

International Journal of Mathematics And its Applications

Some Decompositions of Weaker Form of Continuity

P. Sekar¹ and K. Vidhyalakshmi^{2,*}

1 Principal, C. Kandaswami Naidu College For Men, Chennai, Tamil Nadu, India.

2 Research Scholar, University of Madras, Chennai, Tamil Nadu, India.

Abstract: In this paper we introduce the notions of α gs- \mathcal{I} -open sets, pgs- \mathcal{I} -open sets, sg- \mathcal{I} -open sets, ω_{α^*} - \mathcal{I} -sets and ω_{S^*} - \mathcal{I} -sets in ideal topological spaces and investigate some of their properties. Using these notions we obtain decompositions of ω -continuity.

MSC: 8308.

Keywords: ω -open set, \mathcal{I} -open set, ω -continuity set, α g- \mathcal{I} -open set.

© JS Publication.

Accepted on: 26.02.2018

1. Introduction

In 1961, Levine [10] obtained a decomposition of continuity which was later improved by Rose [15]. Tong [18] decomposed continuity into A-continuity and showed that his decomposition is independent of Levine's. The concept of ω -continuity was introduced and studied by Sheik John [16]. In 2000, Sundaram and Rajamani [17] obtained two different decompositions of g-continuity by introducing the notions of C(S)-sets and C*-sets in topological spaces. Recently, Noiri [13] introduced α g- \mathcal{I} -open sets, gp- \mathcal{I} -open sets, gs- \mathcal{I} -open sets, C(S)- \mathcal{I} -sets, C*- \mathcal{I} -sets and S*- \mathcal{I} -sets to obtain decompositions of g-continuity. In this paper we introduce α gs- \mathcal{I} -open sets, pgs- \mathcal{I} -open sets, sg- \mathcal{I} -open sets, sg- \mathcal{I} -sets to obtain decompositions of decompositions of ω -continuity.

1.1. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , Cl(A), Int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively.

Definition 1.1. A subset A of a topological space (X, τ) is called semi-open [9] (respectively preopen [11], α -open [12]) if $A \subset Cl(Int(A))$ (respectively $A \subset Int(Cl(A))$, $A \subset Int(Cl(Int(A)))$). The complement of semi-open (respectively preopen, α -open) set is called semi-closed (respectively preclosed, α -closed).

Definition 1.2 ([13]). The largest semi-open (respectively preopen, α -open) set contained in A is called the semi-interior (respectively preinterior, α -interior) of A and is denoted by s-Int(A) (respectively p-Int(A), α -Int(A)). The smallest semi-closed (respectively preclosed, α -closed) set containing A is called the semi-closure (respectively preclosure, α -closure) of A and is denoted by s-Cl(A) (respectively p-Cl(A), α -Cl(A)).

 $^{^{*}}$ E-mail: vidhusat22@yahoo.co.in

Definition 1.3. An ideal \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following two conditions.

- (1). $A \in \mathcal{I}$ and $B \subset A$ imply $B \in \mathcal{I}$ and
- (2). $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$.

Given a topological space (X, τ) with an ideal \mathcal{I} on X if P(X) is the set of all subsets of X, a set operator $(.)*: P(X) \to P(X)$, called a local function [8] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subset X$, $A^*(\mathcal{I}, \tau) = \{x \in X | U \cap A \notin \mathcal{I}$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau | x \in U\}$. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(\mathcal{I}, \tau)$, called the *-topology, finer than τ is defined by $Cl^*(A) = A \cup A^*(\mathcal{I}, \tau)$ [19]. We will simply write A^* for $A^*(\mathcal{I}, \tau)$ and τ^* for $\tau^*(\mathcal{I}, \tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space.

