

International Journal of *Mathematics And its Applications*

Supra Continuous \breve{g} in Topological Spaces

S. Usharani^{1,*}

1 Department of Mathematics, Sri Vijay Vidyalaya College of Arts and Science, Dharmapuri, Tamil Nadu, India.

Abstract: The aim of this paper is to introduce and investigate a new class of sets and functions between topological space called supra \tilde{g} -open sets and supra \tilde{g} -closed functions respectively, furthermore introduced the concept of supra \tilde{g} -open mapping and supra \tilde{g} -closed maps and investigated several properties of them. Additionally, we relate and compare these functions with some other functions in topological spaces.

MSC: 54C08, 54C10.

 Keywords:
 Supra ğ-open set, supra ğ-continuity, supra ğ-open map, supra ğ-closed map and supra topological spaces.

 © JS Publication.
 Accepted on: 26.03.2018

1. Introduction

In 1983, A.S Mashhour [3] introduced the supra topological spaces and studied S-continuous functions and S^* -continuous functions. In 2008, R.Devi [2] introduced and studied a class of sets and maps between topological space called supra α -open sets and supra α -continuous maps. In 2010, O.R.Sayed [5] introduced and investigated several properties of supra b-open set and supra b-continuity on topological space. In 2011, Arokiarani and Trintia pricilla [1] introduced and investigated several properties of supra \check{g} -open sets were introduced and some basic properties of it were studied. Also, we introduced the concept of supra \check{g} -continuous maps, supra \check{g} -open maps and supra \check{g} -closed maps and investigated several properties for these class of maps. In particular, we study the relationship between supra \check{g} -continuous maps and supra \check{g} -continuous maps and supra \check{g} -continuous maps and supra \check{g} -continuous maps.

2. Preliminaries

Throughout this paper $(X, \tau), (Y, \sigma)$ and (Z, η) or X, Y and Z represent non-empty topological spaces on which no separate axioms are assumed unless otherwise mentioned. For a subset A of a space $(X, \tau), cl(A)$ and int(A) denoted closure and interior of A respectively.

Definition 2.1 ([4]). A subfamily μ of X is said to be supra topology on X, if

(1). $X, \phi \in \mu$

(2). if $A_i \in \mu$ for all $i \in J$, then $\bigcup A_i \in \mu$. The pair (X, μ) is called supra topological spaces.

 $^{^{*}}$ E-mail: ushasanthosh.rani@gmail.com

The element of μ are called supra open sets in (X,μ) and the complement of supra open sets is called supra closed sets and it is denoted by μ^c .

Definition 2.2 ([4]). The supra closure of a set A is denoted by supra cl(A) and defined as supra $cl(A) = \bigcap \{B : B \text{ is a supra closed and } A \subseteq B\}$. The supra interior of a set is denoted by supra int(A), and defined as supra int(A), and defined as supra int $(A) = \bigcup \{B : B \text{ is a supra open and } A \supseteq B\}$.

Definition 2.3 ([5]). Let (X, τ) be a topological space and μ be a supra topology on X. We call μ a supra topology associated with τ , if $\tau \subset \mu$.

Definition 2.4. A subset A of a space X is called

- (1). supra semi open set [5], if $A \subseteq cl^{\mu}[int^{\mu}(A)]$.
- (2). supra α -open set [2], if $A \subseteq cl^{\mu}[cl^{\mu}(int^{\mu}(A)))$.
- (3). supra regular open [2], if $A = cl^{\mu}(int^{\mu}(A))$.
- (4). supra g-closed [4], if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in X.
- (5). supra b-open [5], if $A \subseteq cl^{\mu}[int^{\mu}(A)]U(int^{\mu}(A))cl^{\mu}(A)$.

3. Supra \breve{g} -Closed Sets

In this section, I introduce a new class of generalized open sets called supra \check{g} open sets and discuss some of their properties.

Definition 3.1. A subset A of (X, μ) is said to be supra \check{g} closed in (X, μ) , if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is B-open in (X, μ) . The complement of supra \check{g} -closed is called supra \check{g} -open set. we denoted the collection of all \check{g}^{μ} closed (respectively supra \check{g} -open) in X is denoted by $\check{G}^{\mu}C(X)$ (respectively $\check{G}^{\mu}O(X)$). The intersection of all supra \check{g} -closed sets containing A is called supra \check{g} -closure of A and denoted by $cl^{\mu}_{\check{g}}(A)$ and the supra \check{g} -interior of A is the union of all supra \check{g} -open sets contained in A and is denoted by $Int^{\mu}_{\check{g}}(A)$ in X.

