

International Journal of Mathematics And its Applications

New Type of Generalized Closed Sets in Topological Spaces

M. Raja¹, N. Seenivasagan² and O. Ravi^{3,*}

1 Research Scholar, Bharathidhasan University, Tiruchirappalli, Tamil Nadu, India.

2 Department of Mathematics, Government Arts College(Autonomous), Kumbakonam, Tamil Nadu, India.

3 Controller of Examinations, Madurai Kamaraj University, Madurai, Tamil Nadu, India.

Abstract: In this paper two new classes of sets, namely $B\delta g$ -closed sets and $B\delta g$ -open sets are to be introduced and studied in topological spaces. We prove that this class of $B\delta g$ -closed sets lies between the class of δ -closed sets and the class of δg -closed sets. Also we find some relations between $B\delta g$ -closed sets and already existing closed sets. Further we discuss their characterisations and obtain their applications.

MSC: 54A05.

Keywords: B-set, generalized closed set, δg -closed set, δ -closure of a subset. © JS Publication.

Accepted on: 20.03.2018

1. Introduction

The concept of generalized closed sets plays a significant role in topology. In 1970, Levine [6] introduced the concept of generalized closed sets in topological spaces and a class of topological spaces called $T_{1/2}$ space. Extensive research on generalizing closedness was done in recent years by many Mathematicians. Arya and Nour [1], Maki [7], Dontchev and Ganster [3] Tong [11] and Veerakumar [12] introduced generalized semi-closed sets, α -generalized closed sets, δ -generalized closed sets in topological spaces. The purpose of this present paper is to define a new class of generalized closed sets called $B\delta g$ -closed sets and also we obtain the basic properties of $B\delta g$ -closed sets in topological spaces. Applying this set, we obtain a new type of spaces called $_BT_{\delta g}$ -space.

2. Preliminaries

Throughout this paper (X, τ) (or simply X) represent topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called

(1). a semi-open set [5] if $A \subseteq cl(int(A))$.

^{*} E-mail: siingam@yahoo.com

- (2). a pre-open set [8] if $A \subseteq int(cl(A))$.
- (3). an α -open set [9] if $A \subseteq int(cl(int(A)))$.
- (4). a regular open set [10] if A = int(cl(A)).

The complement of a semi-open (respectively a pre-open, an α -open, a regular) set is called semi-closed (respectively preclosed, α -closed, regular closed). The intersection of all semi-closed (respectively α -closed) sets of X containing A is called the semi-closure [2] (respectively α -closure [9]) of A and it is denoted by scl(A) (respectively α cl(A)).

Definition 2.2. The δ -interior [13] of a subset A of X is the union of all regular open sets of X contained in A and it is denoted by $Int_{\delta}(A)$. A subset A is called δ -open [13] if $A = Int_{\delta}(A)$, i.e., a set is δ -open if it is the union of regular open sets. The complement of a δ -open set is called δ -closed. Alternatively, a set $A \subseteq (X, \tau)$ is called δ -closed [13] if $A = cl_{\delta}(A)$, where $cl_{\delta}(A) = \{x \in X : int(cl(U)) \cap A \neq \phi, U \in \tau \text{ and } x \in U\}$.

Definition 2.3. A subset A of (X, τ) is called

- (1). generalized closed (briefly g-closed) set [6] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (2). generalized semi-closed (briefly gs-closed) set [1] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (3). α -generalized closed (briefly α g-closed) set [7] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (4). δ -generalized closed (briefly δg -closed) set [3] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (5). \hat{g} -closed set [12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- (6). δ - \hat{g} -closed (briefly $\delta \hat{g}$ -closed) set [4] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) .

The complement of a g-closed (respectively gs-closed, α g-closed, δ g-closed, \hat{g} -closed and $\delta \hat{g}$ -closed) set is called g-open (respectively gs-open, α g-open, δ g-open and $\delta \hat{g}$ -open).

