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Abstract: Failure of a system may occur due to certain type of stresses acting on them. If these stresses do not exceed a certain
threshold value the system may work for a long period. On the other hand, if the stresses exceed the threshold they may

fail within no time. There is uncertainty about stress and strength random variables at any instant of time and also about

the behavior of the variables with respect to time and cycles. Time dependent stress- strength models are considered
with repeated application of stress and also the change of the strength with time. Reliability of time dependent stress-

strength system is carried out by considering each of stress and strength variables are random-fixed. In this paper to find
the reliability, components are assumed to be identical and the number of cycles for any time period t is assumed to be

random. Expression for system reliability have been attained when number of cycles can be follow Geometric distribution

and stress and strength both follow exponential distribution & computations were also done.
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1. Introduction

Time dependent stress strength system is defined by [1]. A component fails if the stress on it is exceeding than its strength.

In the present paper, the uncertainty about the stress and strength variables is classified into three categories:

(1). Deterministic: the variable assumes values that are exactly known a priory.

(2). Random fixed: the variable is random at any particular instant of time; the word fixed in this classification refers to

the behaviour of the random variable with respect to time and/or cycles ; it means that the random variable changes

or varies with time in a known manner.

(3). Random independent: the variable is not only random but unlike the random fixed case, the successive values assumed

by the variables are statistically independent, in accordance with Kapur and Lamberson and Schatz, et al. Here, in

this paper, the components are assumed to be identical and the number of cycles for any time period t is assumed

to be random. Expression for system reliability have been attained when number of cycles can be follow geometric

distribution and stress and strength both follow different distribution.
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1.1. Notations

Rn : Reliability after n cycles

R (t) : Reliability at time t

R : Reliability, independent of the cycle number (fixed)

X : Stress variable

Y : Strength variable

x0 : Deterministic stress

y0 : Deterministic Strength

Xi : Stress on the ith cycle

Yi : Strength on the ith cycle

f(x) : Probability density function of a random variable X

g(y) : Probability density function of a random variable Y

Ei : Event no failure occurs on the ith cycle

f0(x0) : Probability density function of a random variable x0

g0(y0) : Probability density function of a random variable y0

pi(t) : Probability of i cycles occurring in the time interval [0, t]

p : Probability of success in any trial

q = 1 − p : Probability of failure

2. Reliability Evaluation

If the cycles occur at random times, then

R (t) =

∞∑
i=0

pi(t)Ri

Where pi(t) is the probability of i cycles occurring in the time interval [0, t] and Ri is, as before, the probability of all i

success. Clearly the case of deterministic cycle times becomes a special case above equation. In some cases it is appropriate

to assume that the number of cycles occurring in a given time interval are Geometric distributed. Hence

P (X = x) = qxp, x = 0, 1, 2, . . .

Case 1: Deterministic Stress and random-fixed Strength

Let the stress be x0, a constant, and the strength on the ith cycle be Yi given by

Yi = Y0 − ai , i = 1, 2, . . .

Where ai ≥ 0 are known constants. Further, the ai’s are assumed nondecreasing in time. The probability density function

of Y0, g0(y0) is assumed known. Then

P [En] = P (xn ≤ Yn)

= P (x0 ≤ y0 − an)

=

∫ ∞
x0+an

g0(y0)dy0
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Hence

Rn = P [En] =

∫ ∞
x0+an

g0(y0)dy0

Let Yi = Y0, i = 1, 2, . . . be the strength random variable with a known probability density function f0(y0). Then

Ri = P [Ei] =

∫ ∞
x0

f0(y0)dy0 , R

The expression for Ri is independent of the cycle number i. Hence

R (t) =

∞∑
i=0

pi (t)Ri

= p0 (t)R0 +

∞∑
i=1

pi (t)Ri

= p+R(1 − p0)

R(t) = p+R (1 − p) = p+ qR

Case 2: Deterministic Stress and Random independent Strength

Let the stress be constant at x0. Let gi(y) be the probability density function of the random variable strength Yi during the

cycle i. Since successive values of Yi are independent, we get

Rn = P [E1, E2, . . . .En] = P [E1] ∗ P [E2] ∗ · · · ∗ P [En]

Where

P [Ei] = P (x0 ≤ yi) =

∫ ∞
x0

gi (y) dy

In particular, if the probability density function remains unchanged over time, that is, if

g1 (y) = g2 (y) = · · · = gn (y) = g(y)

Then

Rn = (P [Ei])
n =

{∫ ∞
x0

g (y) dy

}n
Let Ri = Ri, i = 0, 1, 2, . . . , n, where R =

∞∫
x0

g (y) dy

R (t) =
∞∑
i=0

pi (t)Ri

=

∞∑
i=0

qipRi

= p

∞∑
i=0

(qR)i

= p
[
1 + qR+ qR2 + . . .

]
=

p

(1 − qR)

Case 3: Random-fixed Stress and deterministic Strength
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Let the strength be y0, a constant, and the stress on the ith cycle be xi given by

Xi = X0 + bi, i = 1, 2, . . . .

