

International Journal of Mathematics And its Applications

Dominator Chromatic Number of Derived Graph of Some Graphs

R. Kalaivani^{1,*} and D. Vijayalakshmi¹

1 Department of Mathematics, Kongunadu Arts And Scienc College, Coimbatore, Tamilnadu, India.

1. Introduction

The field of Graph theory plays an important role in various areas of pure and applied sciences. We begin with simple, connected, finite, undirected graph G = (V(G), E(G)) with p = |V(G)| and q = |E(G)|. For all terminology and notations in graph theory especially defined in this paper, we refer the reader to the standard text books [8] respectively. The minimum and maximum degree of G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$ respectively. The distance $d_G(v_i; v_j)$ between the vertices v_i and v_j is the length of a shortest path between them. If there is no path between v_i and v_j then we formally assume that $d_G(v_i; v_j) = \infty$.

A dominating set, D of a graph G is a subset of the vertices in G such that for each vertex $v, N_G[v] \cap D \neq \emptyset$ The domination number $\gamma(G)$ of G is the cardinality of a minimum dominating set. The concept of domination in graphs, with its many variations, has been well studied in graph theory [7]. A proper coloring of a graph G is a function from the set of vertices of a graph to a set of colors such that any two adjacent vertices have different colors. A subset of vertices colored with the same color is called a color class. The chromatic number is the minimum number of colors needed in a proper coloring of a graph and is denoted by χ (G). A dominator coloring is a coloring of the vertices of a graph such that every vertex is either alone in its color class or adjacent to all vertices of at least one other color class. The concept of a dominator coloring in a graph was introduced and studied by Gera [4] and studied further by Gera [3, 5] and Chellai and Maffray [1].

Let G be a simple graph. Its derived graph G^{\dagger} is the graph whose vertices are same as the vertices of G and two vertices in G^{\dagger} are adjacent if and only if the distance between them in G is two. Directly from this definition follows that $[G_1 \cup G_2]^{\dagger} = [G_1]^{\dagger} \cup [G_2]^{\dagger}$. Double graph [2] of a connected graph G is constructed by taking two copies of G say G' and G'', join each vertex u' in G' to the neighbour of the corresponding vertices u'' in G''. Double graph of G is denoted by D(G).

Abstract:In a graph G, the distance d(u, v) between a pair of vertices u and v is the length of a shortest path joining them. The
Derived graph, G^{\dagger} is the graph whose vertices are same as the vertices of G and two vertices in G^{\dagger} are adjacent if and
only if the distance between them in G is two. In this paper we obtain the exact value for χ_d for Derived Graph of Path,
Cycle, Sunlet graph, Bistar graph and Triple Star graph respectively.MSC:05C15, 05C75.Keywords:Coloring, Domination, Dominator Coloring, Derived Graph, Double graph
(© JS Publication.

^{*} E-mail: kalaivanirm@yahoo.com (Research Scholar)

2. Dominator Chromatic Number of Derived Graphs

Theorem 2.1. For $n \ge 3$, the dominator chromatic number of derived graph of Sunlet graph is.

$$\chi_d(S_n)^{\dagger} = \begin{cases} \lfloor 2n/3 \rfloor + 1 & when \ n \equiv 1 \mod 4 \\ n/2 + 3 & when \ n \equiv 2 \mod 4 \\ \lceil n/2 \rceil + 2 & when \ n \equiv 3 \mod 4 \\ n/2 + 2 & when \ n \equiv 0 \mod 4 \end{cases}$$

Proof. Let us define the vertex set V of S_n as $V(S_n) = \{v_i : \leq i \leq n\} \cup \{u_i : 1 \leq i \leq n\}$ where v_i are the vertices of cycles taken in cyclic order and u_i are the pendent vertices. By the definition of derived graph, $V(S_n)^{\dagger} = \{v_i : 1 \leq i \leq n\} \cup \{u_i : 1 \leq i \leq n\}$. A procedure to obtain dominator coloring of derived graph of sunlet graph as follows. Define a coloring function f on $V(S_n)^{\dagger}$ such that for all vertices of v_i and u_i

