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1. Introduction

Binary relations are one of the earliest relations known to both mankind and Mathematicians. Basic relations like reflexive,

symmetric, transitive, irreflexive, anti-symmetric, cyclic, etcetera are all binary relations which play an important role in the

studies of several order-structures like semi ordered set, well ordered set, totally ordered set, partial ordered set and higher-

order structures like, join (meet) semi lattice, (distributive, modular, deMorgan) lattice, (join,meet) and still higher order

structures like complete lattice, infinite (join, meet) distributive lattice, completely distributive complete lattice etcetera.

Notice that the under lying object for all of them is a set with a binary relation. For more information in the studies of

these higher ordered objects, one can refer to Szasz [25], Birkhoff [3] etcetera.

Another important class of objects, on a set with a binary relation, is the graph which is nothing but a finite set (of nodes)

together with a binary relation (of edges). The Theory of Graphs is well known for its applications both in Hardware and

Software of Computer Science. In Hardware, it is used in the feasibility, design and analysis of Circuits. For more details in

this direction, one can refer to Charles Desoer and Ernest Kuh [5], Krishnaiyan Thulasiraman [26] and Narasingh Deo [19].

In Software, there are several applications for both notions and algorithms of Graph Theory. To name a few, shortest path

and minimal spanning tree are chiefly studied in communication/transportation networks; various types of connectedness,

cycles etcetera are used in Digital Image Processing/Detection; BFS (Breadth First Search), DFS (Depth First Search) are

extensively used in Searching. For more information in this direction one can refer to Kenneth H Rosen [20], J.P. Trembly

and R. Manohar [27] and Joe L. Mott, Abraham Kandel and Theodore P. Baker [13]. Interestingly, there are even computer

languages like HINT (an extension of LISP), GRASPE (another extension of LISP), GEA (Graphic Extended ALGOL,
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an extension of ALGOL), GIRL (Graph Information Retrieval Language), GTPL (Graph Theoretic Processing Language)

etcetera and also packages like GASP (Graph Algorithms Software Package), SPANTREE (To find a spanning tree in the

given graph) to exclusively process Graph Theoretic ideas/algorithms.

Fuzzy binary relations were extensively studied in Murthy-Ravi [16]. In fact, in Murthy-Ravi [16], for any L-fuzzy set X,

they construct a crisp set in such a way that there is a Galois connection between the set of all L-fuzzy reflexive (irreflexive,

symmetric, antisymmetric, transitive) relations on the former and certain reflexive (irreflexive, symmetric, antisymmetric,

transitive) relations on the later. The above Galois connection is also shown to have extended to between L-fuzzy equivalence

relations, L-fuzzy I-ary relations and L-fuzzy partitions on the former and certain equivalence relations, I-ary relations and

partitions respectively on the later. Further, they also construct a Galois connection between the set of all L-fuzzy partitions

and the set of all L-fuzzy equivalence relations on the L-fuzzy set X. For each of these Galois Connections, both the onward

and return order preserving maps are characterized in terms of the complete lattice L being certain chains.

However, a set with a binary relation, as an object by itself is not exclusively studied and primarily this aspect is taken up

in Murthy-Sujatha [17, 18]. There a set with a binary relation is called a breset (Binarily RElated SET) and studies of this

object and morphisms between such objects are made.

Notice that a set with an associative binary operation is called a semi group and is extensively studied. For example, see

Clifford and Preston [6], Lidl and Pilz [11].

Now coming back to bresets, since a digraph is a finite set with a (finite) binary relation and since the notion of a breset

has no restriction of finiteness either on the number of elements of the underlying set or on the size of the binary relation, a

breset can be regarded as an (in) finite digraph and hence a generalization of digraph. Of course, (in) finite (di) graphs were

studied in conjunction with groups and/or vector spaces. To see some work in this direction, one can refer to, Finucane [8],

Seifter [22], Soardi and Woess [24], Bondy and Hemminger [4] and Andrea [2] etcetera.

In this paper, we extend such notions of digraphs as conjunctive product (also known as tensor or categorical product),

disjunctive product (also known as co-normal product) to arbitrary families of bresets and study them. Also we introduce

and study such notions as factors, radicals for bresets and prove such results as: for a family of bresets (Ai)i∈I , Ai is reflexive

for all i ∈ I if and only if Πc
i∈IAi is reflexive whenever each Ai is non empty for all i ∈ I, Ai is symmetric for all i ∈ I if

and only if Πc
i∈IAi is symmetric whenever each βAi is non empty for all i ∈ I, Πc

i∈IAi is transitive for all i ∈ I and Ai is

symmetric for all i ∈ I implies Ai is transitive for all i ∈ I whenever each βAi is non empty for all i ∈ I, Ai is transitive for

all i ∈ I implies Πc
i∈IAi is transitive for all i ∈ I, Πc

i∈IAi is transitive for all i ∈ I and Ai is reflexive for all i ∈ I implies

Ai is transitive for all i ∈ I whenever each Ai is non empty, Πc
i∈IAi is anti-symmetric for all i ∈ I and Ai is reflexive for

all i ∈ I implies Ai is anti-symmetric whenever each Ai is non empty for all i ∈ I and Ai is anti-symmetric for all i ∈ I if

and only if Πc
i∈IAi is anti-symmetric for all i ∈ I. etcetera under some simple different conditions and (lattice) algebraic

properties of (inverse) images of substructures of bresets under (function and relation) morphisms between bresets etcetera

all of which are more of purely mathematical interest. It is for these reasons, in fact, that we preferred the word breset over

the word (in) finite digraph.

The other major reason for bringing the underlying set of a digraph into mathematical consideration and calling it then a

breset is that, in an unpublished manuscript, Murthy [15] observed that (a) factorization of a (finite or not) (di) graph is

a very important tool since the notion of (di) graph is extensively used in Computer Science in several algorithms and (b)

any factorization of a (di) graph most naturally involves a factorization of the underlying nodes set and so developed the

notion of breset and elementary theory of factorization of bresets.

Since some of the new notions introduced and studied here, in the finite set up, are also relevant for computer scientists as

well and since (a1, a2) ↔ a1a2 defines one-one correspondence between the product set A1 × A2 and the string set A1A2,
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where A1×A2 = {(a1, a2)|ai ∈ Ai, i = 1, 2, ..} and A1A2 = {a1a2|ai ∈ Ai, i = 1, 2, ..}, which is easily extendable to n-tuples

and n-strings(strings of length n), in general, we do not distinguish between n-tuples and n-strings and in fact, we prefer to

use n-strings in stead of n-tuples especially in our examples and counter examples.

In this paper first we study products of bresets and next study factors of bresets whose underlying set is a Cartesian product

of sets. Sections 3 and 4 introduce and study some properties of J-conjunctive product, J-disjunctive and j0-(sectional)

product for a family (Ai)i∈I of bresets where J is a subset of the index set I, generalizing the notions of conjunctive and

disjunctive products for directed graphs. Notice that (1) when the index set is empty, the Cartesian product of empty family

of sets is the singleton of empty mapping and (2) when the index set is non-empty and some Ai is empty, the Cartesian

product of I-family of sets is the empty set. Thus the product in both these cases is uninteresting. Hence, we always assume

that the index set I is non empty and each Ai is non-empty for i ∈ I. However, in situations where some ambiguity is

possible or an emphasis looks better, we explicitly state them. Further, we also make a free use of the Axiom of Choice

and/or its equivalent the existence of the Choice Function without an explicit mention of the same. Section 5 introduces and

studies the notions of the K-conjunctive factor, K-disjunctive factor and k0-sectional factor for a breset whose underlying

set is a Cartesian product of a family (Ai)i∈I of sets and section 6 studies properties of the above. Section 7 studies several

relations between these products and factors. Lastly, in Section 8, we study algorithms to compute products introduced in

Section 3 and factors introduced in Section 5. We do not distinguish between n-tuples and n-strings and in fact, we prefer

to use n-strings in stead of n-tuples especially in our examples and counter examples. Notice that whenever a notion that

we used and/or introduced for bresets is already known in a (finite, infinite) (di) graph theory and we are aware, in almost

all cases, we made an explicit mention of the same and explain the relation between them. In what follows, we recall the

basic notions and results of bresets from Murthy-Sujatha [18].

2. Bresets, Substructures and Some Properties

In this section the notions of breset, lower sub breset or simply l-sub breset, upper sub breset or simply u-sub breset and

sub breset are recalled from Murthy-Sujatha [18].

Definitions and Statements 2.1. (a). A breset is any ordered pair (A,R), where A is called the underlying set or shortly

the u-set of (A,R) and R is a binary relation on A.

Let us recall that a binary relation R on a set A is any subset of A×A.

(b). For any pair of bresets (A,R), (B,S), (A,R) is equal to (B,S), denoted by (A,R) = (B,S), if and only if A = B and

R = S.

(c). A breset (A,R) is empty breset or simply empty, denoted by Φ, iff the underlying set A = φ and the binary relation R

= φ.

(d). Clearly, a breset (A,R) is empty if and only if u-set A = φ or equivalently a breset (A,R) is non empty iff u-set A is

non empty. So, (i) in a non empty breset (A,R), it can so happen that the u-set A is nonempty but the binary relation R

on A is empty and (ii) there can be several bresets with the same u-set A.

Since a breset (A,R) is uniquely determined by both its u-set A and the binary relation R on the set A and not by any one

of them, here onwards for notation convenience, we denote the breset (A,R) by A and the binary relation R by βA. Further,

through out this and other chapters on bresets, the script letters and the suffixed script letters always stand for the bresets.

In other words, the P stands for the ordered pair (P, βP), etcetera.

(e). Let A, B be a pair of bresets.

(i). A is said to be a sub system of B iff A ⊆ B.
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(ii). A is said to be a lower sub breset or simply l-sub breset of B iff A ⊆ B and βA ⊆ βB ∩ (A×A).

(iii). For any breset X , the set of all l-sub bresets of X is denoted by Sl(X ).

(iv). A is said to be an upper sub breset or simply u-sub breset of B iff A ⊆ B and βA ⊇ βB ∩ (A×A).

