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their characterisations and obtain their applications.
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1. Introduction

The concept of generalized closed sets plays a significant role in topology. In 1970, Levine [6] introduced the concept of

generalized closed sets in topological spaces and a class of topological spaces called T1/2 space. Extensive research on

generalizing closedness was done in recent years by many Mathematicians. Arya and Nour [1], Maki [7], Dontchev and

Ganster [3] Tong [11] and Veerakumar [12] introduced generalized semi-closed sets, α-generalized closed sets, δ-generalized

closed sets and ĝ-closed sets in topological spaces. The purpose of this present paper is to define a new class of generalized

closed sets called Bδg-closed sets and also we obtain the basic properties of Bδg-closed sets in topological spaces. Applying

this set, we obtain a new type of spaces called BTδg-space.

2. Preliminaries

Throughout this paper (X, τ) (or simply X) represent topological space on which no separation axioms are assumed unless

otherwise mentioned. For a subset A of X, cl(A), int(A) and Ac denote the closure of A, the interior of A and the complement

of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called

(1). a semi-open set [5] if A ⊆ cl(int(A)).
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(2). a pre-open set [8] if A ⊆ int(cl(A)).

(3). an α-open set [9] if A ⊆ int(cl(int(A))).

(4). a regular open set [10] if A = int(cl(A)).

The complement of a semi-open (respectively a pre-open, an α-open, a regular) set is called semi-closed (respectively pre-

closed, α-closed, regular closed). The intersection of all semi-closed (respectively α-closed) sets of X containing A is called

the semi-closure [2] (respectively α-closure [9]) of A and it is denoted by scl(A) (respectively αcl(A)).

Definition 2.2. The δ-interior [13] of a subset A of X is the union of all regular open sets of X contained in A and it is

denoted by Intδ(A). A subset A is called δ-open [13] if A = Intδ(A), i.e., a set is δ-open if it is the union of regular open

sets. The complement of a δ-open set is called δ-closed. Alternatively, a set A ⊆ (X, τ) is called δ-closed [13] if A = clδ(A),

where clδ(A) = {x ∈ X : int(cl(U)) ∩A 6= φ,U ∈ τ and x ∈ U}.

Definition 2.3. A subset A of (X, τ) is called

(1). generalized closed (briefly g-closed) set [6] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).

(2). generalized semi-closed (briefly gs-closed) set [1] if scl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).

(3). α-generalized closed (briefly αg-closed) set [7] if αcl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).

(4). δ-generalized closed (briefly δg-closed) set [3] if clδ(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).

(5). ĝ-closed set [12] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in (X, τ).

(6). δ-ĝ-closed (briefly δĝ-closed) set [4] if clδ(A) ⊆ U whenever A ⊆ U and U is ĝ-open in (X, τ).

The complement of a g-closed (respectively gs-closed, αg-closed, δg-closed, ĝ-closed and δĝ-closed) set is called g-open

(respectively gs-open, αg-open, δg-open, ĝ-open and δĝ-open).

Definition 2.4 ([11]). A subset A of a space (X, τ) is called

(1). a t-set if int(A) = int(cl(A)).

(2). a B-set if A = G ∩ F where G is open and F is a t-set in X.

Definition 2.5. A space (X, τ) is called

(1). T1/2-space [6] if every g-closed set in it is closed.

(2). T3/4-space [3] if every δg-closed set in it is δ-closed.

(3). T̂3/4-space [4] if every δĝ-closed set in it is δ-closed.

3. Bδg-closed Sets

In this section we introduce Bδg-closed sets in topological spaces and study some relations between Bδg-closed sets and

other existing closed sets.

Definition 3.1. A subset A of (X, τ) is called Bδg-closed if clδ(A) ⊆ U whenever A ⊆ U and U is a B-set.
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The complement of a Bδg-closed set is called Bδg-open.

Theorem 3.2. Every δ-closed set is Bδg-closed.