Definition 2.4 ([11]). A subset A of a space (X, τ) is called

- (1). a t-set if int(A) = int(cl(A)).
- (2). a B-set if $A = G \cap F$ where G is open and F is a t-set in X.
- **Definition 2.5.** A space (X, τ) is called
- (1). $T_{1/2}$ -space [6] if every g-closed set in it is closed.
- (2). $T_{3/4}$ -space [3] if every δg -closed set in it is δ -closed.
- (3). $\hat{T}_{3/4}$ -space [4] if every $\delta \hat{g}$ -closed set in it is δ -closed.

3. $B\delta g$ -closed Sets

In this section we introduce $B\delta g$ -closed sets in topological spaces and study some relations between $B\delta g$ -closed sets and other existing closed sets.

Definition 3.1. A subset A of (X, τ) is called $B\delta g$ -closed if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is a B-set.

The complement of a $B\delta g$ -closed set is called $B\delta g$ -open.

Theorem 3.2. Every δ -closed set is $B\delta g$ -closed.

Proof. Let A be a δ -closed set in X. Let U be any B-set such that $A \subseteq U$. Since A is δ -closed, $cl_{\delta}(A) = A$ for every subset A of (X, τ) . Therefore $cl_{\delta}(A) \subseteq U$ and hence A is $B\delta g$ -closed.

Remark 3.3. The converse of Theorem 3.2 need not be true as shown by the following Example.

Example 3.4. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then $\{a, c\}$ is $B\delta g$ -closed set but not δ -closed.

Theorem 3.5. Every $B\delta g$ -closed set is δg -closed.

Proof. Let A be a $B\delta g$ -closed set in X. Let U be any open set containing A in X. Since every open set is a B-set, U is a B-set of X. Since A is $B\delta g$ -closed, $cl_{\delta}(A) \subseteq U$. Hence A is a δg -closed set of X.

Remark 3.6. The converse of Theorem 3.5 need not be true as shown by the following Example.

Example 3.7. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{c\}, \{b, c\}, X\}$. Then $\{a, b\}$ is δg -closed set but not $B\delta g$ -closed.

Theorem 3.8. Every $B\delta g$ -closed set is g-closed.

Proof. Let A be a $B\delta g$ -closed set in X. Let U be an open set in X such that $A \subseteq U$. Since every open set is a B-set, U is a B-set of X. Since A is $B\delta g$ -closed, $cl_{\delta}(A) \subseteq U$. Since $cl(A) \subseteq cl_{\delta}(A) \subseteq U$, we obtain that $cl(A) \subseteq U$ and hence A is g-closed.

Remark 3.9. The converse of Theorem 3.8 need not be true as shown by the following Example.

Example 3.10. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, X\}$. Then $\{b\}$ is g-closed set but not $B\delta g$ -closed.

Theorem 3.11. Every $B\delta g$ -closed set is αg -closed.

Proof. It is true that $\alpha cl(A) \subseteq cl_{\delta}(A)$ for every subset A of X.

Remark 3.12. The converse of Theorem 3.11 need not be true as shown by the following Example.

Example 3.13. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{a, c\}, X\}$. Then $\{b, c\}$ is αg -closed set but not $B\delta g$ -closed.

Theorem 3.14. Every $B\delta g$ -closed set is gs-closed.

Proof. Let A be a $B\delta g$ -closed set and U be any open set containing A in X. Since every open set is a B-set, $cl_{\delta}(A) \subseteq U$ for every subset A of X. Since $scl(A) \subseteq cl_{\delta}(A) \subseteq U$, $scl(A) \subseteq U$ and hence A is gs-closed.

Remark 3.15. A gs-closed set need not be $B\delta g$ -closed as shown by the following Example.

Example 3.16. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{c\}, X\}$. Then $\{b\}$ is gs-closed set but not $B\delta g$ -closed.

Remark 3.17. From the above discussions we summarize the fundamental relationships between several types of generalized closed sets in the following diagram. None of the implications is reversible.

(1). $B\delta g$ -closed set (2). αg -closed set (3). δg -closed set (4). g-closed set (5). g-closed set (6). δ -closed set.