Where bi ≥ 0 are known constants. Further, the bi’s are assumed nondecreasing in time. The probability density function

of X0, f0(x0) is assumed known. Then

Rn = P [En] = P (Xn ≤ yn)

= P (x0 + bn ≤ y0)

Rn =

∫ y0−bn

0

f0(x0)dx0

Then

Ri = P [Ei] =

∫ y0

0

f0(x0)dx0 , R

The expression for Ri is independent of the cycle number i. Hence by reciprocity of Case 2, we get

R (t) = p+ qR, where R =

∫ y0

0

f0 (x0) dx0

Case 4: Random-fixed Stress and random-fixed Strength

Let the stress be given by

Xi = X0 + bi, i = 1, 2, . . . .

Where bi ≥ 0 are known constants. Further, the bi’s are assumed nondecreasing in time. Let the strength be given by

Yi = Y0 − ai, i = 1, 2, . . . .

Where ai ≥ 0 are known constants. Further, the ai’s are assumed nondecreasing in time. The probability density functions

f0 (x0) and g0(y0) are assumed known. We have to required the stress to be nondecreasing and strength to be nonincreasing.

Hence

Rn = P [En]

= P (Xn ≤ Yn)

= P (x0 + bn ≤ y0 − an)

=

∫ ∞
0

g0(y0)

(∫ y0−an−bn

0

f0 (x0) dx0

)
dy0

Let X0 and Y0 be the random fixed stress and strength with known probability density functions f0 (x0) and g0(y0) respec-

tively. X0 and Y0 will be assumed not vary with time that is ai = bi = 0, i = 1, 2, . . . . Hence

Ri =

∫ ∞
0

g0(y0)

∫ y0

0

f0 (x0) dx0dy0 = R, i = 1, 2, . . . .

R (t) =
∞∑
i=0

pi (t)Ri

= p0 (t)R0 +

∞∑
i=1

pi (t)Ri
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= p(1) +R(1 − p0)

= p+R (1 − p) = p+ qR

Case 5: Random-independent Stress and deterministic Strength

Let the strength be constant at y0. Let fi(x) be the probability density function of the random variable stress Xi during

the cycle i. Since successive values of Xi are independent, we get

Rn = P [E1, E2, . . . .En] = P [E1] ∗ P [E2] ∗ . . . · · · ∗ P [En]

Where

P [Ei] = P (Xi ≤ y0) =

∫ y0

0

fi (x) dx

In particular, if the probability density function remains unchanged over time, that is, if

f1 (x) = f2 (x) = · · · = fn (x) = f(x)

Then

Rn = (P [Ei])
n =

{∫ y0

0

f (x) dx

}n
Let Ri = Ri, we get

R (t) =

∞∑
i=0

pi (t)Ri

R (t) =
p

(1 − qR)
where R =

∫ y0

0

f (x) dx

Case 6: Random-independent Stress and random-independent Strength

Let fi (x) and gi (y) be the probability density functions of stress Xi and strength Yi respectively in cycle i = 1, 2, . . . . Then,

since Xi’s and Yi’s are independent,

Rn = P [E1, E2, . . . .En]

= P [E1] .P [E2] . . . . .P [En]

=

n∏
i=1

P (Ei)

Where

P = P (Xi < Yi)

=

∫ ∞
0

fi(x)

∫ ∞
x

gi(y)dydx

Let f (x) and g(y) represent the probability density functions for stress X and strength Y respectively. Further the random

variables be independent on each cycle. Then

Ri = Ri, i = 0, 1, 2, . . . , n

R (t) =

∞∑
i=0

pi (t)Ri
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=

∞∑
i=0

qipRi

= p

∞∑
i=0

(qR)i

R(t) = p
[
1 + qR+ qR2 + . . .

]
=

p

(1 − qR)

where, R =
∞∫
0

f(x)
∫∞
x
g (y) dydx.

3. In Geometric Distribution, the Stress and Strength Follow Expo-
nential Distribution

Case 1: Deterministic Stress and random-fixed Strength

R (t) = p+ qR

where

R =

∫ ∞
x0

f0 (y0) dy0

=

∫ ∞
x0

µe−µy0dy0= e−µx0

R (t) = p+ qe−µx0

Case 2: Deterministic Stress and random-independent Strength

R(t) =
p

(1 − qR)

where

R =

∫ ∞
x0

g (y) dy

=

∫ ∞
x0

µe−µydy = e−µx0

R (t) =
p

(1 − q e−µx0)

Case 3: Random- fixed stress and deterministic Strength

R (t) = p+ qR, where R =

∫ y0

0

f0 (x0) dx0

R =

∫ y0

0

λe−λx0dx0 =
(

1 − e−λy0
)

R (t) = p+ q
(

1 − e−λy0
)

= 1 − qe−λy0

Case 4: Random-fixed Stress and random- fixed Strength

R (t) = p+ qR
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where

R =

∫ ∞
0

g0(y0)