(v). For any breset X , the set of all upper sub bresets of X is denoted by Su(X ).

(vi). A is said to be a sub breset of B iff A ⊆ B and βA = βB ∩ (A×A).

Clearly, when the underlying set A of the breset A is finite, the notion of l-sub breset of a breset is equivalent to the notion

of sub digraph of a digraph and the notion of sub breset of a breset is equivalent to the notion of the induced sub digraph of

a digraph.

(f). For any breset X

(i). Being l-sub breset is a binary relation on Sl(X ) making it a breset and further, a poset.

(ii). Being u-sub breset is a binary relation on Su(X ) making it a breset and further, a poset.

(iii). Being sub breset is a binary relation on S(X ) making it a breset and further, a poset.

Clearly, (1). Every sub breset is a lower (upper) sub breset.

(2). An l-sub breset need not be a sub breset.

(3). A u-sub breset need not a sub breset.

(4). For any breset B and for any subset A of B, the subset βA = βB ∩ (A × A) of B × B, is such that A is always a sub

breset of B, called the induced sub breset.

We now recall the notions of union and intersection for bresets which essentially generalize the existing notions of union (cf.

P28, Jorgen-Gregory [10]) and intersection (cf. P195, Jorgen-Gregory [10]) for digraphs and next we use these notions to

investigate order structures on collections of substructures of bresets.

(g). For any family of bresets (Ai)i∈I , A, where A = ∩i∈IAi, βA = ∩i∈IβAi , is a breset.

(h). For any family of bresets (Ai)i∈I , the breset A defined as in (g) above is called the intersection of bresets (Ai)i∈I and

is denoted by ∩i∈IAi.

In other words, for bresets (Ai)i∈I , (i) ∩i∈IAi = (∩i∈IAi,∩i∈IβAi) (ii) β∩i∈IAi = ∩i∈IβAi . Notice that the notion of

intersection for both graphs and digraphs is available as follows: Refer page 177, Jorgen-Gregory [10] for finite intersection

of digraphs with the same vertex set, refer page 3, Diestel [7] for intersection of graphs.

(i). For any family of bresets (Ai)i∈I , A where A = ∪i∈IAi, βA = ∪i∈IβAi , is a breset.

(j). For any family of bresets (Ai)i∈I , the breset A defined as in (i) above is called the union of bresets (Ai)i∈I and is

denoted by ∪i∈IAi.

In other words, for bresets (Ai)i∈I , (i) ∪i∈IAi = (∪i∈IAi,∪i∈IβAi) (ii) β∪i∈IAi = ∪i∈IβAi . Notice that, (i) the notion of

union is already available for (pseudo) (di) graphs etcetera and it is not unique. For example, refer page 10, Jorgen-Gregory

[10] for union of pseudo digraphs, refer page 3. Diestel [7] for union of graphs (ii) the union (di) graphs can become a pseudo

(di) graph and (iii) although when the underlying set is finite, the notions of digraph and breset are exactly the same, when

one takes their union for a pair of digraphs, one may end up getting a pseudo digraph in which more than two edges can

exist between a pair of nodes, which will not happen in our union because the set union does not allow multiple entries for a

same set element (as in a multi set).

Although we could define arbitrary union and arbitrary intersection for even class-indexed families of bresets in the same way

as we defined above, we do not take such collection of bresets for fear of unions of such collections of bresets can easily become

a non-breset and in fact could make a pair of classes (cf. any book on Category Theory, for example, Herrlich-Strecker [9]).

However, an application of the union and the intersection of a set-indexed family of bresets to (lower, upper) sub bresets of

a given breset will be useful as can be seen in the following results.
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(k). For any breset X and for any set indexed family of l-sub bresets (Ai)i∈I of X , the set A = ∩i∈IAi together with the

binary relation βA = ∩i∈IβAi is a subsystem A of X such that

(i). A = ∩i∈IAi is an l-sub breset of X

(ii). A is an l-sub breset of Ai for all i ∈ I

(iii). whenever B is an l-sub breset of Ai for all i ∈ I, B is an l-sub breset of A.

(l). For any breset X and for any family of l-sub bresets (Ai)i∈I of X , the l-sub breset A defined as in (k) is called the

intersection of l-sub bresets (Ai)i∈I and is denoted by ∩i∈IAi.

(m). For any breset X and for any set indexed family of l-sub bresets (Ai)i∈I of X , the set A = ∪i∈IAi together with the

binary relation βA = ∪i∈IβAi is a subsystem A of X such that

(i). A = ∪i∈IAi is an l-sub breset of X

(ii). each Ai is an l-sub breset of A

(iii). whenever Ai is an l-sub breset of B for all i ∈ I, A is an l-sub breset of B.

(n). For any breset X and for any family of l-sub bresets (Ai)i∈I of X , the l-sub breset A defined as in (m) is called the

union of l-sub bresets (Ai)i∈I and is denoted by ∪i∈IAi.

(o). The set of all l-sub bresets of a breset is a complete lattice.

(p). For any breset X and for any family of u-sub bresets (Ai)i∈I of X , the set A = ∩i∈IAi together with the binary relation

βA = ∩i∈IβAi is a subsystem A of X such that

(i). A = ∩i∈IAi is a u-sub breset of X but not necessarily of Ai

(ii). whenever B is a u-sub breset of Ai for all i ∈ I, then B is a u-sub breset of A.

An analogous of result with l-sub breset replaced by u-sub breset in (m) is no longer true. More precisely, for any breset X

and for any family of u-sub bresets (Ai)i∈I of X , the set A = ∪i∈IAi together with the binary relation βA = ∪i∈IβAi is a

breset. However

(1). A = ∪i∈IAi is not necessarily a u-sub breset of X .

(2). Ai is not necessarily a u-sub breset of A = ∪i∈IAi.

(3). whenever B is a u-sub breset of X such that Ai is a u-sub breset of B then A is not necessarily a u-sub breset of B.

(q). For any breset X and for any family of sub bresets (Ai)i∈I of X , the set A = ∩i∈IAi together with the binary relation

βA = ∩i∈IβAi is a subsystem of X such that

(i). ∩i∈IAi is a sub breset of X

(ii). ∩i∈IAi is a sub breset of Ai for all i ∈ I

(iii). whenever B is a sub breset of Ai for all i ∈ I, B is a sub breset of A.

(r). For any breset X , the set S(X ) of all sub bresets of X is an intersection complete semi lattice.

An analogous result with l-sub breset replaced by sub bresets in (m), is no longer true.

More precisely, for any breset X and for any family of sub bresets (Ai)i∈I of X , the set A = ∪i∈IAi together with the binary

relation βA = ∪i∈IβAi is a breset. However,

(1). A = ∪i∈IAi is not necessarily a sub breset of X .

(2). Ai is not necessarily a sub breset of the breset A = ∪i∈IAi.

(3). If B is a sub breset of X such that Ai is a sub breset of B, then A is not necessarily a sub breset of B.

(s). For any set indexed family of bresets (Ai)i∈I , Ai0 is a sub breset of the breset ∪i∈IAi if and only if Ai0 is a u-sub breset

of Ai for all i ∈ I.

(t). For any set indexed family of bresets (Ai)i∈I , Ai0 is a sub breset of the breset ∩i∈IAi if and only if Ai0 is an l-sub

breset of Ai for all i ∈ I.
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(u). For any set indexed family of bresets (Ai)i∈I , A = ∪i∈iAi is a breset such that

(i). for each i ∈ I, Ai is an l-sub breset of A and (ii) if B is any breset such that Ai is an l-sub breset of B for each i ∈ I

then A is an l-sub breset of B.

(v). For any set indexed family of bresets (Ai)i∈I , A = ∩i∈iAi is a breset such that

(i). for each i ∈ I, A is an l-sub breset of Ai and (ii) if B is any breset such that B is an l-sub breset of Ai for each i ∈ I

then B is an l-sub breset of A.

3. Products of Bresets

In this section, the notions of J-conjunctive product, J- disjunctive product and j0-sectional product are introduced for a

family of bresets and examples are mentioned for the same.

Definitions and Statements 3.1. Let (Ai)i∈I be a family of bresets and J be a subset of the index set I. Then

(1). The J-conjunctive product of the bresets (Ai)i∈I , denoted by ΠJ,c
i∈IAi, is defined by the breset A , where A = Πi∈IAi

and βA ⊆ A×A also denoted by ΠJ,c
i∈IβAi , is defined by: for all f, g ∈ A, (f, g) ∈ βA iff (fj, gj) ∈ βAj for all j ∈ J .

In other words, (a). ΠJ,c
i∈IAi = (Πi∈IAi,Π

J,c
i∈IβAi)

(b). β
Π

J,c
i∈I
Ai

= ΠJ,c
i∈IβAi

(c). for all f, g ∈ A, (f, g) ∈ ΠJ,c
i∈IβAi iff for all j ∈ J, (fj, gj) ∈ βAj .

In particular, the I-conjunctive product is simply called the conjunctive product of (Ai)i∈I and is denoted by Πc
i∈IAi. Further,

whenever I = {1, 2}, the conjunctive product Πc
i∈IAi is denoted by A1 ×c A2 and βΠc

i∈I
Ai is denoted by βA1 ×c βA2 .

Clearly, (a). ΠJ,c
i∈IAi = Φ breset whenever Ai = φ for some i ∈ I

(b). ΠJ,c
i∈IβAi = φ whenever βAj = φ for some j ∈ J or Ai = φ for some i ∈ I

(c). ΠJ,c
i∈IβAi = A × A whenever J = φ, where A = Πi∈IAi. However, the converse is not necessarily true as shown in

Example 3.2 below.

(2). The J-disjunctive product of the bresets (Ai)i∈I , denoted by ΠJ,d
i∈IAi, is defined by the breset A, where A = Πi∈IAi and

βA ⊆ A×A also denoted by ΠJ,d
i∈IβAi , is defined by: for all f, g ∈ A, (f, g) ∈ βA iff (fj, gj) ∈ βAj for some j ∈ J .

