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Abstract: In this paper, conjugate secondary normal (con-s-normal) matrices play the same role in the theory of secondary unitary

(s-unitary) congruences as conventional s-normal matrices do in the theory of s-unitary similarities. The aim of this
section is to propose a simple criterion for s-unitary congruence for the class of con-s-normal matrices.
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1. Introduction

Let Cn×n be the space of n × n complex matrices of order n. For A ∈ Cn×n, let AT , A, A∗, AS , Aθ
(
= A

s)
and A−1

denote the transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose and inverse of

matrix A respectively. The conjugate secondary transpose of A satisfies the following properties such as
(
Aθ
)θ

= A,

(A+B)θ = Aθ +Bθ, (AB)θ = BθAθ etc.

Definition 1.1. A matrix A ∈ Cn×n is said to be normal if AA∗ = A∗A.

Definition 1.2. A Matrix A ∈ Cn×n is said to be conjugate normal (con-normal) if AA∗ = A∗A.

Definition 1.3. A matrix A ∈ Cn×n is said to be secondary normal (s-normal) if AAθ = AθA.

Definition 1.4. A matrix A ∈ Cn×n is said to be unitary if AA∗ = A∗A = I.

Definition 1.5. A matrix A ∈ Cn×n is said to be s-unitary if AAθ = AθA = I.

Definition 1.6 ([2]). A matrix A ∈ Cn×n is said to be a conjugate secondary normal matrix (con-s-normal) if

AAθ = AθA where Aθ = A
S
. (1)

Result 1.7 (Specht’s Criterion). Matrices A and B are unitarily similar if and only if

trW (A,A∗) = trW (B,B∗) (2)

for every word W (s, t) in the non commuting variables s and t.
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Result 1.8. Specht’s criterion is inefficient because it amounts to the verification of an infinite set of conditions (2). Pearcy

[3] found an efficient form for this criterion, showing that, for n-by-n matrices A and B, the verification of (2) can be

limited to words of a length not exceeding 2n
2

. However, even this limited verification requires a huge computational effort

if n is not very small.

2. s-unitary Congruence of Matrices

Definition 2.1. Matrices A,B ∈Mn(C) are s-unitarily similar if the similarity between A and B can be realized by means

of a s-unitary transformation matrix U:

B = UθAU (3)

To verify that A and B are s-unitarily similar, one can use Specht’s classical criterion.

Result 2.2. Matrices A and B are s-unitarily similar if and only if

trW
(
A,Aθ

)
= trW

(
B,Bθ

)
(4)

for every word W (s, t) in the non commuting variables s and t. The knowledge that A and B belong to a special matrix class

sometimes makes it possible to substantially reduce the computational effort required for checking the s-unitary similarity

between A and B. In this relation, the class of s-normal matrices is the most striking example. Secondary Normal matrices

A and B are s-unitarily similar if and only if they have the same s-eigen values. This latter property can be checked by

verifying only n conditions for traces, namely,

tr(Ai) = tr(Bi), i = 1, 2, . . ., n. (5)

Definition 2.3. Matrices A,B ∈Mn (C) are congruent if B = SSAS for a nonsingular matrix S. If the congruence between

A and B can be realized by means of a s-unitary transformation matrix U, i.e., if

B = USAU, (6)

then A and B are said to be s-unitarily congruent.

Remark 2.4. Unlike in the case of s-unitary similarity, no criterion (even an inefficient one) is currently known for

s-unitary congruence. Consider, for instance, the following result from [1].

Theorem 2.5. Matrices A,B ∈Mn (C) are s-unitarily congruent if and only if there exists a s-unitary matrix V such that

BBθ = V θ
(
AAθ

)
V , BB̄ = V θ

(
AĀ
)
V , BSB̄ = V θ

(
ASĀ

)
V .

