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Abstract: A positive integer n is said to be k-near perfect number, if

σ(n) = 2n+
k∑
i=1

di

where di’s are proper divisors of n and function σ(n) is the sum of all positive divisors of n. In this paper we discuss some

results concerning with k-near perfect numbers. Near perfect numbers are nothing but 1-Near Perfect Numbers.
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1. Introduction

A positive integer n is said to be a perfect number if the sum of all its proper divisors is equal to two times the number. For

any perfect number n, σ(n) = 2n. All perfect numbers known are even. The question of existence of an odd perfect number

still remains open. Euler proved that even perfect number is of the form 2p−1(2p − 1) [5] where p and 2p − 1 are primes.

Prime numbers of the form 2p − 1 where p is a prime is called Mersenne prime. In the year 2012, P.Pollack and V.Shevelev

[2] introduced the notion of near perfect number. It is known that a positive integer n is called near perfect number, if n is

the sum of all its proper divisors except for one of them which is termed as redundant divisor. Moreover, a positive integer

n is a near perfect number with redundant divisor d if and only if d is a proper divisor of n and σ(n) = 2n + d. P.Pollack

and V.Shevelev [2] have also defined k-near perfect number. A positive integer n is said to be a k-near perfect number, if n

is the sum of all its divisors except k numbers of proper divisors. If n is a k-near perfect number with redundant divisors

d1, ..., dk then we write

σ(n) = 2n+ d1 + d2 + ...+ dk

Paul Pollack and Vladimir Shevelev [2] introduced the concept of Near perfect numbers in the year 2012 in their paper titled

On Pefect and Near Perfect Numbers they have given us the construction of Near Perfect Numbers and have conjectured

that there exists infinitely many near pefect numbers with the redundant divisor 2k and have given an upper bound on the

number of near pefect numbers they have also introduced the concept of k-near perfect numbers. Later Bhabesh Das and

Helen K Saikia [1] have some results concerning with near perfect numbers from known perfect numbers.
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1.1. Definitions

Definition 1.1. A divisor function is an arithmetic function that counts the number of positive divisors of an integer.

Definition 1.2. A prime number of the form 2p − 1 where p is a prime number is called Mersenne prime.

Definition 1.3. Prime numbers of the form 2k + 1 (k ≥ 0) are called Fermat primes.

Definition 1.4. A positive integer n is said to be a perfect number if the sum of all its proper divisors is equal to two times

the number. For any perfect number n, σ(n) = 2n.

Definition 1.5. A positive integer n is called near perfect number, if n is the sum of all its proper divisors except for one

of them which is termed as redundant divisor.

Definition 1.6. A positive integer n is said to be a k-near perfect number, if n is the sum of all its divisors except k numbers

of proper divisors.

2. Main Section

Theorem 2.1. Let k > 0 be an odd integer, A be an even perfect number and let p1, p2, ..., pk be distinct odd primes. Then

n = A
k∏
i=1

pi is not a near perfect number with redundant divisor A.

Proof. Suppose n is a near perfect number with redundant divisor A then,

σ(n) = 2A

k∏
i=1

pi +A (1)

but

σ(n) = 2A

k∏
i=1

(pi + 1) (2)

hence by Equation (1) and equation (2)

2A

(
k∏
i=1

(pi + 1) −
k∏
i=1

(pi)

)
= A

this is a contradiction.

Theorem 2.2. Let M = 2p−1 and N = 2q−1 be Mersenne primes where p and q are distinct odd primes. Then n = 2pqMN

is not a near perfect number with redundant divisor 2pq.

Proof. Suppose n is a near perfect number with redundant divisor 2pq then,

σ(n) = 2n+ 2pq (3)

but

σ(n) = (2pq+1 − 1)(M + 1)(N + 1) (4)

σ(n) = (2pq+1 − 1)2p2q (5)

hence by Equation (3) and Equation (5)

(2pq+1 − 1)2p2q − (2pq+1 − 1)(2p − 1)(2q − 1) = 2pq
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2pq+12p2q − 2p2q − 2pq+1(2p2q − 2p − 2q + 1) = 2pq

2pq+1(2p + 2q − 1) = 2pq + 2p2q

2pq(2p+1 + 2q+1 − 3) = 2p+q

since 2p+1 + 2q+1 − 3 > 1 we have

2pq < 2p+q

this is a contradiction.