In other words, (a). ΠJ,d
i∈IAi = (Πi∈IAi,Π

J,d
i∈IβAi)

(b). β
Π

J,d
i∈I
Ai

= ΠJ,d
i∈IβAi

(c). for all f, g ∈ A, (f, g) ∈ ΠJ,d
i∈IβAi iff (fj, gj) ∈ βAj for some j ∈ J .

In particular, the I-disjunctive product is simply called the disjunctive product of (Ai)i∈I and is denoted by Πd
i∈IAi.

Further, whenever I = {1, 2}, the disjunctive product Πd
i∈IAi is denoted by A1×dA2 and βΠd

i∈I
Ai

is denoted by βA1 ×d βA2 .

Clearly, (a). ΠJ,d
i∈IAi = Φ breset whenever Ai = φ for some i ∈ I

(b). ΠJ,d
i∈IβAi = φ whenever βAj = φ for all j ∈ J or Ai = φ for some i ∈ I

(c). ΠJ,d
i∈IβAi = φ whenever J = φ. However, the converse is not necessarily true as shown in Example 3.3 below.

(3). The j0-(sectional) product of the bresets (Ai)i∈I , denoted by ΠI,j0
i∈I Ai, is defined by the breset A, where A = Πi∈IAi

and βA ⊆ A×A also denoted by ΠI,j0
i∈I βAi is defined by: for all f, g ∈ A, (f, g) ∈ βA iff (fj0, gj0) ∈ βAj0

.

In other words, (a). ΠI,j0
i∈I Ai = (Πi∈IAi,Π

I,j0
i∈I βAi)

(b). β
Π

I,j0
i∈I
Ai

= ΠI,j0
i∈I βAi

(c). for all f, g ∈ A, (f, g) ∈ ΠI,j0
i∈I βAi iff (fj0, gj0) ∈ βAj0

.

Further, whenever I = {1, 2} and j0 = 1, the j0-sectional product Πj0
i∈IAi is denoted by A1 ×1 A2 and β

Π
I,j0
i∈I
Ai

is denoted

by βA1 ×1 βA2 .

Clearly, (a). ΠI,j0
i∈I Ai = Φ breset whenever Ai = φ for some i ∈ I
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(b). ΠI,j0
i∈I βAi = φ whenever βAj0

= φ or Aj0 = φ.

Observe that when J = {j0}, all the three products, namely, J-conjunctive product, J-disjunctive product and j0-sectional

product are the same.

Example 3.2. Let I = J = {1, 2}, Ai = {ai}, βAi = {aiai} where i = 1,2. Then A = A1 × A2, A × A = {a1a2a1a2},

Πc
i∈IβAi = {a1a2a1a2} = A×A but J 6= φ.

Example 3.3. Let I = J = {1, 2}, Ai = {ai}, βAi = φ where i = 1,2. Then A = A1 ×A2, A×A = {a1a2a1a2}, Πd
i∈IβAi

= φ and J 6= φ.

For more examples of the above notions, please see Examples 4.2, 5.2, 6.2, 6.5, 7.5-7.9, 7.13-7.17.

Clearly, (1). ΠJ,c
i∈IAi = Φ breset if and only if Aj0 = Φ breset for some j0 ∈ J .

(2). β
Π

J,c
i∈I
Ai

= φ if and only if there exists j0 ∈ J such that βAj0
= φ; when Ai 6= φ for all i ∈ I and J 6= φ.

(3). ΠJ,d
i∈IAi = Φ if and only if Ai0 = Φ for some i0 ∈ I.

(4). β
Π

J,d
i∈I
Ai

= φ if and only if for all j ∈ J , βAj = φ; whenever Ai 6= φ for all i ∈ I and J 6= φ.

(5). ΠI,j0
i∈I Ai = Φ breset if and only if Ai0 = Φ breset for some i0 ∈ I.

(6). β
Π

I,j0
i∈I
Ai

= φ if and only if βAj0
= φ; whenever each Ai 6= φ for i ∈ I.

The following Example shows that in all (4),(2) and (6) above, each Ai is non-empty, is necessary.

Example 3.4. Let I = {1, 2}, J = {2}, j0 = {2}, A1 = βA1 = φ, A2 = {b}, βA2 = {bb} and C = A1 ×d A2. Then C =

A1 ×A2 = φ = βC, so that βA1×cA2 = βA1×dA2
= βA1×2A2

= φ but βA2 6= φ.

4. Properties of Products

In this section first we study some natural relations between the conjunctive product, disjunctive product, sectional product

of a family of bresets and later we show that, the conjunctive product is in fact the breset intersection of sectional products

and the disjunctive product is in fact the breset union of sectional products.

Theorem 4.1. For any family of bresets (Ai)i∈I , for any φ 6= J ⊆ I and for any j0 ∈ J , the following are true:

(1). ΠJ,c
i∈IAi is an l-sub breset of ΠI,j0

i∈I Ai

(2). ΠI,j0
i∈I Ai is an l-sub breset of ΠJ,d

i∈IAi.

Proof. (1): From the definitions of l-sub breset, J-conjunctive product and j0-product, it is enough to show that ΠJ,c
i∈IβAi

⊆ ΠI,j0
i∈I βAi . Let α ∈ ΠJ,c

i∈IβAi . α = (f, g), f, g ∈ A = Πi∈IAi, (fi, gi) ∈ βAi for all i ∈ I, which implies α = (f, g),

f, g ∈ Πi∈IAi, (fj0, gj0) ∈ βAj0
in particular, which in turn implies α = (f, g) ∈ ΠI,j0

i∈I βAi . Therefore, ΠJ,c
i∈IβAi ⊆ ΠI,j0

i∈I βAi

or ΠJ,c
i∈IAi is an l-sub breset of ΠI,j0

i∈I Ai.

(2): From the definitions of l-sub breset, J-disjunctive product and j0-product, it is enough to show that ΠI,j0
i∈I βAi ⊆

ΠJ,d
i∈IβAi . Let α ∈ ΠI,j0

i∈I βAi . α = (f, g), f, g ∈ A = Πi∈IAi, (fj0, gj0) ∈ βAj0
, which implies α = (f, g), f, g ∈ Πi∈IAi,

(fj0, gj0) ∈ βAj0
for some j0 ∈ I which in turn implies α = (f, g) ∈ ΠJ,d

i∈IβAi . Therefore, ΠI,j0
i∈I βAi ⊆ ΠJ,d

i∈IβAi or ΠI,j0
i∈I Ai is

an l-sub breset of ΠJ,d
i∈IAi.

Strict inequalities can hold in previous Theorem 4.1 above as shown in the following Example:

Example 4.2. Let I = J = {1, 2}, A1 = {p, q}, A2 = {a, b, c}, βA1 = {pq} and βA2 = {ab, ac, bc}. Then A1 × A2 =

{pa, pb, pc, qa, qb, qc}, (A1×A2)2 = {papa, papb, papc, paqp, paqb, paqc, pbpa, pbpb, pbpc, pbqp, pbqb, pbqc, pcpa, pcpb, pcpc, pcqp,

pcqb, pcqc, qapa, qapb, qapc, qaqa, qaqb, qaqc, qbpa, qbpb, qbpc, qbqp, qbqb, qbqc, qcpa, qcpb, qcpc, qcqa, qcqb, qcqc},
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ΠJ,c
i∈IβAi = {paqb, paqc, pbqc};

ΠI,1
i∈IβAi = {paqa, paqb, paqc, pbqa, pbqb, pbqc, pcqa, pcqb, pcqc};

ΠI,2
i∈IβAi = {papb, papc, paqb, paqc, pbpc, pbqc, qapb, qapc, qaqb, qaqc, qbpc, qbqc};

ΠJ,d
i∈IβAi = {paqa, paqb, paqc, pbqa, pbqb, pbqc, pcqa, pcqb, pcqc, papb, papc, pbpc, qapb, qapc, qaqb, qaqc, qbpc, qbqc}.

Clearly, strict inequalities in (1) and (2) of 4.1 above are holding.

Corollary 4.3. For any family of bresets (Ai)i∈I , for any φ 6= J ⊆ I, the following are true:

(1). ΠJ,c
i∈IAi = ∩j0∈J(ΠI,j0

i∈I Ai)

(2). ∪j0∈J(ΠI,j0
i∈I Ai) = ΠJ,d

i∈IAi.

Proof. (1): From the definitions of equality, intersection, J-conjunctive product and j0-product of bresets, the u-sets on

both sides are the same and so, it is enough to show that ΠJ,c
i∈IβAi = ∩j0∈J(ΠI,j0

i∈I βAi).

From the proof of 4.1(1), it follows that ΠJ,c
i∈IβAi ⊆ ∩j0∈J(ΠI,j0

i∈I βAi).

If ∩j0∈J(ΠI,j0
i∈I βAi) is empty, then any way ∩j0∈J(ΠI,j0

i∈I βAi) ⊆ ΠJ,c
i∈IβAi .

Let α ∈ ∩j0∈J(ΠI,j0
i∈I βAi). Since ∩j0∈J(ΠI,j0

i∈I βAi) ⊆ Πi∈IAi × Πi∈IAi, α = (f, g), where f, g ∈ Πi∈IAi. Now α ∈ ΠI,j0
i∈I βAi

for all j0 ∈ J implies (fj0, gj0) ∈ βAj0
for all j0 ∈ J which implies (f, g) ∈ ΠJ,c

i∈IβAi or ∩j0∈J(ΠI,j0
i∈I βAi) ⊆ ΠJ,c

i∈IβAi .

(2): From the definitions of equality, union, J-disjunctive product and j0-product of bresets, the u-sets on both sides are

the same and so, it is enough to show that ∪j0∈J(ΠI,j0
i∈I βAi) = ΠJ,d

i∈IβAi .

From the proof of 4.1(2), it follows that ∪j0∈J(ΠI,j0
i∈I βAi) ⊆ ΠJ,d

i∈IβAi .

If ΠJ,d
i∈IβAi is empty, then any way Πd

i∈IβAi ⊆ ∪j0∈J(ΠI,j0
i∈I βAi).