Definition 3.2. A subset A of a space (x, μ) is called a supra \check{g}_{α} -closed set if $\alpha cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is B-open in (x, μ) . The complement of supra \check{g}_{α} -closed set is called supra \check{g}_{α} -open set.

Proposition 3.3. Every supra closed set is \check{g}^{μ} -closed set.

Proof. If A is any supra closed set in X and G is any supra B-open set containing A, then $G \supseteq A = cl^{\mu}(A)$. Hence A is \check{g}^{μ} in X.

The converse of proposition need not be true.

Proposition 3.4. Every \check{g}^{μ} -closed set is \check{g}^{μ}_{α} -closed.

Proof. If A is a \check{g}^{μ} -closed set in X and G is any supra B-open set containing A, the $G \supseteq cl^{\mu}(A) \supseteq \alpha cl^{\mu}(A)$. Hence A is \check{g}^{μ}_{α} -closed.

Proposition 3.5. Every supra ğ-closed set is supra sg-closed.

Proof. If A is a supra \check{g} -closed in X and G is any supra semi open set containing A, since every supra semi open set is supra B-open and A is supra \check{g} -closed set, We have $G \supseteq cl^{\mu}(A) \supseteq scl(A)$. Hence A is supra sg-closed.

The converse of proposition need not be true.

Proposition 3.6. Every \breve{g}^{μ} -closed set in g^{μ} -closed.

Proof. If A is a supra \check{g} -closed set is (x, μ) and G is any open set containing A, since every supra open set in supra B-open, then $G \supseteq cl^{\mu}(A)$. Hence A is supra g-closed.

The converse of proposition is need not be true.

Proposition 3.7. Every supra ğ-closed set is supra gs-closed.

Proof. If A is a supra \check{g} -closed set in X and G is any supra open set containing A, since every supra open set is supra B-open, then $G \supseteq cl^{\mu}(A) \supseteq scl^{\mu}(A)$. Hence A is supra gs-closed.

The converse of proposition is need not to be true.

Proposition 3.8. Every supra ğ-closed set is supra gsp-closed.

Proof. If A is a supra \check{g} -closed set in X and G is any supra open set containing A, since every supra open set is supra B-open, then $G \supseteq cl^{\mu}(A) \supseteq spcl^{\mu}(A)$. Hence A is supra gsp-closed.

The converse of proposition is need not be true.

Definition 3.9. The intersection of all supra B-open subsets in (X, μ) containing A is called supra B-kernel of A and is denoted by $B^{\mu} - ker(A)$.

Lemma 3.10. A subset A of (X, μ) is supra \check{g} -closed if and only if $cl^{\mu}(A) \subseteq B^{\mu} - ker(A)$.

Proof. Suppose that A is \check{g}^{μ} -closed, then $cl^{\mu} \subseteq U$ whenever $A \subseteq U$ and U is supra B-open. Let $x \in cl^{\mu}(A)$. If $x \notin B^{\mu} - ker(A)$, then there is B^{μ} -open set U containing A such that $x \notin U$. Since U is an B^{μ} -open set containing A, then $x \notin cl^{\mu}(A)$ and this is a contradiction. Conversely, let $cl^{\mu}(A) \subseteq B^{\mu}$ -ker(A), if U is any B^{μ} -open set containing A, then $cl^{\mu}(A) \subseteq B^{\mu} - Ker(A) \subseteq U$. Therefore, A is \check{g}^{μ} -closed.

Proposition 3.11. If A and B are \check{g}^{μ} -closed set in (X, μ) , then $A \bigcup B$ is \check{g}^{μ} -closed in (X, μ) .

Proof. If $A \bigcup B \subseteq G$ and G is B^{μ} -open, then $A \subseteq G$ and $B \subseteq G$. since A and B are \check{g}^{μ} -closed, $G \supseteq cl^{\mu}(A)$ and $G \supseteq cl^{\mu}(B)$ and hence $G \supseteq cl^{\mu}(A) \bigcup cl^{\mu}(B) = cl(A \bigcup B)$. Thus $A \bigcup B$ is \check{g}^{μ} -closed sets in (X, μ) .