Remark 3.18. The following Examples show that the concepts of $B\delta g$ -closed set and closed set (respectively semi-closed set, \hat{g} -closed set and $\delta \hat{g}$ -closed set) are independent.

Example 3.19. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $\{a, b\}$ is $B\delta g$ -closed set but it is neither closed nor semi-closed. Also $\{a, b\}$ is not $\delta \hat{g}$ -closed.

Example 3.20. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, X\}$. Then $\{b, c\}$ is closed, semi-closed and $\delta \hat{g}$ -closed set. But it is not $B\delta g$ -closed.

Example 3.21. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{b\}, X\}$. Then $\{a, c\}$ is \hat{g} -closed set but not $B\delta g$ -closed and $\{a, b\}$ is $B\delta g$ -closed set but not \hat{g} -closed in.

Remark 3.22. From the above discussions we obtain the following diagram.

4. Some Topological Properties

Theorem 4.1. If A is both B-set and $B\delta g$ -closed set of (X, τ) , then A is δ -closed.

Proof. Given A is both B-set and $B\delta g$ -closed set of (X, τ) . Then $cl_{\delta}(A) \subseteq A$ whenever A is a B-set and $A \subseteq A$. Therefore we obtain that $A = cl_{\delta}(A)$ and hence A is δ -closed.

Proposition 4.2. If A and B are $B\delta g$ -closed sets, then $A \cup B$ is $B\delta g$ -closed.

Proof. Let $A \cup B \subseteq U$, where U is a B-set. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are $B\delta g$ -closed sets, $cl_{\delta}(A) \subseteq U$ and $cl_{\delta}(B) \subseteq U$, whenever $A \subseteq U$, $B \subseteq U$ and U is a B-set. Therefore $cl_{\delta}(A \cup B) = cl_{\delta}(A) \cup cl_{\delta}(B) \subseteq U$. So we obtain that $A \cup B$ is $B\delta g$ -closed set of (X, τ) .

Remark 4.3. The intersection of two $B\delta g$ -closed sets need not be a $B\delta g$ -closed set.

Example 4.4. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, X\}$. Then $\{a, b\}$ and $\{a, c\}$ are $B\delta g$ -closed sets. But $\{a, b\} \cap \{a, c\} = \{a\}$ is not $B\delta g$ -closed.

Proposition 4.5. If A is a B δg -closed set of (X, τ) such that $A \subseteq B \subseteq cl_{\delta}(A)$, then B is also a B δg -closed set of (X, τ) .

Proof. Let U be a B-set of (X, τ) such that $B \subseteq U$. Since $A \subseteq B$, $A \subseteq U$. Since A is $B\delta g$ -closed, we have $cl_{\delta}(A) \subseteq U$. Now $cl_{\delta}(B) \subset cl_{\delta}(cl_{\delta}(A)) = cl_{\delta}(A) \subseteq U$. Therefore B is also a $B\delta g$ -closed set of (X, τ) .

Proposition 4.6. Let A be a B δg -closed set of (X, τ) , then $cl_{\delta}(A) - A$ does not contain a non-empty complement of a B-set.

Proof. Suppose that A is $B\delta g$ -closed. Let F be the complement of a B-set and $F \subseteq cl_{\delta}(A) - A$. Since $F \subseteq cl_{\delta}(A) - A$, $F \subseteq X - A$, $A \subseteq X - F$ and X - F is a B-set. Therefore $cl_{\delta}(A) \subseteq X - F$ and $F \subseteq X - cl_{\delta}(A)$. Also $F \subseteq cl_{\delta}(A)$. Therefore $F \subseteq (cl_{\delta}(A))^c \cap cl_{\delta}(A) = \phi$. Hence $F = \phi$.

Theorem 4.7. Let A be a B δg -closed set of X. Then A is δ -closed if and only if $cl_{\delta}(A) - A$ is the complement of a B-set.

Proof. Necessity: Let A be a δ -closed subset of (X, τ) . Then $cl_{\delta}(A) = A$ and so $cl_{\delta}(A) - A = \phi$ which is the complement of a *B*-set.