Definition 1.4. A subset A of a topological space (X, τ) is called:

- (1). ω -open if $F \subset Int(A)$ whenever $F \subset A$ and F is semi-closed in (X, τ) [16].
- (2). αgs -open if $F \subset \alpha$ -Int(A) whenever $F \subset A$ and F is semi-closed in (X, τ) [6].
- (3). pgs-open if $F \subset p$ -Int(A) whenever $F \subset A$ and F is semi-closed in (X, τ) [6].
- (4). sg-open if $F \subset s$ -Int(A) whenever $F \subset A$ and F is semi-closed in (X, τ) [1].
- (5). a t-set if Int(A) = Int(Cl(A)) [3].
- (6). an α^* -set if Int(A) = Int(Cl(Int(A))) [4].
- (7). ω_t -set if $A = U \cap V$, where U is ω -open and V is a t-set in (X, τ) [6].
- (8). ω_{α^*} -set if $A = U \cap V$, where U is ω -open and V is an α^* -set in (X, τ) [6].

The collection of all ω_t -sets (respectively ω_{α^*} -sets) of X is denoted by $\omega_t(X,\tau)$ (respectively $\omega_{\alpha^*}(X,\tau)$).

Theorem 1.5. [7] Let (X, τ) be a topological space with ideals \mathcal{I}, \mathcal{J} on X and A, B be subsets of X. Then

- (1). $A \subset B \Rightarrow A^* \subset B^*$,
- (2). $A^* = Cl(A^*) \subset Cl(A),$
- (3). $A^* \cup B^* = (A \cup B)^*$,
- (4). $(A^*)^* \subset A^*$,
- (5). $\mathcal{I} \subset \mathcal{J} \Rightarrow A^*(\mathcal{J}) \subset A^*(\mathcal{I}).$

Definition 1.6. [13] A subset A of an ideal topological space (X, τ, \mathcal{I}) is called:

- (1). pre- \mathcal{I} -open if $A \subset Int(Cl * (A))$.
- (2). semi- \mathcal{I} -open if $A \subset Cl * (Int(A))$.
- (3). α - \mathcal{I} -open if $A \subset Int(Cl^*(Int(A)))$.
- (4). t- \mathcal{I} -set if $Int(Cl^*(A)) = Int(A)$.

(5). α^* - \mathcal{I} -set if $Int(Cl^*(Int(A))) = Int(A)$.

(6). S- \mathcal{I} -set if $Cl^*(Int(A)) = Int(A)$.

In the light of these definitions, we have $\alpha \cdot \mathcal{I}$ -Int $(A) = A \cap Int(Cl * (Int(A)))$, $p \cdot \mathcal{I}$ -Int $(A) = A \cap Int(Cl * (A))$ and $s \cdot \mathcal{I}$ -Int $(A) = A \cap Cl * (Int(A))$, where $\alpha \cdot \mathcal{I}$ -Int(A) denotes $\alpha \cdot \mathcal{I}$ -interior of A in (X, τ, \mathcal{I}) which is the union of all $\alpha \cdot \mathcal{I}$ -open sets of (X, τ, \mathcal{I}) contained in A. $p \cdot \mathcal{I}$ -Int(A) and $s \cdot \mathcal{I}$ -Int(A) have similar meanings.

Proposition 1.7 ([3]). Let (X, τ, \mathcal{I}) be an ideal topological space and A a subset of X. Then the following hold:

- (1). If A is a t-set, then A is a t- \mathcal{I} -set.
- (2). If A is a t- \mathcal{I} -set, then A is an α^* - \mathcal{I} -set.
- (3). If A is an α^* -set, then A is an α^* -I-set.

Proposition 1.8. In a topological space (X, τ) , the following hold:

- (1). Every α gs-open set is pgs-open but not conversely [6].
- (2). Every α gs-open set is sg-open but not conversely [14].

Proposition 1.9 ([6]). Let S be a subset of (X, τ) . If S is an ω -open set in X, then $S \in \omega_t(X, \tau)$ and $S \in \omega_{\alpha}^*(X, \tau)$.

Remark 1.10 ([6]). The converse of Proposition 1.9 need not be true.

Example 1.11 ([6]). Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{b\}, \{a, b\}, X\}$. Then $\{a, c\}$ is both ω_t -set and ω_{α}^* -set, but it is not ω -open set.