4. Supra \breve{g} -Continuous

In this section, I introduce a new type of continuous functions called supra \check{g} -continuous function and obtain some of their properties and characterizations.

Definition 4.1. Let (X, τ) and (X, σ) be two topological spaces and μ be an associated supra topology with τ . A map $f: (X, \tau) \to (Y, \sigma)$ is called supra \check{g} -continuous maps, if the inverse image of each open in Y is supra \check{g} -open set in X.

Theorem 4.2. Every continuous map is supra \breve{g} -continuous.

Proof. Let (X, τ) and (Y, σ) be two supra topological spaces. Let $f : (X, \tau) \to (Y, \sigma)$ be continues map and A is open in Y. then $f^{-1}(A)$ is an open set in X. since μ is associated with τ , then $\tau \subset \mu$. Therefore, $f^{-1}(A)$ is supra open set in X. Hence f is supra \check{g} continuous.

The converse of the above theorem is not true as shown in the following examples.

Theorem 4.3. Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . Let f be a map from X into Y, then the following are equivalent:

- (1). f is a supra ğ-continuous map.
- (2). The inverse image of a closed set in Y is a supra \check{g} -closed set in X.
- (3). The inverse image of a open set in Y is a supra \breve{g} -open set in X.
- (4). $cl^{\mu}_{\check{\alpha}}(f-1(A) \subseteq f^{-1}(cl(A)))$ for every set A in Y.
- (5). $f(cl^{\mu}_{\check{a}}(A) \subseteq cl(f(A))$ for every set in X.
- (6). $f^{-1}(int(B)) \subseteq int^{\mu}_{\check{a}}(f^{-1}(B))$ for every B in Y.

Proof. $(i) \Rightarrow (ii)$. Let A be a closed set in Y.Then Y-A is open set in Y then $f^{-1}(Y - A) = X - f^{-1}(A)$ is a supra \check{g} -open set in X. It follows that $f^{-1}(A)$ is a supra \check{g} -closed subset of X.

 $(ii) \Rightarrow (iii)$ Let A be any subset of Y. Since cl(A) is closed in Y, Then $f^{-1}(cl(A))$ is supra \check{g} closed in X. Therefore $cl^{\mu}_{\check{g}} \subset cl^{\mu}_{\check{g}}(f^{-1}(cl(A))) = f^{-1}(cl(A)).$

 $(iii) \Rightarrow (iv)$ Let A be any subset of X.By (3) we have $f^{-1}(cl(f(A))) \supseteq cl^{\mu}_{\tilde{g}}(f^{-1}(f(A)) \supseteq cl^{\mu}_{\tilde{g}}(A)$. Therefore $f(cl^{\mu}_{\tilde{g}}) \subseteq cl(f(A)$. $(iv) \Rightarrow (v)$. Let B be any subset of Y. By (iv), $f(cl^{\mu}_{\tilde{g}}(X - f^{-1}(B))) \subseteq cl(f(x - f^{-1}(B)))$ and $f(X - int^{\mu}_{\tilde{g}}(f^{-1}(B))) \subseteq cl(Y - B) = Y - int(B)$.

Therefore we have $X - int^{\mu}_{\check{g}}f^{-1}(B) \subseteq f^{-1}(Y - int(B))$ and $f^{-1}(int(B)) \subset int^{\mu}_{\check{g}}(f^{-1}(B)).$

Theorem 4.4. Let $(X, \tau), (Y, \sigma)$ and (Z, v) be three topological spaces. If a map $f : (X, \tau) \to (Y, \sigma)$ is supra \check{g} -continuous and $g : (Y, \sigma) \to (Z, v)$ is a continuous map, then $g \circ f : (X, \tau) \to (z, v)$ is supra \check{g} -continuous.

Proof. Let F be any closed set in (Z, v). Since $g : (Y, \sigma) \to (Z, v)$ is continuous. $g^{-1}(F)$ is closed in (Y, σ) . Since $f : (X, \tau) \to (Y, \sigma)$ is supra \check{g} -continuous. $f^{-1}[g^{-1}(F)] = (g \circ f)^{-1}(F)$ is \check{g} -closed in (X, τ) and so $g \circ f$ is supra \check{g} -continuous.