Let α ∈ ΠJ,d
i∈IβAi . Since ΠJ,d

i∈IβAi ⊆ Πi∈IAi × Πi∈IAi, α = (f, g), where f, g ∈ Πi∈IAi. Now α ∈ ΠJ,d
i∈IβAi implies there

exists j0 ∈ J , (fj0, gj0) ∈ βAj0
which implies (f, g) ∈ ∪j0∈J(ΠI,j0

i∈I βAi) or ΠJ,d
i∈IβAi ⊆ ∪j0∈J(ΠI,j0

i∈I βAi).

5. Factors of Bresets

In this section, the notions of K-conjunctive factor, K- disjunctive factor and k0-sectional factor are introduced for a breset

whose underlying set is a Cartesian product of a family of sets and examples are mentioned for the same.

Definitions and Statements 5.1. Let A be a breset such that the u-set A of A is the Cartesian product A = Πi∈IAi of

sets (Ai)i∈I and K ⊆ I. Then

(1). The K-conjunctive factor of the breset A, denoted by ∧KA, is defined by the breset B where B = ∩i∈IAi and βB ⊆ B×B,

also denoted by β∧KA, is defined by: for all a, b ∈ B, (a, b) ∈ βB iff there exists (f, g) ∈ βA such that (fk, gk) = (a, b) for

all k ∈ K.

In other words, (a). ∧KA = (∩i∈IAi, β∧KA)

(b). for all a, b ∈ ∩i∈IAi, (a, b) ∈ β∧KA if and only if there exists (f, g) ∈ βA such that (fk, gk) = (a, b) for all k ∈ K.

Clearly, β∧KA = ∩i∈IAi × ∩i∈IAi whenever βA = φ or K = φ. However, the converse is not necessarily true as shown in

example later.

The I-conjunctive factor of the breset A is simply called the conjunctive factor of A and is denoted by ∧A.

(2). The K-disjunctive factor of the breset A, denoted by ∨KA, is defined by the breset B where B = ∪i∈IAi and βB ⊆ B×B,

also denoted by β∨KA, is defined by: for a, b ∈ B, (a, b) ∈ βB iff there exists (f, g) ∈ βA such that (fk0, gk0) = (a, b) for

some k0 ∈ K.

In other words, (a). ∨KA = (∪i∈IAi, β∨KA)

(b). for all a, b ∈ ∪i∈IAi, (a, b) ∈ β∨KA if and only if there exists (f, g) ∈ βA such that (fk0, gk0) = (a, b) for some k0 ∈ K.
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Clearly, β∨KA = Φ whenever βA = φ or K = φ. However, the converse is not necessarily true as shown in Example 5.2

below.

The I-disjunctive factor of the breset A is simply called the disjunctive factor of A and is denoted by ∨A.

(3). The k0-(sectional) factor of the breset A, denoted by (A)k0 , is defined by the breset B where B = Ak0 and βB ⊆ B×B,

also denoted by β(A)k0
, is defined by: for all a, b ∈ B, (a, b) ∈ βB iff there exists (f, g) ∈ βA such that (fk0, gk0) = (a, b).

In other words, (a). (A)k0 = (Ak0 , β(A)k0
)

(b). for all a, b ∈ Ak0 , (a, b) ∈ β(A)k0
if and only if there exists (f, g) ∈ βA such that (fk0, gk0) = (a, b).

Clearly, whenever the set Ak0 = φ, (A)k0 = Φ, but not conversely as will be seen in an example later.

Example 5.2. Let I = K = {1, 2}, A1 = {b, a}, A2 = {c, a}, βA = {aaaa} and B = ∧KA. Then B = A1 ∩A2 = {a}, βB

= β∧KA = {aa} = B ×B = ∩i∈IAi × ∩i∈IAi but βA 6= φ and J = {1, 2} 6= φ.

For more examples of the above notions, please see Examples 5.2, 6.2, 6.5, 7.5-7.9, 7.13-7.17.

6. Properties of Factors

Lemma 6.1. For any breset A whose u-set A is the Cartesian product Πi∈IAi of a family of sets (Ai)i∈I , and for any

φ 6= K ⊆ I, the following are true:

(1). ∪k∈K(A)k = ∨KA

(2). ∧KA is an l-sub breset of ∩k∈K(A)k where (A)k is the k-factor of the breset A .

Proof. (1): From the definitions of (i) equality of bresets (ii) union of bresets and (iii) K-disjunctive factor of a breset,

it is enough if we show that the binary relations on both sides are the same. In other words, it is enough to show that

∪i∈Kβ(A)i = β∨KA.

(a) Now, (a, b) ∈ ∪k∈Kβ(A)k implies there exists k0 ∈ K such that (a, b) ∈ β(A)k0
which implies there exists (f, g) ∈ βA such

that fk0 = a, gk0 = b and k0 ∈ K which in turn implies (a, b) ∈ β∨KA. Therefore, ∪k∈Kβ(A)k ⊆ β∨KA.

(b) (a, b) ∈ β∨KA implies there exists k0 ∈ K, (f, g) ∈ βA such that fk0 = a and gk0 = b which in turn implies (a, b) ∈

∪k∈Kβ(A)k . Therefore, β∨KA ⊆ ∪k∈Kβ(A)k .

(2): From the definitions of (i) l-sub breset (ii) intersection of bresets and (iii) K-conjunctive factor of a breset, it is enough

if we show that β∧KA ⊆ β∩k∈K(A)k = ∩k∈Kβ(A)k . (a, b) ∈ β∧KA implies there exists (f, g) ∈ βA such that fk = a and gk =

b for all k ∈ K which in turn implies (a, b) ∈ β(A)k for all k ∈ K or (a, b) ∈ ∩k∈Kβ(A)k . Therefore, β∧KA ⊆ ∩k∈Kβ(A)k .

A strict inequality can hold in Lemma 6.1(2) above as shown in the following Example:

Example 6.2. Let I = K = {1, 2}, A1 = {a, b}, A2 = {b, c}. Then A1 ∩ A2 = {b}, A = A1 × A2 = {ab, ac, bb, bc} and

A × A = {abab, abac, abbb, abbc, acab, acac, acbb, acbc, bbab, bbac, bbbb, bbbc, bcab, bcac, bcbb, bcbc}. Let βA ⊆ A × A be defined

by βA = {bcbc, abab}. Then β∧A = φ, β(A)1 = {bb, aa}, β(A)2 = {cc, bb} and β(A)1 ∩ β(A)2 = {bb} ⊃ β∧A = φ.

Note: In the above example if βA ⊆ A×A is given by βA = {bbbb}, then β∧A = {bb} = β(A)1 ∩ β(A)2 = {bb} ∩ {bb} = {bb}.

So equality can hold some times in Lemma 6.1(2) above.

Corollary 6.3. For any breset A whose u-set A is the Cartesian product Πi∈IAi of a family of sets (Ai)i∈I , and for any

φ 6= K ⊆ I, the following are true:

(a). the K-conjunctive factor ∧KA is an l-sub breset of k-factor (A)k for all k ∈ K

(b). the k-factor (A)k is an l-sub breset of the K-disjunctive factor ∨KA for all k ∈ K.

117



Products and Factors of Bresets

Proof. (a) It follows from 6.1(2). (b) It follows from 6.1(1).

Theorem 6.4. For any pair of bresets A, B whose u-sets are the Cartesian product Πi∈ICi of sets (Ci)i∈I such that A is

an l-sub breset of B and for any φ 6= K ⊆ I, the following are true:

(a). the K-conjunctive factor ∧KA is an l-sub breset of the k-conjunctive factor ∧KB

(b). the K-disjunctive factor ∨KA is an l-sub breset of K-disjunctive factor ∨KB

(c). k0- factor (A)k0 is an l-sub breset of k0- factor (B)k0 for all k0 ∈ K.

Proof. (a): From the definitions of l-sub breset and K-conjunctive factor of a breset, it is enough to show that β∧KA ⊆

β∧KB. Let α ∈ β∧KA. Then α = (a, b), where a, b ∈ C = ∩i∈ICi and there exist (f, g) ∈ βA such that (fk, gk) = (a, b) for

all k ∈ K. Since βA ⊆ βB, (f, g) ∈ βB is such that (fk, gk) = (a, b) for all k ∈ K, a, b ∈ C; which of course implies (a, b) =

α ∈ β∧KB or β∧KA ⊆ β∧KB.

(b): From the definitions of l-sub breset and K-disjunctive factor of a breset, it is enough to show that β∨KA ⊆ β∨KB. Let

α ∈ β∨KA. Then α = (a, b), where a, b ∈ C = ∪i∈ICi and there exist (f, g) ∈ βA such that (fk, gk) = (a, b) for some k ∈ K.

Since βA ⊆ βB, (f, g) ∈ βB is such that (fk, gk) = (a, b) for some k ∈ K, a, b ∈ C; which of course implies (a, b) = α =

β∨KB or β∨KA ⊆ β∨KB.

(c): From the definitions of l-sub breset and k0-factor of a breset, it is enough to show that β(A)k0
⊆ β(B)k0

. Let α ∈ β(A)k0
.

Then α = (a, b), where a, b ∈ C = Ck0 and there exist (f, g) ∈ βA such that (fk0, gk0) = (a, b). Since βA ⊆ βB, (f, g) ∈ βB

is such that (fk0, gk0) = (a, b), a, b ∈ C; which implies (a, b) = α ∈ β(B)k0
or β(A)k0

⊆ β(B)k0
.