Theorem 2.3. Let Fα = 2α + 1 and Fβ = 2β + 1 be Fermat primes. Then there is no near perfect number of the form

n = 2αβFαFβ with redundant divisor 2αβ.

Proof. Suppose n is a near perfect number with redundant divisor 2αβ

σ(n) = 2n+ 2αβ (6)

σ(n) = 2αβ+1FαFβ + 2αβ (7)

but

σ(n) = σ(2αβFαFβ) = (2αβ+1 − 1)(Fβ + 1)(Fα + 1) (8)

hence by equation 7 and equation 8

(2αβ+1 − 1)(Fβ + 1)(Fα + 1) = 2αβ+1FαFβ + 2αβ

2αβ+1(FαFβ + Fβ + Fα + 1) − (FαFβ + Fβ + Fα + 1) = 2αβ+1FαFβ + 2αβ

2αβ+1(2β + 2α + 3) = (2β + 1)(2α + 1) + (2β + 2α + 3) + 2αβ

2αβ(2β+1 + 2α+1 + 6) = 2α+β + 2β + 2α + 3 + 2β + 2α + 1 + 2αβ

2αβ(2β+1 + 2α+1 + 6) = 2α+β + 2β+1 + 2α+1 + 4 + 2αβ

add and subtract 2 on the right hand side,

2αβ(2β+1 + 2α+1 + 6) = (2α+β − 2 + 2αβ) + (2β+1 + 2α+1 + 6)

by comparing the co-efficient of (2β+1 + 2α+1 + 6), we have, 2αβ = 1; αβ = 0 this is a contradiction.

Theorem 2.4. If n = 2k then n is not a k-near perfect number.

Proof. Suppose that n is a k-near perfect number with redundant divisors 2a1 , ..., 2ak , then

σ(n) = 2k+1 +

k∑
i=1

2ai (9)

but

σ(2k) = 2k+1 − 1 (10)

from Equation (9) and Equation (10) we have,
k∑
i=1

2ai + 1 = 0

this is a contradiction.
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Theorem 2.5. Let k > 0 be an odd integer and let p1, p2, ..., pk be distinct odd primes. Then for any integer a ≥ 1,

n = 2a
k∏
i=1

pi is not a k-near perfect number with redundant divisors p1, p2, ..., pk.

Proof. Suppose n is a k-near perfect number then

σ(n) = 2n+

k∑
i=1

pi (11)

but

σ(n) = (2a+1 − 1)

k∏
i=1

(pi + 1) (12)

hence from Equation (11) and Equation (12) we have,

(2a+1 − 1)

k∏
i=1

(pi + 1) − 2a+1
k∏
i=1

pi =

k∑
i=1

pi

this is a contradiction.

Theorem 2.6. Let k be an odd integer and let p1, p2, ..., pk be distinct odd primes. Then n =
k∏
i=1

pi is not a k-near perfect

number with redundant divisors p1, p2, ..., pk.

Proof. Suppose n is a k-near perfect number

σ(n) = 2n+

k∑
i=1

pi (13)

but

σ(n) =

k∏
i=1

(pi + 1) (14)

hence by Equation (13) and Equation (14), we have,

k∏
i=1

(pi + 1) − 2

k∏
i=1

pi =

k∑
i=1

pi

this is a contradiction.

Theorem 2.7. Let k > 0 be an odd integer. If A and B are perfect numbers such that (A,B) = 1 then n = A.B is not a

k-near perfect number with odd redundant divisors.

Proof. Suppose n = A.B is a k-near perfect number with redundant divisors R1, ..., Rk where k is an odd integer. Then

σ(n) = 2n+

k∑
i=1

Ri (15)

but

σ(n) = 4AB (16)

hence by Equation (15) and Equation (16) we have,

4AB − 2AB =

k∑
i=1

Ri

2AB =

k∑
i=1

Ri

this is a contradiction.
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Theorem 2.8. Let k > 0 be an odd integer, A be an even perfect number and let p1, p2, ..., pk be distinct odd primes. Then

n = A
k∏
i=1

pi where A is a perfect number is not a k-near perfect number with redundant divisors p1, ..., pk.

Proof. Suppose n is a k-near perfect number

σ(n) = 2n+

k∑
i=1

pi (17)

but

σ(n) = 2A

k∏
i=1

(pi + 1) (18)

hence by Equation (17) and Equation (18)

2A

k∏
i=1

(pi + 1) = 2A

k∏
i=1

pi +

k∑
i=1

pi

this is a contradiction.
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