Sufficiency: Let $cl_{\delta}(A) - A$ be the complement of a *B*-set. Since A is $B\delta g$ -closed, by Proposition 4.6, $cl_{\delta}(A) - A$ does not contain a non-empty complement of a *B*-set which implies $cl_{\delta}(A) - A = \phi$. Therefore $cl_{\delta}(A) = A$. Hence A is δ -closed.

Proposition 4.8. For each $x \in X$ either $\{x\}$ is the complement of a B-set or $\{x\}^c$ is $B\delta g$ -closed in X.

Proof. Suppose that $\{x\}$ is not the complement of a *B*-set in X, then $\{x\}^c$ is not a *B*-set and the only *B*-set containing $\{x\}^c$ is the space X itself. That is $\{x\}^c \subseteq X$. Therefore $cl_{\delta}(\{x\}^c) \subseteq X$ and so $\{x\}^c$ is $B\delta g$ -closed.

Definition 4.9. The intersection of all B-sets of X containing A is called the B-kernel of A and is denoted by B-ker(A).

Lemma 4.10. A subset A of (X, τ) is $B\delta g$ -closed iff $cl_{\delta}(A) \subseteq B$ -ker(A).

Proof. Assume that A is $B\delta g$ -closed in X. Then $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is a B-set in X. Let $x \in cl_{\delta}(A)$. Suppose $x \notin B$ -ker(A), then there is a B-set U such that $x \notin U$. Since U is a B-set containing A, $x \notin cl_{\delta}(A)$ which is a contradiction. Hence $x \in B$ -ker(A). Conversely assume that $cl_{\delta}(A) \subseteq B$ -ker(A). If U is any B-set containing A, then $cl_{\delta}(A) \subseteq B$ -ker(A) $\subseteq U$. Therefore A is $B\delta g$ -closed.

The intersection of all $B\delta g$ -closed sets of X containing A is called the $B\delta g$ -closure of A and it is denoted by $B\delta g$ -cl(A).

Lemma 4.11. Let A and B be subsets of (X, τ) . Then

(1). $B\delta g$ - $cl(\phi) = \phi$ and $B\delta g$ -cl(X) = X.

- (2). If $A \subset B$, then $B\delta g$ -cl $(A) \subset B\delta g$ -cl(B).
- (3). $B\delta g$ - $cl(A) = B\delta g$ - $cl(B\delta g$ -cl(A)).
- (4). $B\delta g$ - $cl(A \cup B) = B\delta g$ - $cl(A) \cup B\delta g$ -cl(B).
- (5). $B\delta g$ - $cl(A \cap B) \subset B\delta g$ - $cl(A) \cap B\delta g$ -cl(B).

Remark 4.12. If A is $B\delta g$ -closed in (X, τ) , then $B\delta g$ -cl(A) = A but the converse need not be true as shown by the following Example.

Example 4.13. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{c\}, X\}$. Let $A = \{c\}$ then $B\delta g$ -cl $(A) = \{c\}$. But $\{c\}$ is not a $B\delta g$ -closed set.

Remark 4.14. In general, $B\delta g$ -cl $(A) \cap B\delta g$ -cl $(B) \not\subseteq B\delta g$ -cl $(A \cap B)$. This can be shown from the following Example.

Example 4.15. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\}$. Let $A = \{a, c\}$ and $B = \{b, c\}$, then $B\delta g\text{-cl}(A) \cap B\delta g\text{-cl}(B) = X \notin \{c\} = B\delta g\text{-cl}(A \cap B)$.

5. $B\delta g$ -open Sets

Definition 5.1. A subset A of (X, τ) is called B δg -open if its complement A^c is B δg -closed in (X, τ) .

Theorem 5.2. If a subset A of a topological space (X, τ) is δ -open then it is B δ g-open in X.

Proof. Let A be an δ -open set in X. Then A^c is δ -closed. By Theorem 3.2, A^c is $B\delta g$ -closed in (X, τ) . Hence A is $B\delta g$ -open in X.