2. α gs- \mathcal{I} -open Sets, pgs- \mathcal{I} -open Sets and sg- \mathcal{I} -open Sets

Definition 2.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called:

- (1). αgs - \mathcal{I} -open if $F \subset \alpha$ - \mathcal{I} -Int(A) whenever $F \subset A$ and F is semi-closed in X.
- (2). pgs- \mathcal{I} -open if $F \subset p$ - \mathcal{I} -Int(A) whenever $F \subset A$ and F is semi-closed in X.
- (3). sg- \mathcal{I} -open if $F \subset s$ - \mathcal{I} -Int(A) whenever $F \subset A$ and F is semi-closed in X.

Proposition 2.2. For a subset of an ideal topological space, the following hold:

(1). Every αgs - \mathcal{I} -open set is αgs -open.

- (2). Every pgs-I-open set is pgs-open.
- (3). Every sg-I-open set is sg-open.

Proof.

- (1). Let A be an $\alpha gs-\mathcal{I}$ -open. Then we have, $F \subset \alpha \mathcal{I} Int(A)$ whenever $F \subset A$ and F is semi-closed in X. Now, $F \subset A \cap Int(Cl*(Int(A))) \subset A \cap Int(Cl(Int(A))) = \alpha Int(A)$. This shows that A is αgs -open.
- (2). Let A be a pgs- \mathcal{I} -open set. Then we have, $F \subset p \mathcal{I}$ -Int(A) whenever $F \subset A$ and F is semi-closed in X. Now, $F \subset A \cap Int(Cl * (A)) \subset A \cap Int(Cl(A)) = p - Int(A)$. This shows that A is pgs-open.

(3). Let A be an sg- \mathcal{I} -open set. Then we have, $F \subset s-\mathcal{I}$ -Int(A) whenever $F \subset A$ and F is semi-closed in X. Now, $F \subset A \cap Cl^*(Int(A)) \subset A \cap Cl(Int(A)) = s - Int(A)$. This shows that A is sg-open.

Proposition 2.3. For a subset of an ideal topological space, the following hold:

- (1). Every ω -open set is αgs - \mathcal{I} -open.
- (2). Every αgs - \mathcal{I} -open set is pgs- \mathcal{I} -open.
- (3). Every αgs - \mathcal{I} -open set is sg- \mathcal{I} -open.

Proof.

- (1). Let A be a ω -open set. Then we have, $F \subset Int(A)$ whenever $F \subset A$ and F is semi-closed in X. Now, $F \subset Int((Int(A))^*) \cup Int(A) = Int((Int(A))^*) \cup Int(Int(A)) \subset Int[(Int(A))^* \cup Int(A)] = Int(Cl^*(Int(A)))$. That is, $F \subset A \cap Int(Cl^*(Int(A))) = \alpha \mathcal{I} - Int(A)$. Hence A is $\alpha gs \mathcal{I}$ -open.
- (2). Let A be an α gs- \mathcal{I} -open set. Then we have, $F \subset \alpha \mathcal{I}$ -Int(A) whenever $F \subset A$ and F is semi-closed in X. Now, $F \subset A \cap Int(Cl^*(Int(A))) \subset A \cap Int(Cl^*(A)) = p - \mathcal{I} - Int(A)$. Hence A is pgs- \mathcal{I} -open.
- (3). Let A be an α gs- \mathcal{I} -open set. Then we have, $F \subset \alpha$ - \mathcal{I} -Int(A) whenever $F \subset A$ and F is semi-closed in X. Now, $F \subset A \cap Int(Cl^*(Int(A))) \subset A \cap Cl^*(Int(A)) = s \cdot \mathcal{I}$ -Int(A). Hence A is sg- \mathcal{I} -open.

Remark 2.4. The converses of Propositions 2.2 and 2.3 need not be true as seen from the next six Examples.

Example 2.5. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{a, c\}$ is an αgs -open set, but it is not an αgs - \mathcal{I} -open set.

Example 2.6. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then $\{b, d\}$ is a pgs-open set, but it is not a pgs- \mathcal{I} -open set.