∫ y0

0

f0 (x0) dx0dy0

=

∫ ∞
0

µe−µy0
∫ y0

0

λe−λx0dx0dy0

R =
λ

(λ+ µ)

R (t) = p+
qλ

(λ+ µ)

=
[λ+ pµ]

(λ+ µ)

Case 5: Random-independent Stress and deterministic Strength

R (t) =
p

(1 − qR)
where R =

∫ y0

0

f (x) dx

R =

∫ y0

0

λe−λxdx

=
(

1 − e−λy0
)

R (t) =
p

(1 − q (1 − e−λy0))

=
p

(p+ qe−λy0)

Case 6: Random-independent Stress and random-independent Strength

R (t) =
p

(1 − qR)

where

R =

∫ ∞
0

f(x)

∫ ∞
x

g (y) dydx

R =

∫ ∞
0

λe−λx
∫ ∞
x

µe−µydxdy

=
λ

(λ+ µ)

R (t) =
p(

1 − q λ
(λ+µ)

)
=
p (λ+ µ)

(pλ+ µ)

4. Numerical Results

Case 1: Deterministic Stress and random- fixed Strength

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

R 0.9144 0.9239 0.9333 0.9429 0.9524 0.9619 0.9715 0.9809 0.9905 1

Table 1. (µ = 0.2, x0 = 0.5)
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p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R 0.9561 0.9239 0.9025 0.8912 0.8894 0.8963 0.9114 0.9341 0.9638 1

Table 2. (x0 = 0.5)

Case 2: Deterministic Stress and random-independent Strength

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

R 0.5387 0.7243 0.8183 0.8751 0.9131 0.9403 0.9608 0.9768 0.9895 1

Table 3. (µ = 0.2,x0 = 0.5)

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R 0.6949 0.7243 0.7547 0.7862 0.8189 0.8527 0.8876 0.9238 0.9613 1

Table 4. (x0 = 0.5)

µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R 0.9534 0.9131 0.8777 0.8465 0.8188 0.7942 0.7720 0.7520 0.7340 0.7176

Table 5. (p = 0.5, q = 0.5, x0 = 0.5)

Case 3: Random-fixed stress and deterministic Strength

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R 0.9095 0.8190 0.7285 0.6380 0.5475 0.4571 0.3666 0.2761 0.1856 0.0951

Table 6. (λ = 0.2, y0 = 0.5)
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λ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R 0.6106 0.6967 0.7638 0.8161 0.8567 0.8884 0.9131 0.9323 0.9473 0.9589

Table 7. (q = 0.5, y0 = 0.5)

Case 4: Random-fixed Stress and random-fixed Strength

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R 0.3571 0.4286 0.5 0.5714 0.6428 0.7143 0.7857 0.8571 0.9286 1

Table 8. (λ = 0.2, µ = 0.5)

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R 0.5833 0.6429 0.6875 0.7222 0.75 0.7727 0.7917 0.8077 0.8214 0.8333

Table 9. (p = 0.5, µ = 0.5)
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µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R 0.8333 0.75 0.7 0.6667 0.6428 0.625 0.6111 0.6 0.5909 0.5833

Table 10. (p = 0.5, λ = 0.2)

Case 5: Random-independent Stress and deterministic Strength

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

R 0.1094 0.2165 0.3214 0.4242 0.5249 0.6237 0.7206 0.8155 0.9086 1

Table 11. (λ = 0.5, y0 = 0.2)

λ 1 2 3 4 5 6 7 8 9 10

R 0.5498 0.5986 0.6456 0.6899 0.7310 0.7685 0.8021 0.8320 0.8581 0.8807

Table 12. (p = q = 0.5, y0 = 0.2)

y0 1 2 3 4 5 6 7 8 9 10

R 0.5498 0.5986 0.6456 0.6899 0.7310 0.7685 0.8021 0.8320 0.8581 0.8807

Table 13. (p = q = 0.5, λ = 0.2)

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

λ 1 2 3 4 5 6 7 8 9 10

R 0.1194 0.2716 0.4384 0.5973 0.7310 0.8327 0.9044 0.9519 0.9819 1

Table 14. (y0 = 0.2)

Case 6: Random-independent Stress and random-independent Strength
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p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R 0.28 0.4667 0.6 0.7 0.7778 0.84 0.8909 0.9333 0.9692 1

Table 15. (λ = 0.5, µ = 0.2)

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R 0.6 0.6667 0.7142 0.75 0.7778 0.8 0.8182 0.8333 0.8461 0.8571

Table 16. (p = 0.5, µ = 0.2)

5. Conclusion

In this, Reliability of stress-strength system has been done when the number of cycles follows Geometric distribution. Nu-

merical calculations for reliability have been carried for six models, where stress and strength follow Exponential distribution.

Reliability computations have been done for dependent and independent of time. It is observed by the computations, the

reliability increases when stress parameter (λ), strength parameter (y0) increase and reliability decreases when mean no. of

cycles (a), strength parameter (µ) and stress parameter (x0) increase.
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