A strict inequality can hold in all (a), (b) and (c) of Theorem 6.4 above as shown in the following Example:

Example 6.5. Let I = {1, 2, 3}, φ 6= K = {1, 2}, C1 = {a, b}, C2 = {a, q}, C3 = {a, n}, C1 × C2

= {aa, aq, ba, bq}, C1 × C2 × C3 = {aaa, aan, aqa, aqn, baa, ban, bqa, bqn}, βA, βB ⊆ (C1 × C2 × C3)2 =

{aaaaaa, aaaaan, aaaaqa, aaaaqn, aaabaa, aaaban, aaabqa, aaabqn, aanaaa, aanaan, aanaqa, aanaqn, aanbaa, aanban,

aanbqa, aanbqn, aqaaaa, aqaaan, aqaaqa, aqaaqn, aqabaa, aqaban, aqabqa, aqabqn, aqnaaa, aqnaan, aqnaqa, aqnaqn, aqnbaa,

aqnban, aqnbqa, aqnbqn, baaaaa, baaaan, baaaqa, baaaqn, baabaa, baaban, baabqa, baabqn, banaaa, banaan, banaqa, banaqn,

banbaa, banban, banbqa, banbqn, bqaaaa, bqaaan, bqaaqa, bqaaqn, bqabaa, bqaban, bqabqa, bqabqn, bqnaaa, bqnaan, bqnaqa,

bqnaqn, bqnbaa, bqnban, bqnbqa, bqnbqn}, βA = {aaaban, bqabqa}, βB = {aaaaaa, aaaban, bqabqa, banaqn}. Then

βA ⊆ βB, ∩i∈ICi = {a}, β∧KA = φ, β∧KB = {aa}, β∨KA = {ab, aa, an, bb, qq}, β∨KB = {aa, ab, an, bb, qq, ba, aq, nn},

β(A)1 = {ab, bb} and β(B)1 = {aa, ab, bb, ba}. Clearly, strict inequalities in all of (a), (b), and (c) of 6.4 above are holding.

7. Properties of Products Versus Factors

In this section, first we study a. for a family of bresets, several relations between various products of the family of bresets

and various factors of these products and b. for a breset whose underlying set is Cartesian product of a family of sets,

several relations between various factors of the breset and various products of these factors. Next, we justify and establish

the poset diagram shown in the end of this section after Corollary 7.14 whose nodes are the various products of a fixed

family of bresets and various factors of these products, and whose upward edge between any two nodes is the relation, is an

l-sub breset of.

Lemma 7.1. For any family of bresets (Ai)i∈I , the following are true:

(a)(i) ∧K(ΠJ,c
i∈IAi) is an l-sub breset of ∧K(ΠI,j0

i∈I Ai) (ii) ∧K(ΠI,j0
i∈I Ai) is an l-sub breset of ∧K(ΠJ,d

i∈IAi)

(b)(i) (ΠJ,c
i∈IAi)k0 is an l-sub breset of (ΠI,j0

i∈I Ai)k0 (ii) (ΠI,j0
i∈I Ai)k0 is an l-sub breset of (ΠJ,d

i∈IAi)k0
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(c)(i) ∨K(ΠJ,c
i∈IAi) is an l-sub breset of ∨K(ΠI,j0

i∈I Ai) (ii) ∨K(ΠI,j0
i∈I Ai) is an l-sub breset of ∨K(ΠJ,d

i∈IAi)

(d)(i) ∧K(ΠJ,c
i∈IAi) is an l-sub breset of (ΠJ,c

i∈IAi)k0 (ii) (ΠJ,c
i∈IAi)k0 is an l-sub breset of ∨K(ΠJ,c

i∈IAi)

(e)(i) ∧K(ΠI,j0
i∈I Ai) is an l-sub breset of (ΠI,j0

i∈I Ai)k0 (ii) (ΠI,j0
i∈I Ai)k0 is an l-sub breset of ∨K(ΠI,j0

i∈I Ai)

(f)(i) ∧K(ΠJ,d
i∈IAi) is an l-sub breset of (ΠJ,d

i∈IAi)k0 (ii) (ΠJ,d
i∈IAi)k0 is an l-sub breset of ∨K(ΠJ,d

i∈IAi).

Proof. From 4.1, 6.4 and 6.3, we have, (i)(a) ΠJ,c
i∈IAi is an l-sub breset of ΠI,j0

i∈I Ai (b) ΠI,j0
i∈I Ai is an l-sub breset of ΠJ,d

i∈IAi

(ii) (a) ∧KA is an l-sub breset of ∧KB (b) ∨KA is an l-sub breset of ∨KB (c) (A)k0 is an l-sub breset of (B)k0 where A, B

are bresets with the same u-set A = Πi∈IAi such that A is an l-sub breset of B.

(iii) (a) ∧KA is an l-sub breset of (A)k0 and (b) (A)k0 is an l-sub breset of ∨KA, where A is a breset with the u-set A =

Πi∈IAi.

(a): (i) It follows from (i)(a) and (ii)(a). (ii) It follows from (i)(b) and (ii)(a).

(b): (i) It follows from (i)(a) and (ii)(c). (ii) It follows from (i)(b) and (ii)(c).

(c): (i) It follows from (i)(a) and (ii)(b). (ii) It follows from (i)(b) and (ii)(b).

(d)(i), (e)(i) and (f)(i) follow from (iii)(a). (d)(ii), (e)(ii) and (f)(ii) follow from (iii)(b).

Corollary 7.2. For any breset A, the following are true:

(a)(i) ∧K(ΠJ,c
i∈I(A)i) is an l-sub breset of ∧K(ΠI,j0

i∈I (A)i) (ii) ∧K(ΠI,j0
i∈I (A)i) is an l-sub breset of ∧K(ΠJ,d

i∈I(A)i)

(b)(i) (ΠJ,c
i∈I(A)i)k0 is an l-sub breset of (ΠI,j0

i∈I (A)i)k0 (ii) (ΠI,j0
i∈I (A)i)k0 is an l-sub breset of (ΠJ,d

i∈I(A)i)k0

(c)(i) ∨K(ΠJ,c
i∈I(A)i) is an l-sub breset of ∨K(ΠI,j0

i∈I (A)i) (ii) ∨K(ΠI,j0
i∈I (A)i) is an l-sub breset of ∨K(ΠJ,d

i∈I(A)i)

(d)(i) ∧K(ΠJ,c
i∈I(A)i) is an l-sub breset of (ΠJ,c

i∈I(A)i)k0 (ii) (ΠJ,c
i∈I(A)i)k0 is an l-sub breset of ∨K(ΠJ,c

i∈I(A)i)

(e)(i) ∧K(ΠI,j0
i∈I (A)i) is an l-sub breset of (ΠI,j0

i∈I (A)i)k0 (ii) (ΠI,j0
i∈I (A)i)k0 is an l-sub breset of ∨K(ΠI,j0

i∈I (A)i)

(f)(i) ∧K(ΠJ,d
i∈I(A)i) is an l-sub breset of (ΠJ,d

i∈I(A)i)k0 (ii) (ΠJ,d
i∈I(A)i)k0 is an l-sub breset of ∨K(ΠJ,d

i∈I(A)i).

Proof. It follows from 7.1.

Theorem 7.3. For any index set I, for any pair of subsets J,K of I and for any family of bresets (Ai)i∈I , the following

are true:

(1). always ∩i∈IAi is an l-sub breset of ∧K(ΠJ,c
i∈IAi); however equality holds whenever I = J = K

(2). (ΠI,j0
i∈I Ai)k0 = Ak0 , the k0-th breset of the family of bresets (Ai)i∈I , whenever each u-set Ai of the breset Ai is non

empty and k0 = j0 and J = I

(3). ∨K(ΠJ,c
i∈IAi) = ∪i∈IAi whenever each binary relation βAi of the breset Ai is non empty and I = J = K

(4). (ΠJ,c
i∈IAi)k0 = Ak0 , the k0-th breset of the family of bresets (Ai)i∈I , whenever each binary relation βAi of the breset Ai

is non empty and J = I.

Proof. (1): Let A = ΠJ,c
i∈iAi. First observe that, from 3.1(1), 5.1(1) and 2.1(h), we get that the u-set of both sides is

∩i∈IAi and if this is empty we have nothing to prove as both sides equal to the empty breset Φ. So let it be non empty. By

2.1(h), it is enough to show that ∩i∈IβAi ⊆ β∧KA .

(i) if ∩i∈IβAi is empty, we have nothing to prove. If α ∈ ∩i∈IβAi , α ∈ βAi ⊆ Ai × Ai, for all i ∈ I. Consequently, there

exists a, b ∈ ∩i∈IAi such that α = (a, b). Then one can define f, g ∈ Πi∈IAi such that for all i ∈ I, (fi, gi) = (a, b) =

α ∈ βAi , so that (f, g) ∈ β
Π

J,c
i∈I
Ai

= βA for any φ 6= J ⊆ I and α = (a, b) ∈ β∧KA for any φ 6= K ⊆ I or ∩i∈IβAi ⊆ β∧KA.

(ii) Let I = J = K. If β∧A is empty then of course, β∧A ⊆ ∩i∈IβAi . If α ∈ β∧A, then there exists (f, g) ∈ βA such that

(fi, gi) = (a, b) = α for all i ∈ I and a, b ∈ ∩i∈IAi. But (f, g) ∈ βA = βΠc
i∈I
Ai implies, by the definition of conjunctive

product, α = (a, b) = (fi, gi) ∈ βAi for all i ∈ I or α ∈ ∩i∈IβAi , so that β∧A ⊆ ∩i∈IβAi .

(2): First observe that the u-sets of bresets on both sides are same that is Ak0 which is non empty by assumption. Hence
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it is enough to show that the binary relations of bresets on both sides are the same.

Let A = ΠI,j0
i∈I Ai. Then we have to show that β(A)k0

= βAk0
.

(i) Let α ∈ β(A)k0
. Then by the definition of k0-factor of A (5.1(3)), α = (a, b) for some a, b ∈ Ak0 and there exists

f, g ∈ βA such that (fk0, gk0) = (a, b). But since A = Πj0
i∈IAi, k0 = j0 and (f, g) ∈ βA by 3.1(3), α = (a, b) = (fj0, gj0) =

(fk0, gk0) ∈ βAk0
, so that β(A)k0

⊆ βAk0
.

(ii) Let α ∈ βAk0
⊆ Ak0 ×Ak0 . Then α = (a, b) for some a, b ∈ Ak0 . Define f, g : I → ∪i∈IAi such that fk0 = a and gk0 =

b and fi, gi ∈ Ai for all i 6= k0. Such f, g exists in A = Πi∈IAi because Ai 6= φ for all i ∈ I. Then (f, g) ∈ Πj0
i∈IβAi because

k0 = j0 and (fj0, gj0) = (a, b) ∈ βAj0
= βAk0

.