Proof. Let A be a δ-closed set in X. Let U be any B-set such that A ⊆ U . Since A is δ-closed, clδ(A) = A for every

subset A of (X, τ). Therefore clδ(A) ⊆ U and hence A is Bδg-closed.

Remark 3.3. The converse of Theorem 3.2 need not be true as shown by the following Example.

Example 3.4. Let X = {a, b, c} with the topology τ = {φ, {a}, {a, b}, X}. Then {a, c} is Bδg-closed set but not δ-closed.

Theorem 3.5. Every Bδg-closed set is δg-closed.

Proof. Let A be a Bδg-closed set in X. Let U be any open set containing A in X. Since every open set is a B-set, U is a

B-set of X. Since A is Bδg-closed, clδ(A) ⊆ U . Hence A is a δg-closed set of X.

Remark 3.6. The converse of Theorem 3.5 need not be true as shown by the following Example.

Example 3.7. Let X = {a, b, c} with the topology τ = {φ, {c}, {b, c}, X}. Then {a, b} is δg-closed set but not Bδg-closed.

Theorem 3.8. Every Bδg-closed set is g-closed.

Proof. Let A be a Bδg-closed set in X. Let U be an open set in X such that A ⊆ U . Since every open set is a B-set, U

is a B-set of X. Since A is Bδg-closed, clδ(A) ⊆ U . Since cl(A) ⊆ clδ(A) ⊆ U, we obtain that cl(A) ⊆ U and hence A is

g-closed.

Remark 3.9. The converse of Theorem 3.8 need not be true as shown by the following Example.

Example 3.10. Let X = {a, b, c} with the topology τ = {φ, {a}, X}. Then {b} is g-closed set but not Bδg-closed.

Theorem 3.11. Every Bδg-closed set is αg-closed.

Proof. It is true that αcl(A) ⊆ clδ(A) for every subset A of X.

Remark 3.12. The converse of Theorem 3.11 need not be true as shown by the following Example.

Example 3.13. Let X = {a, b, c} with the topology τ = {φ, {a}, {a, c}, X}. Then {b, c} is αg-closed set but not Bδg-closed.

Theorem 3.14. Every Bδg-closed set is gs-closed.

Proof. Let A be a Bδg-closed set and U be any open set containing A in X. Since every open set is a B-set, clδ(A) ⊆ U

for every subset A of X. Since scl(A) ⊆ clδ(A) ⊆ U, scl(A) ⊆ U and hence A is gs-closed.

Remark 3.15. A gs-closed set need not be Bδg-closed as shown by the following Example.

Example 3.16. Let X = {a, b, c} with the topology τ = {φ, {c}, X}. Then {b} is gs-closed set but not Bδg-closed.

Remark 3.17. From the above discussions we summarize the fundamental relationships between several types of generalized

closed sets in the following diagram. None of the implications is reversible.
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k1

2

3

45

6

(1). Bδg-closed set (2). αg-closed set (3). δg-closed set (4). gs-closed set (5). g-closed set (6).δ-closed set.

Remark 3.18. The following Examples show that the concepts of Bδg-closed set and closed set (respectively semi-closed

set, ĝ-closed set and δĝ-closed set) are independent.

Example 3.19. Let X = {a, b, c} with the topology τ = {φ, {a}, {b, c}, X}. Then {a, b} is Bδg-closed set but it is neither

closed nor semi-closed. Also {a, b} is not δĝ-closed.

Example 3.20. Let X = {a, b, c} with the topology τ = {φ, {a}, X}. Then {b, c} is closed, semi-closed and δĝ-closed set.

But it is not Bδg-closed.

Example 3.21. Let X = {a, b, c} with the topology τ = {φ, {b}, X}. Then {a, c} is ĝ-closed set but not Bδg-closed and

{a, b} is Bδg-closed set but not ĝ-closed in.

Remark 3.22. From the above discussions we obtain the following diagram.

?

6

?