Remark 5.3. The converse of Theorem 5.2 need not be true as shown by the following Example.

Example 5.4. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, X\}$. Then $\{b\}$ is $B\delta g$ -open set but not δ -open in (X, τ) .

Proposition 5.5. Every $B\delta g$ -open set is δg -open (respectively g-open, αg -open, gs-open).

Proof. Let A be an $B\delta g$ -open set in X. Then A^c is $B\delta g$ -closed. By Theorem 3.5, A^c is δg -closed. Hence A is δg -open in X. (respectively By Theorem 3.8, A^c is g-closed. Hence A is g-open in X, By Theorem 3.11, A^c is αg -closed. Hence A is αg -open in X, By Theorem 3.14, A^c is gs-closed. Hence A is gs-open in X).

Remark 5.6. For a subset A of X, $cl_{\delta}(X - A) = X - int_{\delta}(A)$.

Theorem 5.7. A subset A of a topological space (X, τ) is $B\delta g$ -open if and only if $G \subseteq int_{\delta}(A)$ whenever X - G is a B-set and $G \subseteq A$

Proof. Necessity: Let A be $B\delta g$ -open. Let X - G be a B-set and $G \subseteq A$. Then $X - A \subseteq X - G$. Since X - A is $B\delta g$ -closed, $cl_{\delta}(X - A) \subseteq X - G$. Hence $G \subseteq int_{\delta}(A)$.

Sufficiency: Suppose X - G is a *B*-set and $G \subseteq A$ imply that $G \subseteq int_{\delta}(A)$. Let $X - A \subseteq U$ where *U* is a *B*-set. Then $X - U \subseteq A$ and X - (X - U) is a *B*-set. By hypothesis $X - U \subseteq int_{\delta}(A)$. This implies $X - int_{\delta}(A) \subseteq U$ and $cl_{\delta}(X - A) \subseteq U$. So X - A is $B\delta g$ -closed. Hence A is $B\delta g$ -open.

Proposition 5.8. If A is a B δg -open set in (X, τ) such that $int_{\delta}(A) \subseteq B \subseteq A$, then B is also a B δg -open set of (X, τ) .

Proof. $int_{\delta}(A) \subseteq B \subseteq A$ implies that $X - A \subseteq X - B \subseteq X - int_{\delta}(A)$. By Remark 5.6, $X - A \subseteq X - B \subseteq cl_{\delta}(X - A)$. Since X - A is $B\delta g$ -closed, by Proposition 4.5, X - B is $B\delta g$ -closed and hence B is $B\delta g$ -open in (X, τ) .

Theorem 5.9. If a set A is $B\delta g$ -open in X then G = X whenever G is a B-set and $int_{\delta}(A) \cup A^{c} \subseteq G$.

Proof. Let A be a $B\delta g$ -open set, G be a B-set and $int_{\delta}(A) \cup A^c \subseteq G$. This implies $G^c \subseteq (int_{\delta}(A) \cup A^c)^c = (int_{\delta}(A))^c \cap A = (int_{\delta}(A))^c - A^c = cl_{\delta}(A^c) - A^c$. Since A^c is $B\delta g$ -closed and G^c is the complement of a B-set, it follows from Proposition 4.6 that $G^c = \phi$. Hence G = X.

Lemma 5.10. Let A be a subset of (X, τ) and $x \in X$. Then $x \in B\delta g$ -cl(A) if and only if $V \cap A \neq \phi$ for every $B\delta g$ -open set V containing x.

Proof. Suppose that there exists a $B\delta g$ -open set V containing x such that $V \cap A = \phi$. Since $A \subset X - V$, $B\delta g$ - $cl(A) \subset X - V$ and then $x \notin B\delta g$ -cl(A). Conversely, assume that $x \notin B\delta g$ -cl(A). Then there exists a $B\delta g$ -closed set F containing A such that $x \notin F$. Since $x \in X - F$ and X - F is $B\delta g$ -open, $(X - F) \cap A = \phi$.