Now α = (a, b) ∈ β(A)k0
because there exists (f, g) ∈ βA = Πj0

i∈IβAi such that (fj0, gj0) = (a, b), so that βAk0
⊆ β(A)j0

=

β(A)k0
.

(3): Let A = ΠJ,c
i∈IAi. First observe that, from 3.1(1), 5.1(2) and 2.1(j), we get that the u-set of bresets on both sides is

∪i∈IAi.

So it is enough to show that the binary relations of bresets on both sides are the same.

By 2.1(j), it is enough to show that β∨A = ∪i∈IβAi .

(i) Let α ∈ β∨A. Then α = (a, b) where there exists (f, g) ∈ βA, there exists k0 ∈ I such that α = (a, b) = (fk0, gk0). But

then (f, g) ∈ βA implies (fi, gi) ∈ βAi for all i ∈ I. In particular α = (a, b) = (fk0, gk0) ∈ βAk0
⊆ ∪i∈IβAi . So that β∨A

⊆ ∪i∈IβAi .

(ii) Let α ∈ ∪i∈IβAi . There exists k0 ∈ I such that α ∈ βAk0
. Since βAk0

⊆ Ak0 ×Ak0 , α = (a, b) for some a, b ∈ Ai0 .

Since each βAi 6= φ for all i ∈ I, there exists αi = (ai, bi) ∈ βAi for all i ∈ I − {k0}.

Let fi = ai for all i 6= k0 and gi = bi for all i 6= k0 and fi0 = a, gi0 = b. Then (f, g) ∈ Πc
i∈IβAi such that α = (fk0, gk0) =

(a, b) ∈ βAk0
implying that α ∈ β∨A, so that ∪i∈IβAi ⊆ β∨A.

(4): Let A = ΠJ,c
i∈IAi. First observe that, from 3.1(1), 5.1(3) we get that the u-set of bresets on both sides is Ak0 . So by

2.1(b), it suffices to show that the binary relations of the bresets on both sides are the same, namely β(A)k0
= βAk0

.

(i) If β(A)k0
is empty, then β(A)k0

⊆ βAk0
. Let α ∈ β(A)k0

. Then by 5.1(3), α = (a, b) where a, b ∈ Ak0 , there exists

(f, g) ∈ βA such that (fk0, gk0) = (a, b) = α. Since (f, g) ∈ βA by 3.1(1), α = (a, b) = (fk0, gk0) ∈ βAk0
, so that β(A)k0

⊆

βAk0
.

(ii) If βAk0
is empty, then βAk0

⊆ β(A)k0
. Let α ∈ βAk0

⊆ Ak0 × Ak0 . Then α = (a, b) for some a, b ∈ Ak0 . Now define

f, g : I → ∪i∈IAi such that (fk0, gk0) = (a, b) = α and (fi, gi) = ri ∈ βAi for i 6= k0. Notice that such (fi, gi) = ri exists

because βAi is non empty for all i ∈ I. Clearly, (f, g) ∈ Πc
i∈IβAi by its construction and α = (fj0, gj0) ∈ β(A)k0

, so that

βAk0
⊆ β(A)k0

.

Corollary 7.4. For any breset A, the following are true:

(1). ∧(Πc
i∈I(A)i) = ∩i∈I(A)i

(2). (ΠI,j0
i∈I (A)i)k0 = (A)k0 , the k0 factor of the breset A, whenever the u-set A of the breset A is non empty and k0 = j0

(3). ∨(Πc
i∈I(A)i) = ∪i∈I(A)i whenever the binary relation βA of the breset A is non empty

(4). (Πc
i∈I(A)i)k0 = (A)k0 , the k0 factor of the breset A, whenever the binary relation βA of the breset A is non empty.

Proof. It follows from 7.3 above.

The following Example shows that each u-set Ai being non empty is necessary in statement (2) of the Theorem 7.3 above:

Example 7.5. Let A1 = φ, A2 = {a, b}, βA1 = φ and βA2 = {ab}. Then A1 × A2 = φ, (A1 × A2)2 = φ, Π2
i∈IβAi = φ

implies (Π2
i∈IβAi)2 = φ 6= {ab} = βA2 .
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The following Example shows that k0 = j0 is necessary in statement (2) of the Theorem 7.3 above:

Example 7.6. Let A1 = {p, q}, A2 = {a, b, c}, βA1 = {pq} and βA2 = {ab, ac, bc}. Then A1 ×A2 = {pa, pb, pc, qa, qb, qc},

(A1 ×A2)2 = {papa, papb, papc, paqp, paqb, paqc, pbpa, pbpb, pbpc, pbqp, pbqb, pbqc, pcpa, pcpb, pcpc, pcqp, pcqb, pcqc, qapa,

qapb, qapc, qaqa, qaqb, qaqc, qbpa, qbpb, qbpc, qbqp, qbqb, qbqc, qcpa, qcpb, qcpc, qcqa, qcqb, qcqc}; Π1
i∈IβAi = {paqa, paqb, paqc,

pbqa, pbqb, pbqc, pcqa, pcqb, pcqc}; Π2
i∈IβAi = {papb, papc, paqb, paqc, pbpc, pbqc, qapb, qapc, qaqb, qaqc, qbpc, qbqc}; (Π1

i∈IβAi)1

= {pq} = βA1 ; (Π2
i∈IβAi)2 = {ab, ac, bc} = βA2 ; (Π1

i∈IβAi)2 = {aa, ab, ac, ba, bb, bc, ca, cb, cc} 6= {βA1} or {βA2} and

(Π2
i∈IβAi)1 = {pp, pq, qp, qq} 6= {βA1} or {βA2}.

The following Example shows that each binary relation βAi being non empty is necessary in statement (3) of the Theorem

7.3 above:

Example 7.7. Let A1 = {p, q}, A2 = {a, b, c}, βA1 = φ and βA2 = {ab, ac, bc}. Then A1×A2 = {pa, pb, pc, qa, qb, qc}, (A1×

A2)2 = {papa, papb, papc, paqp,paqb, paqc, pbpa, pbpb, pbpc, pbqp, pbqb, pbqc, pcpa, pcpb, pcpc, pcqp, pcqb, pcqc, qapa, qapb, qapc,

qaqa, qaqb, qaqc, qbpa, qbpb, qbpc, qbqp, qbqb, qbqc, qcpa, qcpb, qcpc, qcqa, qcqb, qcqc}; Πc
i∈IβAi = φ implies ∨(Πc

i∈IβAi) = φ 6=

{ab, ac, bc} = ∪i∈IβAi .

The following Example shows that each binary relation βAi being non empty is necessary in statement (4) of the Theorem

7.3 above:

Example 7.8. Let A1 = {p, q}, A2 = {a, b, c}, βA1 = φ and βA2 = {ab, ac, bc}. Then A1×A2 = {pa, pb, pc, qa, qb, qc}, (A1×

A2)2 = {papa, papb, papc, paqp,paqb, paqc, pbpa, pbpb, pbpc, pbqp, pbqb, pbqc, pcpa, pcpb, pcpc, pcqp, pcqb, pcqc, qapa, qapb, qapc,

qaqa, qaqb, qaqc, qbpa, qbpb, qbpc, qbqp, qbqb, qbqc, qcpa, qcpb, qcpc, qcqa, qcqb, qcqc}; Πc
i∈IβAi = φ implies (Πc

i∈IβAi)2 = φ 6=

{ab, ac, bc} = βA2 .

The following Example shows that I = J = K is necessary for equality to hold in the statements (1), (3) and (4) of the

Theorem 7.3 above:

Example 7.9. Let I = {1, 2, 3}, J = {1, 2}, K = {2, 3}, A1 = {a, b}, A2 = {a, p, q}, A3 = {a, s, t}, βA1 = {aa, ab},

βA2 = {aa, ap} and βA3 = {st}. Then ∩i∈IAi = {a}, ∩i∈IβAi = φ, A1 × A2 = {aa, ap, aq, ba, bp, bq}, A1 × A2 × A3

= {aaa, aas, aat, apa, aps, apt, aqa, aqs, aqt, baa, bas, bat, bpa, bps, bpt, bqa, bqs, bqt}, A × A = (A1 × A2 × A3)2 =

{aaaaaa, aaaaas, aaaaat, aaaapa, aaaaps, aaaapt, aaaaqa, aaaaqs, aaaaqt, aaabaa, aaabas, aaabat, aaabpa, aaabps, aaabpt,

aaabqa, aaabqs, aaabqt, aasaaa, aasaas, aasaat, aasapa, aasaps, aasapt, aasaqa, aasaqs, aasaqt, aasbaa, aasbas, aasbat,

aasbpa, aasbps, aasbpt, aasbqa, aasbqs, aasbqt, aataaa, aataas, aataat, aatapa, aataps, aatapt, aataqa, aataqs, aataqt,

aatbaa, aatbas, aatbat, aatbpa, aatbps, aatbpt, aatbqa, aatbqs, aatbqt, ..}, ΠJ,c
i∈IβAi = {aaaaaa, aaaaas, aaaaat, aaaapa, aaaaps,

aaaapt, aaabaa, aaabas, aaabat, aaabpa, aaabps, aaabpt, aasaaa, aasaas, aasaat, aasapa, aasaps, aasapt, aasbaa, aasbas, aasbat,

aasbpa, aasbps, aasbpt, aataaa, aataas, aataat, aatapa, aataps, aatapt, aatbaa, aatbas, aatbat, aatbpa, aatbps, aatbpt},

∧K(ΠJ,c
i∈IβAi) = {aa}, ∩i∈IβAi = φ, ∨K(ΠJ,c

i∈IβAi) = {aa, as, at, ap, sa, ss, st, ta, ts, tt}, ∪i∈IβAi = {aa, ab, ap, st},

(ΠJ,c
i∈IβAi)3 = {aa, as, at, sa, ss, st, ta, ts, tt}, βA3 = {st}. Therefore,

(1) ∧K(ΠJ,c
i∈IβAi) = {aa} ⊃ φ = ∩i∈IβAi

(2) ∨K(ΠJ,c
i∈IβAi

)={aa, as, at, ap, sa, ss, st, ta, ts, tt} 6= {aa, ab, ap, st}=∪i∈IβAi

(3) βA3 = {st} ⊂ {aa, as, at, sa, ss, st, ta, ts, tt} = (ΠJ,c
i∈IβAi)3.

