → (Z, v) is continuous. g−1(F ) is closed in (Y, σ). Since

f : (X, τ) → (Y, σ) is supra ğ-continuous. f−1[g−1(F )] = (g ◦ f)−1(F ) is ğ-closed in (X, τ) and so g ◦ f is supra ğ-

continuous.

Theorem 4.5. Let (X, τ) and (Y, σ) be two topological spaces and µ and v be the associated supra topologies with τ and σ

respectively. Then f : (X, τ)→ (Y, σ) is a supra ğ-continuous maps. If one of the following holds.

(i). f−1(intvb (B) ⊆ int(f−1(B) for every set B in Y.

(ii). cl(f−1(B)) ⊆ f−1(clvb (B)) for every set B in Y

(iii). f(cl(A)) ⊆ clµb (f(A)) for every set A in X.

Proof. Let B be any open set of Y. If condition (i) is satisfied, then f−1(intvb (B)) ⊆ int(f−1(B)). We get f−1(B) ⊆

int(f−1(B)). Therefore, f−1(B) is an open set. Every open set is supra ğ-continuous map. If condition (2) is satisfied,

then we can easily prove that f is a supra ğ-continuous map. Let condition (3) be satisfied, and B be any open set of Y.

Then f−1(B) is a set in X and f(cl(f−1(B))) ⊆ clµb (f(f−1))(B). This implies f(cl(f−1(B))) ⊆ clµb (B). This is nothing but

condition (2). Hence f is a supra ğ-continuous map.
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5. Some Forms of Supra ğ-Continuous Functions

Definition 5.1. A map f : (X, τ)→ (Y, σ) is called strongly supra ğ-continuous function if the inverse image of every supra

ğ-closed set in (Y, σ) is supra closed in (X, τ).

Definition 5.2. A map f : (X, τ) → (Y, σ) is called perfectly supra ğ-continuous function if the inverse image of every

supra ğ-closed set in (Y, σ) is both supra open and supra closed in (X, τ).

Theorem 5.3. Every perfectly supra ğ continuous function is strongly supra ğ-continuous.

Proof. Let f : (X, τ)→ (Y, σ) be a perfectly ğ-continuous function. Let V be ğ-closed set in (Y, σ). Since f is perfectly ğ-

continuous function f−1(V ) is both supra open and closed in (X, τ). Therefore f is strongly supra ğ-continuous function.

The converse of the above theorem need not be true.

Theorem 5.4. Let f : (X, τ) → (Y, σ) be strongly supra ğ-continuous function and g : (Y, σ) → (Z, v) be strongly supra

ğ-continuous function Then their composition g ◦ f : (X, τ)→ (Z, v) is a strongly supra ğ- continuous function.

Proof. Let V be supra ğ-closed set in (Z, v). Since g is strongly ğ-continuous, g−1(V ) is supra closed in (Y, σ). We

know that every supra closed set in supra ğ-closed set, g−1(V ) is supra ğ-closed in (Y, σ). Since f is strongly ğ-continuous,

f−1(g−1(V )) is supra closed in (X, τ), implies (g◦f)(V ) is supra closed in (X, τ). Therefore g◦f is strongly ğ-continuous.

Definition 5.5. A functions f : (X, τ)→ (Y, σ) is called totally supra ğ continuous functions if the inverse image of every

supra open set V of (Y, σ) is both supra ğ open and supra ğ closed subset of (X, τ). (i.e.,) f−1(V ) is supra clopen set in X,

for every supra open set V of Y .

Theorem 5.6. Every totally supra ğ continuous functions is supra ğ continuous.

Proof. Let O be an supra open set of (Y, σ). Since f is totally supra ğ continuous functions, f−1(O) is both supra ğ-open

and supra ğ-closed in (X, τ). Therefore F is supra ğ continuous.

Remark 5.7. The converse of above theorem need not be true.

Theorem 5.8. Every totally supra continuous is totally supra ğ continuous.

Proof. Let O be an supra open set of (Y, σ). Since, f is totally supra continuous functions, f−1(O) is both supra open

and supra closed in (X,σ). Since every supra open set is supra ğ-open and every supra closed set is supra ğ-closed. f−1(O)

is both supra ğ-open and supra ğ-closed in (X, τ). Therefore, f is totally supra ğ continuous.

Remark 5.9. The converse of above theorem need not be true.

Theorem 5.10. Every perfectly supra ğ continuous map is totally supra ğ continuous.

Proof. Let f : (X, τ) → (Y, σ) be a perfectly supra ğ continuous map. Let O be an supra open set of (Y, σ). Then O

is supra ğ open in (Y, σ). Since f is perfectly supra ğ continuous, f−1(O) is both supra open and supra closed in (X, τ),

implies f−1(O) is both supra ğ-open and supra ğ-closed in (X, τ). Therefore, f is totally supra ğ continuous.

Remark 5.11. The converse of above theorem need not to be true.

Theorem 5.12. If f : X → Y is totally supra ğ continuous map and X is supra ğ connected, then Y is an indiscrete space.
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Proof. Suppose that Y is not an indiscrete space. Let A be an non-empty supra open subset of Y . Since f is totally

supra ğ continuous map, then f−1(A) is a non empty supra ğ clopen subset of X. Then X = f−1(A) ∪ (f−1(A))c. Thus,

X is union of two non-empty disjoint supra ğ open sets. which is contradiction to the fact, that X is supra ğ connected.

Therefore, Y must be an indiscrete space.

Theorem 5.13. Let f : X → Y and g : Y → Z be functions. Then g ◦ f : X → Z.

(i). If f is supra ğ irresolute and g is totally supra ğ continuous then g ◦ f is totally supra ğ continuous.

(ii). If f is totally supra ğ continuous and g is continuous, then g ◦ f is totally supra ğ continuous.

Proof.

(i). Let O be an supra open set in Z. Since g is totally supra ğ continuous, g−1(O) is supra ğ clopen in Y . Since f is

supra ğ-irresolute, f−1(g−1(O)) is supra ğ-open and supra ğ-closed in X. Since (g ◦ f)−1(O) = f−1(g−1(O)).

(ii). Let O be an supra open set in Z. Since g is continuous, g−1(O) is open in Y . Since f is totally supra ğ continuous,

f−1(g−1(O)) is supra ğ clopen in X. Hence, g ◦ f is totally supra ğ continuous.
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