Example 2.7. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{a, b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{a, c, d\}$ is a sg-open set, but it is not an sg- \mathcal{I} -open set.

Example 2.8. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\{a, c, d\}$ is an αgs - \mathcal{I} -open set, but it is not a ω -open set.

Example 2.9. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\{b, c\}$ is a pgs- \mathcal{I} -open set, but it is not an α gs- \mathcal{I} -open set.

Example 2.10. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{d\}, \{a, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{d\}\}$. Then $\{a, c\}$ is an sg- \mathcal{I} -open set, but it is not an α gs- \mathcal{I} -open set.

Example 2.11. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{b, c\}$ is an sg- \mathcal{I} -open set, but it is not a pgs- \mathcal{I} -open set.

Example 2.12. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\{b, c\}$ is a pgs- \mathcal{I} -open set, but it is not an sg- \mathcal{I} -open set.

From Propositions 1.8, 2.2, 2.3 and Remark 2.4, we have the following diagram.

However, none of the above implications is reversible and that the notions of $pgs-\mathcal{I}$ -open sets and $sg-\mathcal{I}$ -open sets are independent.

3. ω_t - \mathcal{I} -sets, ω_{α^*} - \mathcal{I} -sets and ω_S - \mathcal{I} -sets

Definition 3.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called:

- (1). ω_t - \mathcal{I} -set if $A = U \cap V$, where U is ω -open and V is a t- \mathcal{I} -set.
- (2). ω_{α^*} - \mathcal{I} -set if $A = U \cap V$, where U is ω -open and V is an α^* - \mathcal{I} -set.
- (3). ω_S - \mathcal{I} -set if $A = U \cap V$, where U is ω -open and V is an S- \mathcal{I} -set.

Proposition 3.2. For a subset of an ideal topological space, the following hold:

- (1). Every t- \mathcal{I} -set is ω_t - \mathcal{I} -set.
- (2). Every α^* - \mathcal{I} -set is ω_{α^*} - \mathcal{I} -set.
- (3). Every S- \mathcal{I} -set is ω_S - \mathcal{I} -set.
- (4). Every ω -open set is ω_t - \mathcal{I} -set.
- (5). Every ω -open set is ω_{α^*} - \mathcal{I} -set.
- (6). Every ω -open set is ω_S - \mathcal{I} -set.

Remark 3.3. The converses of Proposition 3.2 need not be true as seen from the following Examples.

Example 3.4. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then $\{c, d\}$ is a ω_t - \mathcal{I} -set, but it is not a t- \mathcal{I} -set.

Example 3.5. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then $\{a\}$ is a ω_{α^*} - \mathcal{I} -set, but it is not an α^* - \mathcal{I} -set.

Example 3.6. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{d\}, \{a, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{d\}\}$. Then $\{a\}$ is a ω_S - \mathcal{I} -set, but it is not an *S*- \mathcal{I} -set.

Example 3.7. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then $\{b, c\}$ is both ω_t - \mathcal{I} -set and ω_{α^*} - \mathcal{I} -set, but it is not a ω -open set.

Example 3.8. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\{a, c\}$ is a ω_S - \mathcal{I} -set, but it is not a ω -open set.

Proposition 3.9. For a subset of an ideal topological space, the following hold:

- (1). Every ω_t -set is ω_t - \mathcal{I} -set.
- (2). Every ω_t -set is ω_{α^*} -set.
- (3). Every ω_{α^*} -set is ω_{α^*} - \mathcal{I} -set.
- (4). Every ω_t - \mathcal{I} -set is ω_{α^*} - \mathcal{I} -set.
- (5). Every ω_S - \mathcal{I} -set is ω_{α^*} - \mathcal{I} -set.

Proof. (1), (2), (3) and (4), the proof follows from Proposition 1.7. (5) If A is a S- \mathcal{I} -set, then $Cl^*(Int(A)) = Int(A) \Rightarrow Int(Cl^*(Int(A))) = Int(A)$. Hence it is an α^* - \mathcal{I} -set.

Remark 3.10. The converses of Proposition 3.9 need not be true as seen from the next four Examples.