Lemma 7.10. For a family of bresets (Ai)i∈I , the following are true:

(1). ∨K(ΠJ,d
i∈IAi) = ∪i∈I(ΠJ,d

i∈IAi)i

(2). ∨K(ΠI,j0
i∈I Ai) = ∪i∈I(ΠI,j0

i∈I Ai)i

(3). ∨K(ΠJ,c
i∈IAi) = ∪i∈I(ΠJ,c

i∈IAi)i.
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Proof. It follows from Lemma 6.1(1).

Corollary 7.11. For any breset A, the following are true:

(1). ∨K(ΠJ,d
i∈I(A)i) = ∪i∈I(ΠJ,d

i∈I(A)i)i

(2). ∨K(ΠI,j0
i∈I (A)i) = ∪i∈I(ΠI,j0

i∈I (A)i)i

(3). ∨K(ΠJ,c
i∈I(A)i) = ∪i∈I(Πc

i∈I(A)i)i.

Proof. It follows from Lemma 6.1(1).

Lemma 7.12. For any breset A whose u-set A is the cartesian product of a family of sets (Ai)i∈I , the following are true:

(1). A is an l-sub breset of ΠJ,c
k∈I(A)k

(2). ΠJ,c
k∈I(A)k is an l-sub breset of ΠI,j0

k∈I (A)k

(3). ΠI,j0
k∈I (A)k is an l-sub breset of ΠJ,d

k∈I(A)k.

Proof. (1): Let B = ΠJ,c
k∈I(A)k. Then by definitions 5.1(3) and 3.1(1) it follows that the u-sets of bresets on both sides

are the same, namely Πk∈IAk. So by 2.1(e)(ii), it suffices to show that βA ⊆ ΠJ,c
k∈Iβ(A)k . Let α ∈ βA ⊆ (Πk∈IAi)

2. Then

α = (f, g) where f, g ∈ Πk∈IAi. Since (f, g) ∈ βA, (fk, gk) ∈ β(A)k for all k ∈ J , so that α = (f, g) ∈ ΠJ,c
k∈Iβ(A)k and βA ⊆

ΠJ,c
k∈Iβ(A)k .

(2): Let B = ΠJ,c
i∈I(A)k and C = ΠI,j0

k∈I (A)k. Then by 5.1(3), 3.1(1) and 3.1(3), it follows that the u-sets of bresets on both

sides are the same, namely Πk∈IAk. So by 2.1(e)(ii), it suffices to show that βB = ΠJ,c
k∈Iβ(A)k ⊆ βC = ΠI,j0

k∈Iβ(A)k . But using

4.1(1) for the family of bresets ((A)k)k∈I , we get that βB ⊆ βC .

(3): Let B = ΠI,j0
k∈I (A)k and C = ΠJ,d

k∈I(A)k. Then by 5.1(3), 3.1(2) and 3.1(3), it follows that the u-sets of bresets on both

sides are the same, namely Πk∈IAk. So by 2.1(e)(ii), it suffices to show that βB = ΠI,j0
k∈Iβ(A)k ⊆ βC = ΠJ,d

k∈Iβ(A)k . But using

4.1(2) for the family of bresets ((A)k)k∈I , we get that βB ⊆ βC .

A strict inequality can hold in all (1),(2) and (3) of Lemma 7.12 above as shown in the following Examples:

Example 7.13. A1 = {a, b, c, d}, A2 = {p, q, r, s, t}, a = q, b = r, c = s. Then A1 ∩ A2 = {a(= q), b(= r), c(= s)}, A =

A1 × A2 = {ap, aq, ar, as, at, bp, bq, br, bs, bt, cp, cq, cr, cs, ct, dp, dq, dr, ds, dt, }. βA ⊆ (A1 × A2)2, βA = {aqbr, brcs, apbt},

then β(A)1 = {ab, bc}, β(A)2 = {qr, rs, pt}, Πc
i∈Iβ(A)i = {aqbr, arbs, apbt, bqcr, brcs, bpct}. Clearly βA ⊂ Πc

i∈Iβ(A)i .

Therefore a strict inequality can hold in 7.12(1) above.

Π1
i∈Iβ(A)i = {aqbr, arbs, apbt, bqcr, brcs, bpct, aqbt, ..}, clearly Πc

i∈Iβ(A)i ⊂ Π1
i∈Iβ(A)i .

Therefore a strict inequality can hold in 7.12(2) above.

Π1
i∈Iβ(A)i = {apbp, apbq, apbr, apbs, apbt, aqbp, aqbq, aqbr, aqbs, aqbt, arbp, arbq, arbr, arbs, arbt, asbp, asbq, asbr,

asbs, asbt, atbp, atbq, atbr, atbs, atbt, bpcp, bpcq, bpcr, bpcs, bpct, bqcp, bqcq, bqcr, bqcs, bqct, brcp, brcq, brcr, brcs, brct,

bscp, bscq, bscr, bscs, bsct, btcp, btcq, btcr, btcs, btct}.

Πd
i∈Iβ(A)i = {apbp, apbq, apbr, apbs, apbt, aqbp, aqbq, aqbr, aqbs, aqbt, arbp, arbq, arbr, arbs, arbt, asbp, asbq, asbr,

asbs, asbt, atbp, atbq, atbr, atbs, atbt, bpcp, bpcq, bpcr, bpcs, bpct, bqcp, bqcq, bqcr, bqcs, bqct, brcp, brcq, brcr, brcs,

brct, bscp, bscq, bscr, bscs, bsct, btcp, btcq, btcr, btcs, btct, apct, ..}.

Π1
i∈Iβ(A)i ⊂ Πd

i∈Iβ(A)i . Therefore a strict inequality can hold in 7.12(3) above.

Corollary 7.14. For any family of bresets (Ai)i∈I , the following are true:

(1). ∧(Πc
i∈IAi) is an l-sub breset of Ai (2). ∩i∈IAi is an l-sub breset of (Πc

i∈IAi)i0

(3). (Πc
i∈IAi)i0 is an l-sub breset of ∪i∈IAi (4). Ai is an l-sub breset of ∨(Πc

i∈IAi)

(5). ∩i∈IAi is an l-sub breset of ∧(ΠI,j0
i∈I Ai) (6). ∩i∈IAi is an l-sub breset of (ΠI,j0

i∈I Ai)i0
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(7). ∪i∈IAi is an l-sub breset of ∨(ΠI,j0
i∈I Ai) (8). ∩i∈IAi is an l-sub breset of ∧(Πd

i∈IAi)

(9). Ai is an l-sub breset of (Πd
i∈IAi)i0 (10). ∪i∈IAi is an l-sub breset of ∨(Πd

i∈IAi).

Figure 1. Products-Factors-Relations for a family of bresets (Ai)i∈I and for any φ 6= J ⊆ I, j0 ∈ J, φ 6= K ⊆ I and k0 ∈ K

Proof. (1): From 7.3(1), ∧(Πc
i∈IAi) = ∩i∈IAi, it follows that ∧(Πc

i∈IAi) is an l-sub breset of Ai.

(2): From 7.3(4), (Πc
i∈IAi)i0 = Ai0 , whenever each βAi is non empty, it follows that ∩i∈IAi is an l-sub breset of (Πc

i∈IAi)i0 .

(3): From 7.3(4), (Πc
i∈IAi)i0 = Ai0 , whenever each βAi is non empty, it follows that (Πc

i∈IAi)i0 is an l-sub breset of ∪i∈IAi.

(4): From 7.3(3), ∨(Πc
i∈IAi) = ∪i∈IAi, whenever each βAi is non empty, it follows that Ai is an l-sub breset of ∨(Πc

i∈IAi).

(5): From 7.3(1), ∧(Πc
i∈IAi) = ∩i∈IAi and 7.1(a)(i), ∧(Πc

i∈IAi) ⊆ ∧(ΠI,j0
i∈I Ai), it follows that ∩i∈IAi is an l-sub breset of

∧(ΠI,j0
i∈I Ai).

(6): From 7.3(1), ∧(Πc
i∈IAi) = ∩i∈IAi, 7.1(a)(i), ∧(Πc

i∈IAi) ⊆ ∧(ΠI,j0
i∈I Ai) and 7.1(e)(i), ∧(ΠI,j0

i∈I Ai) ⊆ (ΠI,j0
i∈I Ai)i0 , it follows

that ∩i∈IAi is an l-sub breset of (ΠI,j0
i∈I Ai)i0 .

(7): From 7.3(3), ∨(Πc
i∈IAi) = ∪i∈IAi, whenever each βAi is non empty and 7.1(c)(i), ∨(Πc

i∈IAi) ⊆ ∨(ΠI,j0
i∈I Ai), it follows

that ∪i∈IAi is an l-sub breset of ∨(ΠI,j0
i∈I Ai).

(8): From 7.3(1), ∩i∈IAi = ∧(Πc
i∈IAi), 7.1(a)(i), ∧(Πc

i∈IAi) ⊆ ∧(ΠI,j0
i∈I Ai) and 7.1(a)(ii), ∧(ΠI,j0

i∈I Ai) ⊆ ∧(Πd
i∈IAi), it follows

that ∩i∈IAi is an l-sub breset of ∧(Πd
i∈IAi).

(9): From 7.1(b)(ii), (ΠI,j0
i∈I Ai)i0 ⊆ (Πd

i∈IAi)i0 and 7.3(2), (ΠI,j0
i∈I Ai)i0 = Ai0 , whenever each Ai is non empty, it follows that

Ai0 is an l-sub breset of (Πd
i∈IAi)i0 .

(10): Let Πi∈IAi = A. From 2.1(e)(ii), 2.1(j), 3.1(2), 5.1(2), it is enough to show that, ∪i∈IβAi ⊆ β∨A.