6. Applications

Definition 6.1. A space X is called a ${}_{B}T_{\delta g}$ -space if every $B\delta g$ -closed set in it is δ -closed.

Theorem 6.2. Every $T_{3/4}$ -space is ${}_{B}T_{\delta g}$ -space.

Proof. Let A be a $B\delta g$ -closed set in X. Since every $B\delta g$ -set is δg -closed by Theorem 3.5, A is δg -closed. Since X is $T_{3/4}$ -space, A is δ -closed. Hence X is $_BT\delta g$ -space.

Remark 6.3. The converse of Theorem 6.2 need not be true as shown by the following Example.

Example 6.4. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then (X, τ) is ${}_{B}T_{\delta g}$ -space but not $T_{3/4}$ -space.

Remark 6.5. The concepts of ${}_BT_{\delta g}$ -space and $\hat{T}_{3/4}$ -space are independent of each another as shown by the following Examples.

Example 6.6. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then (X, τ) is $\hat{T}_{3/4}$ -space but not ${}_{B}T_{\delta g}$ -space.

Example 6.7. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then (X, τ) is ${}_{B}T_{\delta g}$ -space but not $\hat{T}_{3/4}$ -space.

Theorem 6.8. For a topological space (X,τ) , the following conditions are equivalent.

(1). (X, τ) is a ${}_{B}T_{\delta g}$ -space.

(2). Every singleton of X is either δ -open or $X - \{x\}$ is a B-set.

Proof. (1) \Rightarrow (2) Let $x \in X$. Suppose that $X - \{x\}$ is not a *B*-set of (X, τ) . Then $X - \{x\}$ is a $B\delta g$ -closed set of (X, τ) . Since (X, τ) is ${}_{B}T_{\delta g}$ -space, $X - \{x\}$ is an δ -closed set of (X, τ) , i.e., $\{x\}$ is an δ -open set of (X, τ) .

 $(2) \Rightarrow (1)$ Let A be an $B\delta g$ -closed set of (X,τ) . Let $x \in cl_{\delta}(A)$. By (ii), $\{x\}$ is either δ -open or $X - \{x\}$ is a B-set.

Case(a): Let $\{x\}$ be δ -open. Since $x \in cl_{\delta}(A)$, then $\{x\} \cap A \neq \phi$. This shows that $x \in A$.

Case(b) : Suppose that $X - \{x\}$ is a B-set. If we assume that $x \notin A$, then we would have $x \in cl_{\delta}(A) - A$, which cannot be happen according to Proposition 4.6. Hence $x \in A$. So in both cases we have $cl_{\delta}(A) \subseteq A$. Trivially $A \subseteq cl_{\delta}(A)$. Therefore $A = cl_{\delta}(A)$ or equivalently A is δ -closed. Hence (X, τ) is a ${}_{B}T_{\delta g}$ -space.

References

- [1] S. P. Arya and T. M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21(8)(1990), 717-719.
- [2] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.
- [3] J. Dontchev and M. Ganster, On δ-generalized closed sets and T_{3/4}-spaces, Mem. Fac. Sci. Kochi Univ. Ser.A, Math., 17(1996), 15-31.
- [4] M. Lellis Thivagar, B. Meera Devi and E. Hatir, δĝ-closed sets in Topological spaces, Gen. Math. Notes, 1(2)(2010), 17-25.
- [5] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [6] N. Levine, Generalized closed sets in Topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [7] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.
- [8] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [9] O. Njastad, On some classes of nearly open sets, Pacific. J. Math., 15(1965), 961-970.
- [10] M. H. Stone, Application of theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [11] J. Tong, On Decomposition of continuity in topological spaces, Acta Math. Hungar., 54(12)(1989), 51-55.
- [12] M. K. R. S. Veera Kumar, \hat{g} -closed sets in topological spaces, Bull. Allah. Math. Soc., 18(2003), 99-112.
- [13] N. V. Velicko, *H-closed topological spaces*, Amer. Math. Soc. Transl., 78(2)(1968), 103-118.