Example 3.11. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{c\}, \{b, c\}, \{a, c\}, \{a, c\}, \{a, c, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\{c, d\}$ is a ω_t - \mathcal{I} -set, but it is not a ω_t -set.

Example 3.12. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{b, c\}$ is a ω_{α^*} -set, but it is not a ω_t -set.

Example 3.13. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{a, c\}$ is a ω_{α^*} - \mathcal{I} -set, but it is neither ω_{α^*} -set nor ω_t - \mathcal{I} -set.

Example 3.14. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then $\{a, b, d\}$ is a ω_{α^*} - \mathcal{I} -set, but it is not a ω_S - \mathcal{I} -set.

Example 3.15. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\{a, c\}$ is $\alpha^* - \mathcal{I}$ -set, but it is not t- \mathcal{I} -set.

Example 3.16. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{b, c\}$ is α^* - \mathcal{I} -set, but it is not *S*- \mathcal{I} -set.

By Propositions 1.7, 1.9, 3.2 and 3.9, we have the following diagram.

None of the above implications is reversible.

Example 3.17. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\{b, c\}$ is a ω_{α^*} -set, but it is not a ω_t - \mathcal{I} -set. **Example 3.18.** Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{c\}, \{b, c\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\{c, d\}$ is a ω_t - \mathcal{I} -set, but it is not a ω_{α^*} -set.

Example 3.19. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{b, c\}$ is a ω_S - \mathcal{I} -set, but it is not a ω_t - \mathcal{I} -set. **Example 3.20.** Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{d\}, \{a, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{d\}\}$. Then $\{a, b, c\}$ is a ω_t - \mathcal{I} -set, but it is not a ω_S - \mathcal{I} -set. **Example 3.21.** Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then $\{a, b\}$ is pgs- \mathcal{I} -open set, but it is not ω_t - \mathcal{I} -set.

Example 3.22. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{a, c\}$ is ω_t - \mathcal{I} -set, but it is not pgs- \mathcal{I} -open set.

Example 3.23. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then $\{a, b\}$ is $\alpha gs \mathcal{I}$ -open set, but it is not $\omega_{\alpha} * \mathcal{I}$ -set.

Example 3.24. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{b, c\}$ is $\omega_{\alpha}*-\mathcal{I}$ -set, but it is not $\alpha gs-\mathcal{I}$ -open set.

Example 3.25. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{b, c\}$ is sg- \mathcal{I} -open set, but it is not ω_S - \mathcal{I} -set.

Example 3.26. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{b, c, d\}$ is ω_S - \mathcal{I} -set, but it is not sg- \mathcal{I} -open set.

Remark 3.27. From the above ten examples, we have

- (1). The notions of ω_t -I-sets and ω_{α^*} -sets are independent.
- (2). The notions of ω_t - \mathcal{I} -sets and ω_S - \mathcal{I} -sets are independent.
- (3). The notions of pgs- \mathcal{I} -open sets and ω_t - \mathcal{I} -sets are independent.
- (4). The notions of αgs - \mathcal{I} -open sets and ω_{α^*} - \mathcal{I} -sets are independent.
- (5). The notions of sg- \mathcal{I} -open sets and ω_S - \mathcal{I} -sets are independent.

Proposition 3.28. A subset A of (X, τ, \mathcal{I}) is ω -open if and only if it is both pgs- \mathcal{I} -open and ω_t - \mathcal{I} -set.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is pgs- \mathcal{I} -open and ω_t - \mathcal{I} -set in X. Let $F \subset A$ and F be semi-closed in X. Since A is a ω_t - \mathcal{I} -set in X, $A = U \cap V$, where U is ω -open and V is a t- \mathcal{I} -set. Now F is semi-closed and U is ω -open implies $F \subset Int(U)$. Since A is pgs- \mathcal{I} -open, $F \subset p$ - \mathcal{I} - $Int(A) = A \cap Int(Cl^*(A)) = (U \cap V) \cap Int(Cl^*(U \cap V)) \subset (U \cap V) \cap Int(Cl^*(U)) = U \cap V \cap Int(Cl^*(U)) \cap Int(Cl^*(V))$. Hence $F \subset Int(Cl^*(V))$. But V is a t- \mathcal{I} -set, therefore $Int(V) = Int(Cl^*(V))$, which implies $F \subset Int(V)$. Therefore $F \subset Int(U) \cap Int(V) = Int(U \cap V) = Int(A)$. Hence A is ω -open in X.