6

Bδg-closed set

semi-closed set

closed set δĝ-closed set

ĝ-closed set

� - -�

4. Some Topological Properties

Theorem 4.1. If A is both B-set and Bδg-closed set of (X, τ), then A is δ-closed.
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Proof. Given A is both B-set and Bδg-closed set of (X, τ). Then clδ(A) ⊆ A whenever A is a B-set and A ⊆ A. Therefore

we obtain that A = clδ(A) and hence A is δ-closed.

Proposition 4.2. If A and B are Bδg-closed sets, then A ∪B is Bδg-closed.

Proof. Let A ∪B ⊆ U, where U is a B-set. Then A ⊆ U and B ⊆ U. Since A and B are Bδg-closed sets, clδ(A) ⊆ U and

clδ(B) ⊆ U, whenever A ⊆ U, B ⊆ U and U is a B-set. Therefore clδ(A∪B) = clδ(A)∪ clδ(B) ⊆ U. So we obtain that A∪B

is Bδg-closed set of (X, τ).

Remark 4.3. The intersection of two Bδg-closed sets need not be a Bδg-closed set.

Example 4.4. Let X = {a, b, c} with the topology τ = {φ, {a}, X}. Then {a, b} and {a, c} are Bδg-closed sets. But

{a, b} ∩ {a, c} = {a} is not Bδg-closed.

Proposition 4.5. If A is a Bδg-closed set of (X, τ) such that A ⊆ B ⊆ clδ(A), then B is also a Bδg-closed set of (X, τ).

Proof. Let U be a B-set of (X, τ) such that B ⊆ U. Since A ⊆ B, A ⊆ U. Since A is Bδg-closed, we have clδ(A) ⊆ U. Now

clδ(B) ⊂ clδ(clδ(A)) = clδ(A) ⊆ U. Therefore B is also a Bδg-closed set of (X, τ).

Proposition 4.6. Let A be a Bδg-closed set of (X, τ), then clδ(A) − A does not contain a non-empty complement of a

B-set.

Proof. Suppose that A is Bδg-closed. Let F be the complement of a B-set and F ⊆ clδ(A) − A. Since F ⊆ clδ(A) − A,

F ⊆ X −A, A ⊆ X − F and X − F is a B-set. Therefore clδ(A) ⊆ X − F and F ⊆ X − clδ(A). Also F ⊆ clδ(A). Therefore

F ⊆ (clδ(A))c ∩ clδ(A) = φ. Hence F = φ.

Theorem 4.7. Let A be a Bδg-closed set of X. Then A is δ-closed if and only if clδ(A)−A is the complement of a B-set.

Proof. Necessity: Let A be a δ-closed subset of (X, τ). Then clδ(A) = A and so clδ(A)−A = φ which is the complement

of a B-set.

Sufficiency: Let clδ(A) − A be the complement of a B-set. Since A is Bδg-closed, by Proposition 4.6, clδ(A) − A does not

contain a non-empty complement of a B-set which implies clδ(A)−A = φ. Therefore clδ(A) = A. Hence A is δ-closed.

Proposition 4.8. For each x ∈ X either {x} is the complement of a B-set or {x}c is Bδg-closed in X.

Proof. Suppose that {x} is not the complement of a B-set in X, then {x}c is not a B-set and the only B-set containing

{x}c is the space X itself. That is {x}c ⊆ X. Therefore clδ({x}c) ⊆ X and so {x}c is Bδg-closed.

Definition 4.9. The intersection of all B-sets of X containing A is called the B-kernel of A and is denoted by B-ker(A).

Lemma 4.10. A subset A of (X, τ) is Bδg-closed iff clδ(A) ⊆ B-ker(A).

Proof. Assume that A is Bδg-closed in X. Then clδ(A) ⊆ U whenever A ⊆ U and U is a B-set in X. Let x ∈ clδ(A).

Suppose x /∈ B-ker(A), then there is a B-set U such that x /∈ U. Since U is a B-set containing A, x /∈ clδ(A) which is

a contradiction. Hence x ∈ B-ker(A). Conversely assume that clδ(A) ⊆ B-ker(A). If U is any B-set containing A, then

clδ(A) ⊆ B-ker(A)⊆ U. Therefore A is Bδg-closed.

