International Journal of Mathematics And its Applications

A Criterion for the Secondary Unitary Congruence of Conjugate Secondary Normal Matrices

R. Raja ${ }^{1, *}$

1 P.G. Assistant in Mathematics, Government Girls Hr. Sec. School, Papanasam, Tamil Nadu, India.

Abstract

In this paper, conjugate secondary normal (con-s-normal) matrices play the same role in the theory of secondary unitary (s-unitary) congruences as conventional s-normal matrices do in the theory of s-unitary similarities. The aim of this section is to propose a simple criterion for s-unitary congruence for the class of con-s-normal matrices. MSC: $\quad 15 \mathrm{~A} 21,15 \mathrm{~A} 09,15457$.

Keywords: s-normal matrix, con-s-normal matrix, s-unitary, s-eigenvalues.
(c) JS Publication.

Accepted on: 07.04.2018

1. Introduction

Let $C_{n \times n}$ be the space of $n \times n$ complex matrices of order n. For $A \in C_{n \times n}$, let $A^{T}, \bar{A}, A^{*}, A^{S}, A^{\theta}\left(=\bar{A}^{s}\right)$ and A^{-1} denote the transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose and inverse of matrix A respectively. The conjugate secondary transpose of A satisfies the following properties such as $\left(A^{\theta}\right)^{\theta}=A$, $(A+B)^{\theta}=A^{\theta}+B^{\theta},(A B)^{\theta}=B^{\theta} A^{\theta}$ etc.

Definition 1.1. A matrix $A \in C_{n \times n}$ is said to be normal if $A A^{*}=A^{*} A$.
Definition 1.2. A Matrix $A \in C_{n \times n}$ is said to be conjugate normal (con-normal) if $A A^{*}=\overline{A^{*} A}$.
Definition 1.3. A matrix $A \in C_{n \times n}$ is said to be secondary normal (s-normal) if $A A^{\theta}=A^{\theta} A$.
Definition 1.4. A matrix $A \in C_{n \times n}$ is said to be unitary if $A A^{*}=A^{*} A=I$.
Definition 1.5. A matrix $A \in C_{n \times n}$ is said to be s-unitary if $A A^{\theta}=A^{\theta} A=I$.

Definition 1.6 ([2]). A matrix $A \in C_{n \times n}$ is said to be a conjugate secondary normal matrix (con-s-normal) if

$$
\begin{equation*}
A A^{\theta}=\overline{A^{\theta} A} \text { where } A^{\theta}=\bar{A}^{S} \tag{1}
\end{equation*}
$$

Result 1.7 (Specht's Criterion). Matrices A and B are unitarily similar if and only if

$$
\begin{equation*}
\operatorname{tr} W\left(A, A^{*}\right)=\operatorname{tr} W\left(B, B^{*}\right) \tag{2}
\end{equation*}
$$

for every word $W(s, t)$ in the non commuting variables s and t.

[^0]Result 1.8. Specht's criterion is inefficient because it amounts to the verification of an infinite set of conditions (2). Pearcy [3] found an efficient form for this criterion, showing that, for n-by-n matrices A and B, the verification of (2) can be limited to words of a length not exceeding $2^{n^{2}}$. However, even this limited verification requires a huge computational effort if n is not very small.

2. s-unitary Congruence of Matrices

Definition 2.1. Matrices $A, B \in M_{n}(C)$ are s-unitarily similar if the similarity between A and B can be realized by means of a s-unitary transformation matrix U :

$$
\begin{equation*}
B=U^{\theta} A U \tag{3}
\end{equation*}
$$

To verify that A and B are s-unitarily similar, one can use Specht's classical criterion.

Result 2.2. Matrices A and B are s-unitarily similar if and only if

$$
\begin{equation*}
\operatorname{tr} W\left(A, A^{\theta}\right)=\operatorname{tr} W\left(B, B^{\theta}\right) \tag{4}
\end{equation*}
$$

for every word $W(s, t)$ in the non commuting variables s and t. The knowledge that A and B belong to a special matrix class sometimes makes it possible to substantially reduce the computational effort required for checking the s-unitary similarity between A and B. In this relation, the class of s-normal matrices is the most striking example. Secondary Normal matrices A and B are s-unitarily similar if and only if they have the same s-eigen values. This latter property can be checked by verifying only n conditions for traces, namely,

$$
\begin{equation*}
\operatorname{tr}\left(A^{i}\right)=\operatorname{tr}\left(B^{i}\right), \quad i=1,2, \ldots, n \tag{5}
\end{equation*}
$$

Definition 2.3. Matrices $A, B \in M_{n}(C)$ are congruent if $B=S^{S} A S$ for a nonsingular matrix S. If the congruence between A and B can be realized by means of a s-unitary transformation matrix U, i.e., if

$$
\begin{equation*}
B=U^{S} A U \tag{6}
\end{equation*}
$$

then A and B are said to be s-unitarily congruent.

Remark 2.4. Unlike in the case of s-unitary similarity, no criterion (even an inefficient one) is currently known for s-unitary congruence. Consider, for instance, the following result from [1].

Theorem 2.5. Matrices $A, B \in M_{n}(C)$ are s-unitarily congruent if and only if there exists a s-unitary matrix V such that $B B^{\theta}=V^{\theta}\left(A A^{\theta}\right) V, B \bar{B}=V^{\theta}(A \bar{A}) V, B^{S} \bar{B}=V^{\theta}\left(A^{S} \bar{A}\right) V$.