Theorem 4.5. Let (X, τ) and (Y, σ) be two topological spaces and μ and v be the associated supra topologies with τ and σ respectively. Then $f: (X, \tau) \to (Y, \sigma)$ is a supra \check{g} -continuous maps. If one of the following holds.

- (i). $f^{-1}(int_b^v(B) \subseteq int(f-1(B) \text{ for every set } B \text{ in } Y.$
- (ii). $cl(f^{-1}(B)) \subseteq f^{-1}(cl_b^v(B))$ for every set B in Y
- (iii). $f(cl(A)) \subseteq cl_b^{\mu}(f(A))$ for every set A in X.

Proof. Let B be any open set of Y. If condition (i) is satisfied, then $f^{-1}(int_b^v(B)) \subseteq int(f^{-1}(B))$. We get $f^{-1}(B) \subseteq int(f^{-1}(B))$. Therefore, $f^{-1}(B)$ is an open set. Every open set is supra \check{g} -continuous map. If condition (2) is satisfied, then we can easily prove that f is a supra \check{g} -continuous map. Let condition (3) be satisfied, and B be any open set of Y. Then $f^{-1}(B)$ is a set in X and $f(cl(f^{-1}(B))) \subseteq cl_b^{\mu}(f(f^{-1}))(B)$. This implies $f(cl(f^{-1}(B))) \subseteq cl_b^{\mu}(B)$. This is nothing but condition (2). Hence f is a supra \check{g} -continuous map.

5. Some Forms of Supra ğ-Continuous Functions

Definition 5.1. A map $f: (X, \tau) \to (Y, \sigma)$ is called strongly supra \check{g} -continuous function if the inverse image of every supra \check{g} -closed set in (Y, σ) is supra closed in (X, τ) .

Definition 5.2. A map $f : (X, \tau) \to (Y, \sigma)$ is called perfectly supra \check{g} -continuous function if the inverse image of every supra \check{g} -closed set in (Y, σ) is both supra open and supra closed in (X, τ) .

Theorem 5.3. Every perfectly supra ğ continuous function is strongly supra ğ-continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a perfectly \check{g} -continuous function. Let V be \check{g} -closed set in (Y, σ) . Since f is perfectly \check{g} continuous function $f^{-1}(V)$ is both supra open and closed in (X, τ) . Therefore f is strongly supra \check{g} -continuous function. \Box

The converse of the above theorem need not be true.

Theorem 5.4. Let $f : (X, \tau) \to (Y, \sigma)$ be strongly supra \check{g} -continuous function and $g : (Y, \sigma) \to (Z, v)$ be strongly supra \check{g} -continuous function. Then their composition $g \circ f : (X, \tau) \to (Z, v)$ is a strongly supra \check{g} - continuous function.

Proof. Let V be supra \check{g} -closed set in (Z, v). Since g is strongly \check{g} -continuous, $g^{-1}(V)$ is supra closed in (Y, σ) . We know that every supra closed set in supra \check{g} -closed set, $g^{-1}(V)$ is supra \check{g} -closed in (Y, σ) . Since f is strongly \check{g} -continuous, $f^{-1}(g^{-1}(V))$ is supra closed in (X, τ) , implies $(g \circ f)(V)$ is supra closed in (X, τ) . Therefore $g \circ f$ is strongly \check{g} -continuous. \Box

Definition 5.5. A functions $f: (X, \tau) \to (Y, \sigma)$ is called totally supra \check{g} continuous functions if the inverse image of every supra open set V of (Y, σ) is both supra \check{g} open and supra \check{g} closed subset of (X, τ) . (i.e.,) $f^{-1}(V)$ is supra clopen set in X, for every supra open set V of Y.

Theorem 5.6. Every totally supra \check{g} continuous functions is supra \check{g} continuous.

Proof. Let O be an supra open set of (Y, σ) . Since f is totally supra \check{g} continuous functions, $f^{-1}(O)$ is both supra \check{g} -open and supra \check{g} -closed in (X, τ) . Therefore F is supra \check{g} continuous.