Proposition 3.29. A subset A of (X, τ, \mathcal{I}) is ω -open if and only if it is both α gs- \mathcal{I} -open and ω_{α^*} - \mathcal{I} -set.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is α gs-*I*-open and ω_{α^*} -*I*-set in X. Let *F* ⊂ *A* and F be semi-closed in X. Since A is a ω_{α^*} -*I*-set in X, $A = U \cap V$, where U is ω -open and V is an α^* -*I*-set. Now F is semi-closed and U is ω -open implies $F \subset Int(U)$. Since A is α gs-*I*-open, $F \subset \alpha$ -*I*- $Int(A) = A \cap Int(Cl^*(Int(A))) = (U \cap V) \cap Int(Cl^*(Int(U) \cap V)) = (U \cap V) \cap Int(Cl^*(Int(U) \cap Int(V))) \subset (U \cap V) \cap Int(Cl^*(Int(U)) \cap Cl^*(Int(V))) = U \cap V \cap IntCl^*(Int(U))) \cap Int(Cl^*(Int(V)))$. Hence $F \subset Int(Cl^*(Int(V)))$. But V is an α^* -*I*-set, therefore $Int(V) = Int(Cl^*(Int(V)))$, which implies $F \subset Int(V)$. Therefore $F \subset Int(U) \cap Int(V) = Int(U \cap V) = Int(A)$. Hence A is ω -open in X.

Proposition 3.30. A subset A of (X, τ, \mathcal{I}) is ω -open if and only if it is both sg- \mathcal{I} -open and ω_S - \mathcal{I} -set.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is sg- \mathcal{I} -open and ω_S - \mathcal{I} -set in X. Let $F \subset A$ and F be semi-closed in X. Since A is a ω_S - \mathcal{I} -set in X, $A = U \cap V$, where U is ω -open and V is an S- \mathcal{I} -set. Now F is semi-closed and U is ω -open implies $F \subset Int(U)$. Since A is sg- \mathcal{I} -open, $F \subset s$ - \mathcal{I} -int $(A) = A \cap Cl^*(Int(A)) = (U \cap V) \cap Cl^*(Int(U \cap V)) \subset Cl^*(Int(U \cap V)) = Cl^*(Int(U) \cap Int(V)) \subset Cl^*(Int(U)) \cap Cl^*(Int(V))$. Hence $F \subset Cl^*(Int(V))$. But V is an S- \mathcal{I} -set, therefore $Int(V) = Cl^*(Int(V))$, which implies $F \subset Int(V)$. Therefore $F \subset Int(U) \cap Int(V) = Int(U \cap V) = Int(A)$. Hence A is ω -open in X.

4. Decompositions of ω -continuity

Definition 4.1. A function $f: (X, \tau) \to (Y, \sigma)$ is called ω -continuous [16] if for every $V \in \sigma$, $f^{-1}(V)$ is ω -open in (X, τ) .

Definition 4.2 ([6]). A function $f : (X, \tau) \to (Y, \sigma)$ is called α gs-continuous (respectively pgs-continuous) if for every $V \in \sigma$, $f^{-1}(V)$ is α gs-open (respectively pgs-open) in (X, τ) .

Definition 4.3 ([6]). A function $f : (X, \tau) \to (Y, \sigma)$ is called

(1). ω_t -continuous if for every $V \in \sigma$, $f^{-1}(V) \in \omega_t(X, \tau)$.

(2). ω_{α^*} -continuous if for every $V \in \sigma$, $f^{-1}(V) \in \omega_{\alpha^*}(X, \tau)$.