The s-unitary similarity can be verified for each of the pairs $\left(A A^{\theta}, B B^{\theta}\right),(A \bar{A}, B \bar{B})$, and $\left(A^{S} \bar{A}, B^{S} \bar{B}\right)$ by using the SpechtPearcy criterion. However, there is no method as yet for checking whether all of these three s-unitary similarities can be realized by means of the same s-unitary matrix U. The fact that no criterion is available for the s-unitary congruence between generic matrices A and B does not imply that such criteria cannot exist for special matrix classes. The following result is an analogue of the theorem in $[4,5]$ on the secondary spectral decomposition of a s-normal matrix.

3. s-unitary Congruence of Con-s-normal Matrices

Theorem 3.1. Any con-s-normal matrix A is s-unitarily congruent to a block secondary diagonal matrix with the secondary diagonal blocks of orders 1 and 2. The blocks of order 1 are real nonnegative scalars, while each block of order 2 can be given the form of the following 2-by-2 s-hermitian matrix:

$$
\left(\begin{array}{cc}
0 & \mu_{j} \tag{7}\\
\bar{\mu}_{j} & 0
\end{array}\right), \quad \operatorname{Im} \mu_{j} \neq 0
$$

With each matrix $A \in M_{n}(C)$, we associate the matrix

$$
\begin{equation*}
A_{L}=\bar{A} A \tag{8}
\end{equation*}
$$

Lemma 3.2. If A and B is s-unitarily congruent, then A_{L} and B_{L} are s-unitarily similar. Indeed, (6) implies that

$$
\begin{aligned}
B_{L} & =\bar{B} B=U^{\theta} \bar{A} \bar{U} U^{S} A U \\
& =U^{\theta}(\bar{A} A) U=U^{\theta} A_{L} U
\end{aligned}
$$

Lemma 3.3. If A is a con-s-normal matrix, then A_{L} is s-normal in the conventional sense.
Proof. It follows from Definition 1.6 that $A A^{\theta}=A^{S} \bar{A}$ and $\bar{A} A^{S}=A^{\theta} A$. Using these equalities, we find that

$$
\begin{aligned}
A_{L} A_{L}^{\theta} & =\bar{A} A A^{\theta} A^{S}=\bar{A}\left(A A^{\theta}\right) A^{S} \\
& =\bar{A}\left(A^{S} \bar{A}\right) A^{S}=\left(\bar{A} A^{S}\right)^{2}=\left(A^{\theta} A\right)^{2} \\
A_{L}^{\theta} A_{L} & =A^{\theta} A^{S} \bar{A} A=A^{\theta}\left(A^{S} \bar{A}\right) A \\
& =A^{\theta}\left(A A^{\theta}\right) A=\left(A^{\theta} A\right)^{2}
\end{aligned}
$$

Thus, $A_{L} A_{L}^{\theta}=A_{L}^{\theta} A_{L}$.

Now, we can formulate the main result of this section.
Theorem 3.4. Con-s-normal matrices $A, B \in M_{n}(C)$ are s-unitarily congruent if and only if the corresponding s-normal matrices A_{L} and B_{L} are s-unitarily similar.

Proof. Matrices A and B are s-unitarily congruent if and only if their canonical forms described in Theorem 3.1 are s-unitarily congruent. Let

$$
F_{A}=\lambda_{1} \oplus \cdots \oplus \lambda_{k} \oplus\left(\begin{array}{cc}
0 & \mu_{1} \\
\bar{\mu}_{1} & 0
\end{array}\right) \oplus \cdots \oplus\left(\begin{array}{cc}
0 & \mu_{l} \\
\bar{\mu}_{l} & 0
\end{array}\right), \quad k+2 l=n
$$

be the canonical form of A. It is easy to see that $\left(F_{A}\right)_{L}=\bar{F}_{A} F_{A}$ is the diagonal matrix

$$
\left(F_{A}\right)_{L}=\operatorname{diag}\left(\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots, \lambda_{k}^{2}, \bar{\mu}_{1}^{2}, \mu_{1}^{2}, \bar{\mu}_{2}^{2}, \mu_{2}^{2}, \ldots, \bar{\mu}_{l}^{2}, \mu_{l}^{2}\right)
$$

Thus, the scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}, \mu_{1}, \mu_{2}, \ldots, \mu_{l}$, which define the canonical form of A, are the square roots of the s-eigen values of $\left(F_{A}\right)_{L}$ or, equivalently, the square roots of the s-eigen values of A_{L}. A similar conclusion is valid for B. We infer that $\left(F_{A}\right)_{L}$ and $\left(F_{B}\right)_{L}$ are s-unitarily congruent (and even coincide, provided that the square roots are consistently chosen) if and only if A_{L} and B_{L} have the same s-eigen values. Since A_{L} and B_{L} are s-normal matrices, their s-eigen values are identical if and only if A_{L} and B_{L} are s-unitarily similar.

From Theorem 3.4, we immediately obtain the desired criterion.

Result 3.5 (Criterion for s-unitary congruence). Con-s-normal matrices $A, B \in M_{n}(C)$ are s-unitarily congruent if and only if $\operatorname{tr}\left[(\bar{A} A)^{i}\right]=\operatorname{tr}\left[(\bar{B} B)^{i}\right], i=1,2, \ldots, n$.

References

[1] Y. Hong and R. A. Horn, Title?, Linear Multilinear Algebra, 25(1989), 105-119.
[2] S. Krishnamoorthy and R. Raja, On Con-s-normal matrices, International J. of Math. Sci. and Engg. Appls., 5 (II)(2011), 131-139.
[3] C. Pearcy, Title?, Pacific J. Math., 12(1962), 1405-1416.
[4] M. Vujicic, F. Herbut and G. Vujicic, Canonical forms for matrices under unitary congruence transformations I: connormal matrices, SIAM J. Appl. Math., 23(1972), 225-238.
[5] E. P. Wigner, Normal form of anti unitary operators, J. Math. Phys., 1(1960), 409-413.

[^0]: * E-mail: rraja30305@gmail.com