The intersection of all Bδg-closed sets of X containing A is called the Bδg-closure of A and it is denoted by Bδg-cl(A).

Lemma 4.11. Let A and B be subsets of (X, τ). Then

(1). Bδg-cl(φ) = φ and Bδg-cl(X) = X.
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(2). If A ⊂ B, then Bδg-cl(A) ⊂ Bδg-cl(B).

(3). Bδg-cl(A) = Bδg-cl(Bδg-cl(A)).

(4). Bδg-cl(A ∪B) = Bδg-cl(A) ∪Bδg-cl(B).

(5). Bδg-cl(A ∩B) ⊂ Bδg-cl(A) ∩Bδg-cl(B).

Remark 4.12. If A is Bδg-closed in (X, τ), then Bδg-cl(A) = A but the converse need not be true as shown by the following

Example.

Example 4.13. Let X = {a, b, c} with the topology τ = {φ, {c}, X}. Let A = {c} then Bδg-cl(A) = {c}. But {c} is not a

Bδg-closed set.

Remark 4.14. In general, Bδg-cl(A) ∩Bδg-cl(B) * Bδg-cl(A ∩B). This can be shown from the following Example.

Example 4.15. Let X = {a, b, c} with the topology τ = {φ, {a}, {c}, {a, b}, {a, c}, X}. Let A = {a, c} and B = {b, c}, then

Bδg-cl(A) ∩Bδg-cl(B) = X * {c} = Bδg-cl(A ∩B).

5. Bδg-open Sets

Definition 5.1. A subset A of (X, τ) is called Bδg-open if its complement Ac is Bδg-closed in (X, τ).

Theorem 5.2. If a subset A of a topological space (X, τ) is δ-open then it is Bδg-open in X.

Proof. Let A be an δ-open set in X. Then Ac is δ-closed. By Theorem 3.2, Ac is Bδg-closed in (X, τ). Hence A is Bδg-open

in X.

Remark 5.3. The converse of Theorem 5.2 need not be true as shown by the following Example.

Example 5.4. Let X = {a, b, c} with the topology τ = {φ, {a}, X}. Then {b} is Bδg-open set but not δ-open in (X, τ).

Proposition 5.5. Every Bδg-open set is δg-open (respectively g-open, αg-open, gs-open).

Proof. Let A be an Bδg-open set in X. Then Ac is Bδg-closed. By Theorem 3.5, Ac is δg-closed. Hence A is δg-open in

X. (respectively By Theorem 3.8, Ac is g-closed. Hence A is g-open in X, By Theorem 3.11, Ac is αg-closed. Hence A is

αg-open in X, By Theorem 3.14, Ac is gs-closed. Hence A is gs-open in X).

Remark 5.6. For a subset A of X, clδ(X −A) = X − intδ(A).

Theorem 5.7. A subset A of a topological space (X, τ) is Bδg-open if and only if G ⊆ intδ(A) whenever X −G is a B-set

and G ⊆ A

Proof. Necessity: Let A be Bδg-open. Let X−G be a B-set and G ⊆ A. Then X−A ⊆ X−G. Since X−A is Bδg-closed,

clδ(X −A) ⊆ X −G. Hence G ⊆ intδ(A).

Sufficiency: Suppose X − G is a B-set and G ⊆ A imply that G ⊆ intδ(A). Let X − A ⊆ U where U is a B-set. Then

X−U ⊆ A and X− (X−U) is a B-set. By hypothesis X−U ⊆ intδ(A). This implies X− intδ(A) ⊆ U and clδ(X−A) ⊆ U.

So X −A is Bδg-closed. Hence A is Bδg-open.