The s-unitary similarity can be verified for each of the pairs
(
AAθ, BBθ

)
,
(
AĀ, BB̄

)
, and

(
ASĀ, BSB̄

)
by using the Specht-

Pearcy criterion. However, there is no method as yet for checking whether all of these three s-unitary similarities can be

realized by means of the same s-unitary matrix U. The fact that no criterion is available for the s-unitary congruence between

generic matrices A and B does not imply that such criteria cannot exist for special matrix classes. The following result is

an analogue of the theorem in [4, 5] on the secondary spectral decomposition of a s-normal matrix.
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3. s-unitary Congruence of Con-s-normal Matrices

Theorem 3.1. Any con-s-normal matrix A is s-unitarily congruent to a block secondary diagonal matrix with the secondary

diagonal blocks of orders 1 and 2. The blocks of order 1 are real nonnegative scalars, while each block of order 2 can be given

the form of the following 2-by-2 s-hermitian matrix: 0 µj

µ̄j 0

 , Imµj 6= 0 (7)

With each matrix A ∈Mn (C), we associate the matrix

AL = ĀA (8)

Lemma 3.2. If A and B is s-unitarily congruent, then AL and BL are s-unitarily similar. Indeed, (6) implies that

BL = B̄B = UθĀŪUSAU

= Uθ
(
ĀA
)
U = UθALU.

Lemma 3.3. If A is a con-s-normal matrix, then AL is s-normal in the conventional sense.

Proof. It follows from Definition 1.6 that AAθ = ASĀ and ĀAS = AθA. Using these equalities, we find that

ALA
θ
L

= ĀAAθAS = Ā
(
AAθ

)
AS

= Ā
(
ASĀ

)
AS =

(
ĀAS

)2
=
(
AθA

)2
,

AθLAL = AθASĀA = Aθ
(
ASĀ

)
A

= Aθ
(
AAθ

)
A =

(
AθA

)2
.

Thus, ALA
θ
L = AθLAL.

Now, we can formulate the main result of this section.

Theorem 3.4. Con-s-normal matrices A,B ∈ Mn (C) are s-unitarily congruent if and only if the corresponding s-normal

matrices AL and BL are s-unitarily similar.

Proof. Matrices A and B are s-unitarily congruent if and only if their canonical forms described in Theorem 3.1 are

s-unitarily congruent. Let

FA = λ1 ⊕ · · · ⊕ λk ⊕

 0 µ1

µ̄1 0

⊕ · · · ⊕
 0 µl

µ̄l 0

 , k + 2l = n

be the canonical form of A. It is easy to see that (FA)L = F̄AFA is the diagonal matrix

(FA)L = diag
(
λ2
1, λ

2
2, . . . , λ

2
k, µ̄

2
1, µ

2
1, µ̄

2
2, µ

2
2, . . . , µ̄

2
l , µ

2
l

)
.

Thus, the scalars λ1, λ2,. . . , λk, µ1, µ2,. . . , µl, which define the canonical form of A, are the square roots of the s-eigen

values of (FA)L or, equivalently, the square roots of the s-eigen values of AL. A similar conclusion is valid for B. We infer

that (FA)L and (FB)L are s-unitarily congruent (and even coincide, provided that the square roots are consistently chosen)

if and only if AL and BL have the same s-eigen values. Since AL and BL are s-normal matrices, their s-eigen values are

identical if and only if AL and BL are s-unitarily similar.
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From Theorem 3.4, we immediately obtain the desired criterion.

Result 3.5 (Criterion for s-unitary congruence). Con-s-normal matrices A,B ∈ Mn (C) are s-unitarily congruent if and

only if tr
[(
ĀA
)i]

= tr
[(
B̄B

)i]
, i = 1, 2, . . . , n.

References

[1] Y. Hong and R. A. Horn, Title?, Linear Multilinear Algebra, 25(1989), 105-119.

[2] S. Krishnamoorthy and R. Raja, On Con-s-normal matrices, International J. of Math. Sci. and Engg. Appls., 5 (II)(2011),

131-139.

[3] C. Pearcy, Title?, Pacific J. Math., 12(1962), 1405-1416.

[4] M. Vujicic, F. Herbut and G. Vujicic, Canonical forms for matrices under unitary congruence transformations I: con-

normal matrices, SIAM J. Appl. Math., 23(1972), 225-238.

[5] E. P. Wigner, Normal form of anti unitary operators, J. Math. Phys., 1(1960), 409-413.

134


	Introduction
	s-unitary Congruence of Matrices
	s-unitary Congruence of Con-s-normal Matrices
	References