Remark 5.7. The converse of above theorem need not be true.

Theorem 5.8. Every totally supra continuous is totally supra ğ continuous.

Proof. Let O be an supra open set of (Y, σ) . Since, f is totally supra continuous functions, $f^{-1}(O)$ is both supra open and supra closed in (X, σ) . Since every supra open set is supra \check{g} -open and every supra closed set is supra \check{g} -closed. $f^{-1}(O)$ is both supra \check{g} -closed in (X, τ) . Therefore, f is totally supra \check{g} continuous.

Remark 5.9. The converse of above theorem need not be true.

Theorem 5.10. Every perfectly supra \check{g} continuous map is totally supra \check{g} continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a perfectly supra \check{g} continuous map. Let O be an supra open set of (Y, σ) . Then O is supra \check{g} open in (Y, σ) . Since f is perfectly supra \check{g} continuous, $f^{-1}(O)$ is both supra open and supra closed in (X, τ) , implies $f^{-1}(O)$ is both supra \check{g} -open and supra \check{g} -closed in (X, τ) . Therefore, f is totally supra \check{g} continuous.

Remark 5.11. The converse of above theorem need not to be true.

Theorem 5.12. If $f: X \to Y$ is totally supra \check{g} continuous map and X is supra \check{g} connected, then Y is an indiscrete space.

Proof. Suppose that Y is not an indiscrete space. Let A be an non-empty supra open subset of Y. Since f is totally supra \check{g} continuous map, then $f^{-1}(A)$ is a non empty supra \check{g} clopen subset of X. Then $X = f^{-1}(A) \cup (f^{-1}(A))^c$. Thus, X is union of two non-empty disjoint supra \check{g} open sets. which is contradiction to the fact, that X is supra \check{g} connected. Therefore, Y must be an indiscrete space.

Theorem 5.13. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then $g \circ f: X \to Z$.

- (i). If f is supra \check{g} irresolute and g is totally supra \check{g} continuous then $g \circ f$ is totally supra \check{g} continuous.
- (ii). If f is totally supra \check{g} continuous and g is continuous, then $g \circ f$ is totally supra \check{g} continuous.

Proof.

- (i). Let O be an supra open set in Z. Since g is totally supra \check{g} continuous, $g^{-1}(O)$ is supra \check{g} clopen in Y. Since f is supra \check{g} -irresolute, $f^{-1}(g^{-1}(O))$ is supra \check{g} -open and supra \check{g} -closed in X. Since $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O))$.
- (ii). Let O be an supra open set in Z. Since g is continuous, $g^{-1}(O)$ is open in Y. Since f is totally supra \check{g} continuous, $f^{-1}(g^{-1}(O))$ is supra \check{g} clopen in X. Hence, $g \circ f$ is totally supra \check{g} continuous.

References

- [1] I. Arockiarani and M. Trinita Pricilla, On Supra T-closed sets, Int. J. of Mathematics Archive, 2(8)(2011), 1376-1380.
- [2] I. Arockiarani and M. Trinita Pricilla, On generalised b-regular closed sets, in supra topological spaces, Asian Journal of Current Engineering and Mathematics, (1)(2012), 1-4.
- [3] R. Devi, S. Sampath Kumar and J. Caldas, On Supra α-open set and Sα-continuous functions, Gen. Mathematics, 16(2)(2008), 77-84.
- [4] A. S. Mashhour, A. A. Allam, E. S. Mahmoud and F. H. Khedr, On supra topological spaces, Ind. J. Pure and Appl. Mathematics, 14(4)(1983), 502-510.
- [5] O. Ravi, G. Ramkumar and M. Kamaraj, On supra g-closed set, Int. J. of Advances and Applied Mathematics, 1(12)(2011), 52-66.
- [6] O. R. Sayed and T. Noiri, On Supra b-open sets and supra b-continuity on topological spaces, Euro. J. of Pure and Applied Mathematics, 3(2)(2010), 295-302.
- [7] S. Usharani and S. Padmasekaran, Further Study of Topological Spaces, Ph.D thesis, Periyar University, Salem, (2016).
- [8] S. Usharani, Some Properties of Contra ğ-continuous functions, International Journal of Pure and Applied Mathematics, (Accepted).