Proposition 5.8. If A is a Bδg-open set in (X, τ) such that intδ(A) ⊆ B ⊆ A, then B is also a Bδg-open set of (X, τ).
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Proof. intδ(A) ⊆ B ⊆ A implies that X − A ⊆ X − B ⊆ X − intδ(A). By Remark 5.6, X − A ⊆ X − B ⊆ clδ(X − A).

Since X −A is Bδg-closed, by Proposition 4.5, X −B is Bδg-closed and hence B is Bδg-open in (X, τ).

Theorem 5.9. If a set A is Bδg-open in X then G = X whenever G is a B-set and intδ(A) ∪Ac ⊆ G.

Proof. Let A be a Bδg-open set, G be a B-set and intδ(A)∪Ac ⊆ G. This implies Gc ⊆ (intδ(A)∪Ac)c = (intδ(A))c∩A =

(intδ(A))c − Ac = clδ(A
c) − Ac. Since Ac is Bδg-closed and Gc is the complement of a B-set, it follows from Proposition

4.6 that Gc = φ. Hence G = X.

Lemma 5.10. Let A be a subset of (X, τ) and x ∈ X. Then x ∈ Bδg-cl(A) if and only if V ∩A 6= φ for every Bδg-open set

V containing x.

Proof. Suppose that there exists a Bδg-open set V containing x such that V ∩A = φ. Since A ⊂ X−V, Bδg-cl(A) ⊂ X−V

and then x /∈ Bδg-cl(A). Conversely, assume that x /∈ Bδg-cl(A). Then there exists a Bδg-closed set F containing A such

that x /∈ F. Since x ∈ X − F and X − F is Bδg-open, (X − F ) ∩A = φ.

6. Applications

Definition 6.1. A space X is called a BTδg-space if every Bδg-closed set in it is δ-closed.

Theorem 6.2. Every T3/4-space is BTδg-space.

Proof. Let A be a Bδg-closed set in X. Since every Bδg-set is δg-closed by Theorem 3.5, A is δg-closed. Since X is

T3/4-space, A is δ-closed. Hence X is BTδg-space.

Remark 6.3. The converse of Theorem 6.2 need not be true as shown by the following Example.

Example 6.4. Let X = {a, b, c} with the topology τ = {φ, {a}, {a, b}, {a, c}, X}. Then (X, τ) is BTδg-space but not T3/4-

space.

Remark 6.5. The concepts of BTδg-space and T̂3/4-space are independent of each another as shown by the following Exam-

ples.

Example 6.6. Let X = {a, b, c} with the topology τ = {φ, {a}, {b, c}, X}. Then (X, τ) is T̂3/4-space but not BTδg-space.

Example 6.7. Let X = {a, b, c} with the topology τ = {φ, {b}, {a, b}, {b, c}, X}. Then (X, τ) is BTδg-space but not T̂3/4-

space.

Theorem 6.8. For a topological space (X,τ), the following conditions are equivalent.

(1). (X, τ) is a BTδg-space.

(2). Every singleton of X is either δ-open or X − {x} is a B-set.

Proof. (1)⇒ (2) Let x ∈ X. Suppose that X − {x} is not a B-set of (X, τ). Then X − {x} is a Bδg-closed set of (X, τ).

Since (X, τ) is BTδg-space, X − {x} is an δ-closed set of (X, τ), i.e., {x} is an δ-open set of (X,τ).

(2)⇒ (1) Let A be an Bδg-closed set of (X,τ). Let x ∈ clδ(A). By (ii), {x} is either δ-open or X − {x} is a B-set.

Case(a) : Let {x} be δ-open. Since x ∈ clδ(A), then {x} ∩A 6= φ. This shows that x ∈ A.

Case(b) : Suppose that X − {x} is a B-set. If we assume that x /∈ A, then we would have x ∈ clδ(A)− A, which cannot be

happen according to Proposition 4.6. Hence x ∈ A. So in both cases we have clδ(A) ⊆ A. Trivially A ⊆ clδ(A). Therefore

A = clδ(A) or equivalently A is δ-closed. Hence (X,τ) is a BTδg-space.
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