Definition 4.4. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is called $\alpha gs \cdot \mathcal{I}$ -continuous (respectively $pgs \cdot \mathcal{I}$ -continuous, $sg \cdot \mathcal{I}$ -continuous, $\omega_{\alpha^*} \cdot \mathcal{I}$ -continuous and $\omega_S \cdot \mathcal{I}$ -continuous) if for every $V \in \sigma$, $f^{-1}(V)$ is $\alpha gs \cdot \mathcal{I}$ -open (respectively $pgs \cdot \mathcal{I}$ -open, $sg \cdot \mathcal{I}$ -open, $\omega_t \cdot \mathcal{I}$ -set, $\omega_{\alpha^*} \cdot \mathcal{I}$ -set and $\omega_S \cdot \mathcal{I}$ -set) in (X, τ, \mathcal{I}) . From Propositions 3.28, 3.29 and 3.30, we have the following decompositions of ω -continuity.

Theorem 4.5. Let (X, τ, \mathcal{I}) be an ideal topological space. For a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$, the following properties are equivalent.

- (1). f is ω -continuous.
- (2). f is pgs- \mathcal{I} -continuous and ω_t - \mathcal{I} -continuous.
- (3). f is αgs - \mathcal{I} -continuous and ω_{α^*} - \mathcal{I} -continuous.
- (4). f is sg- \mathcal{I} -continuous and ω_S - \mathcal{I} -continuous.

Corollary 4.6 ([6]). Let (X, τ, \mathcal{I}) be an ideal topological space and $\mathcal{I} = \{\emptyset\}$. For a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$, the following properties are equivalent.

- (1). f is ω -continuous.
- (2). f is pgs-continuous and ω_t -continuous.
- (3). f is αgs -continuous and ω_{α^*} -continuous.

Proof. Since $\mathcal{I} = \{\emptyset\}$, we have $A^* = Cl(A)$ and $Cl^*(A) = A^* \cup A = Cl(A)$ for any subset A of X. Therefore, we obtain

- (1). A is $\alpha gs-\mathcal{I}$ -open (respectively pgs- \mathcal{I} -open) if and only if it is αgs -open (respectively pgs-open) and
- (2). A is ω_t - \mathcal{I} -set (respectively ω_{α^*} - \mathcal{I} -set) if and only if it is ω_t -set (respectively ω_{α^*} -set). The proof follows immediately from Theorem 4.5.

References

- [1] P. Bhattacharyya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(1987), 375-382.
- [2] J. Dontchev, On pre-I-open sets and a decomposition of \mathcal{I} -continuity, Banyan Math. J., 2(1996).
- [3] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 341-349.
- [4] E. Hatir, T. Noiri and S. Yuksel, A decomposition of continuity, Acta Math. Hungar., 70(1996), 145-150.
- [5] S. Jafari, K. Viswanathan and M. Rajamani, A decomposition of α-continuity and αgs-continuity in topological spaces, Fasciculi Math., 41(2009), 73-79.
- [6] S. Jafari, T. Noiri, K. Viswanathan and M. Rajamani, Decompositions of ω-continuity in topological spaces, J. Adv. Math. Studies, 3(2)(2010), 49-55.
- [7] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [8] K. Kuratowski, Topology, Vol. 1, Academic Press, New York, (1966).
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [10] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961), 44-46.
- [11] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [12] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [13] T. Noiri, M. Rajamani and V. Inthumathi, On decompositions of g-continuity via idealization, Bull. Cal. Math. Soc., 99(4)(2007), 415-424.
- [14] M. Rajamani and K. Viswanathan, On αgs-closed sets in topological spaces, Acta Ciencia Indica, 31(1)(2005), 293-303.
- [15] D. Rose, On Levine's decomposition of continuity, Canad. Math. Bull., 21(1978), 477-481.
- [16] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, India, (2002).
- [17] P. Sundaram and M. Rajamani, On decompositions of generalized continuous maps in topological spaces, Acta Ciencia Indica, 26(2)(2000), 101-104.
- [18] J. Tong, A decomposition of continuity, Acta Math. Hungar., 48(1986), 11-15.
- [19] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., Sect A, 20(1944), 51-61.