Let α ∈ ∪i∈IβAi . Then α = (a, b) for some a, b ∈ Ai0 and for some i0 ∈ I. Since Ai 6= φ for all i ∈ I, there exists

f, g ∈ Πi∈IAi such that (fi0, gi0) = (a, b) and fi, gi ∈ Ai for all i ∈ I.

Since there exists i0 ∈ I such that (fi0, gi0) = (a, b) ∈ βAi0
and (f, g) ∈ βA.

Since there exists (f, g) ∈ β∨A such that (fi0, gi0) = (a, b) = α for some i0 ∈ I, α ∈ β∨A, implying that ∪i∈IAi is an l-sub

breset of ∨(Πd
i∈IAi).

A strict containment can hold in (1),(2),(3) and (4) of 7.14 as shown in the following Example.
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Example 7.15. Let A1 = {p, q}, A2 = {p, b, c}, βA1 = {pq}, βA2 = {pb, pc, bc} and A = A1 ×c A2.

Then A1 × A2 = {pp, pb, pc, qp, qb, qc}, (A1 × A2)2 = {pppp, pppb, pppc, ppqp, ppqb, ppqc, pbpp, pbpb, pbpc, pbqp, pbqb,

pbqc, pcpp, pcpb,pcpc, pcqp, pcqb, pcqc, qppp, qppb, qppc, qpqp, qpqb, qpqc, qbpp, qbpb, qbpc, qbqp, qbqb, qbqc, qcpp, qcpb, qcpc, qcqp,

qcqb, qcqc}.

βA = {ppqb, ppqc, pbqc} which implies β∧A = φ ⊂ βA1 = {pq}. Thus a strict containment can hold in 7.14(1).

β(A)1 = {pq}, β(A)2 = {ab, ac, bc}. Therefore, βA1 ∩ βA2 ⊂ β(A)1 . Thus a strict containment can hold in 7.14(2).

And β(A)1 = {pq} ⊂ βA1 ∪ βA2 = {pq, ab, ac, bc}. Thus a strict containment can hold in 7.14(3).

β∨A = {pq, ab, ac, bc} ⊃ {pq} = βA1 . Thus a strict containment can hold in 7.14(4).

A strict containment can hold in (5), (6), (7) and (8) of 7.14 as shown in the following Example.

Example 7.16. A1 = {a, b}, A2 = {b, c}, A1 ∩A2 = {b}, βA1 = {ab, bb}, βA2={bc} and A=A1×1A2. Then A = A1×A2

= {ab, ac, bb, bc}, (A1 ×A2)2 = {abab, abac, abbb, abbc, acab, acac, acbb, acbc, bbab, bbac, bbbb, bbbc, bcab, bcac, bcbb, bcbc}.

βA = {bbbb, bbbc, bcbb, bcbc, abbb, abbc, acbb, acbc}, β∧A = {bb} and βA1 ∩ βA2 = φ, so that β∧A ⊃ φ = ∩i∈IβAi . Thus a

strict containment can hold in 7.14(5).

β(A)1 = {bb, ab} ⊃ φ = βA1 ∩ βA2 . Thus a strict containment can hold in 7.14(6).

β∨A = {pq, aa, ab, ac, ba, bb, bc, ca} ⊃ φ = βA1 ∩ βA2 . Thus a strict containment can hold in 7.14(7).

Πd
i∈IβAi = {bbbb, bbbc, bcbb, bcbc, abbb, abbc, acbb, acbc, abac, bbac}, ∧(Πd

i∈IβAi) = {bb} ⊃ φ = βA1 ∩ βA2 . Thus a strict

containment can hold in 7.14(8).

A strict containment can hold in (9) and (10) of 7.14 as shown in the following Example.

Example 7.17. Let A1 = {p, q}, A2 = {a, b, c}, βA1 = {pq} and βA2 = {ab, ac, bc}. Then ∪i∈iβAi = {ab, ac, bc, pq},

P ×Q = {pa, pb, pc, qa, qb, qc}, (P ×Q)2 = {papa, papb, papc, paqa, paqb, paqc, pbpa, pbpb, pbpc, pbqa, pbqb, pbqc, pcpa, pcpb,

pcpc, pcqa, pcqb, pcqc, qapa, qapb, qapc, qaqa, qaqb, qaqc, qbpa, qbpb, qbpc, qbqa, qbqb, qbqc, qcpa, qcpb, qcpc, qcqa, qcqb, qcqc},

Πd
i∈IβAi = {paqa, paqb, paqc, pbqa, pbqb, pbqc, pcqa, pcqb, pcqc, papb, papc, pbpc, qapb, qapc, qaqb, qaqc, qbpc, pbqc}.

(Πd
i∈IβAi)1 = {pp, pq, qp, qq} ⊃ βA1 = {pq}. Thus a strict containment can hold in 7.14(9). ∨(Πd

i∈IβAi) =

{pp, pq, qp, qq, aa, ab, ac, ba, bb, bc, ca, cb, cc} ⊃ ∪i∈IβAi = {pq, ab, ac, bc}. Thus a strict containment can hold in 7.14(10).

8. Algorithms to Compute Products and Factors

In the above section, we introduced and studied some properties of J-conjunctive, J-disjunctive and j0-sectional products

for a family (Ai)i∈I of bresets where J is a subset of the index set I and i0 ∈ I, generalizing the notions of con-

junctive and disjunctive products for directed graphs. Later we introduced and studied the notions of the conjunctive

factor, disjunctive factor and sectional factor for a breset whose underlying set A is a cartesian product of a family

(Ai)i∈I of sets. Lastly, we studied several relations between various products and factors. Now in this section we study

algorithms to compute conjunctive product, disjunctive product, conjunctive factor, disjunctive factor and i0-sectional factor.

Algorithm 1: To compute J-conjunctive product:

Input: Well ordered set I such that ∃ i+ ∀i ∈ I, (Ai)i∈I where βAi ⊆ Ai ×Ai, for all i ∈ I, J ⊆ I.

Output: The J-conjunctive product Πc
j∈JAj = A, where A = Πj∈JAj , R = βA.

Procedure:

/* First compute A = Πi∈IAi */

Set S = A0 and A = φ, where 0 is the least element of I
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for each i ∈ I \ {0}

for each b ∈ Ai

for each a ∈ S

c = concat(a, b)

A = A ∪ {c}

continue

continue

S = A

continue

/* To compute R = βA */

Set R = φ

for each f ∈ A

10 for each g ∈ A

for each j ∈ J

if {(fj, gj) /∈ βAj} then { go to 10 }

continue

R = R ∪ {(f, g)}

continue

continue

end

Algorithm 2: To compute J-disjunctive product:

Input: Well ordered set I such that ∃ i+ ∀i ∈ I, (Ai)i∈I where βAi ⊆ Ai ×Ai, for all i ∈ I and J ⊆ I.

Output: The J-disjunctive product Πd
j∈JAj = A, where A = Πj∈JAj , R = βA.

Procedure:

/*First compute A = Πi∈IAi */

Set S = A0 and A = φ, where 0 is the least element in I

for each i ∈ I \ {0}

for each b ∈ Ai

for each a ∈ S

c = concat(a, b)

A = A ∪ {c}

continue

continue

S = A

continue

/* To compute R = βA */

Set R = φ

for each f ∈ A
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10 for each g ∈ A

for each j ∈ J

if {(fj, gj) ∈ βAj} then {R = R ∪ {(f, g)} and go to 10 }

continue

continue

continue

end

Algorithm 3: To compute J-conjunctive factor

Input: Well ordered set I such that ∃ i+ ∀i ∈ I, (Ai)i∈I , S ⊆ Πi∈IAi ×Πi∈IAi.

Output: The J-conjunctive factor B, where B = ∩i∈IAi, βB = ∧S.

Procedure:

/* First compute B = ∩i∈IAi */

Set B = φ

10 For each a ∈ A0, where 0 is the least element in I

For each i ∈ I \ {0}

if {a /∈ Ai} then {go to 10 }

Continue

B = B ∪ {a}

Continue

/* compute T = ∧S */

Set T = φ

If {B = ∩i∈IAi = φ} then {exit }

For each (f, g) ∈ S

For each a ∈ B

20 For each b ∈ B

For each i ∈ I

if {fi 6= a ∨ gi 6= b} then {go to 20 }

Continue

T = T ∪ {(a, b)}

Continue

Continue

Continue

end

Algorithm 4: To compute J-disjunctive factor

Input: Well ordered set I such that ∃ i+ ∀i ∈ I, (Ai)i∈I , S ⊆ Πi∈IAi ×Πi∈IAi.

Output: The J-disjunctive factor B, where B = ∪i∈IAi, βB = ∨S.

Procedure:

/* First compute B = ∪i∈IAi */
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Set B = A0, where 0 is the least element in I

For each i ∈ I \ {0}

For each a ∈ Ai

if {a /∈ B} then {B = B ∪ {a}}

Continue

Continue

/* compute T = ∨S */

Set T = φ

For each (f, g) ∈ S

For each a ∈ B

For each b ∈ B

For each i ∈ I

if {fi = a ∧ gi = b ∧ (a, b) 6∈ T} then {T = T ∪ {(a, b)}}

Continue

Continue

Continue

Continue

end

Aliter:

Procedure:

For each (f, g) ∈ S

For each j ∈ J

if {(fj, gj) 6∈ T} then {T = T ∪ {(fj, gj)}}

Continue

Continue

end

Algorithm 5: To compute i0-factor

Input: Well ordered set I such that ∃ i+ ∀i ∈ I, (Ai)i∈I and S ⊆ Πi∈IAi ×Πi∈IAi and i0 ∈ I.

Output: The i0-factor B, where B = Ai0 , βB = (S)i0

Procedure:

/* compute T = (S)i0 */

Set B = Ai0

For each (f, g) ∈ S

For each a ∈ B

For each b ∈ B

if {fi0 = a ∧ gi0 = b ∧ (a, b) 6∈ T} then {T = T ∪ {(a, b)}}

Continue

Continue
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Continue

end

Aliter:

Procedure:

Set B = Ai0 , T = φ

If {S = φ} then {exit}

For each (f, g) ∈ S

if {(fi0, gi0) 6∈ T} then {T = T ∪ {(fi0, gi0)}}

Continue

end.
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