Case 1: When $n \not\equiv 1 \mod 4$

$$f(v_i) = \begin{cases} i \text{ for } v_{2i-2} \text{ when } i = 2k, 1 \le k \le \lceil n/4 \rceil \\ i \text{ for } v_{2i-1} \text{ when } i = 2k-1, 1 \le k \le \lceil n/4 \rceil \end{cases}$$

Remaining vertices are colored in the following sub cases.

/

Sub Case 1: $n \equiv 2 \mod 4$

$$f(v_i, u_i) = \begin{cases} n/2 + 2 \text{ for } u_i : 1 \le i \le n \\ n/2 + 3 \text{ otherwise} \end{cases}$$

Sub Case 2: $n \equiv 3 \mod 4$

$$f(v_i, u_i) = \begin{cases} \lceil n/2 \rceil + 1 \text{ for } v_{2i-1} \text{ when } i = 2k, 1 \le k \le \lceil n/4 \rceil \\ \lceil n/2 \rceil + 1 \text{ for } v_{2i} \text{ when } i = 2k, 1 \le k \le \lfloor n/4 \rfloor \\ \lceil n/2 \rceil + 2 \text{ for } u_i : 1 \le i \le n \end{cases}$$

Sub Case 3: $n \equiv 0 \mod 4$

$$f(v_i, u_i) = \begin{cases} n/2 + 2 \text{ for } v_{2i-1}, v_{2i} \text{ when } i = 2k, 1 \le k \le \lceil n/4 \rceil \\ n/2 + 1 \text{ for } u_i : 1 \le i \le n \end{cases}$$

Case 2: When $n \equiv 1 \mod 4$

$$f(v_i, u_i) = \begin{cases} i \text{ for } v_{2i-2} \text{ when } i = 2k, 1 \le k \le \lfloor n/4 \rfloor \\ i \text{ for } v_{2i-1} \text{ when } i = 2k-1, 1 \le k \le \lceil n/4 \rceil \\ \lfloor 2n/3 \rfloor \text{ for } u_i : 1 \le i \le n. \\ \lfloor 2n/3 \rfloor + 1 \text{ otherwise} \end{cases}$$

This Completes the proof of the theorem.

Theorem 2.2. For any n the dominator chromatic number of derived graph of double Star graph is,

136

Proof. Let $V(K_{1,n,n})^{\dagger} = \{v\} \cup \{v_i : 1 \le i \le n\} \cup \{u_i : 1 \le i \le n\}$ be the vertices of derived graph of double star graph. The following procedure gives the dominator chromatic number of derived graph of double star graph. Consider the color class $C = \{c_1, c_2, c_3, \ldots, c_n, c_{n+1}\}$ Here $v_i : 1 \le i \le n$ forms a clique of order n so we have to assign c_i colors to $v_i : 1 \le i \le n$. Next assign the color c_{n+1} to v and c_{n-1} color to $u_i : 1 \le i \le n$. By the definition of dominator coloring every vertex of v_i dominates any one color class c_i and v dominates itself. Next the vertices $u_i : 1 \le i \le n$ dominates the color class c_{n+1} . Hence an easy observation shows that $\chi_d(K_{1,n,n})^{\dagger} = n+1$, where $c_i = \{v_i : 1 \le n-1\}$, $c_n = \{v_n, u_i : 1 \le i \le n\}$, $c_{n+1} = v$. This completes the proof of theorem.

Theorem 2.3. For $n \ge 3$, the dominator chromatic number of derived graph of triple star graph is n + 2 i.e.,

$$\chi_d(K_{1,n,n,n})^\dagger = n+2$$

Proof. Let $V(K_{1,n,n,n})^{\dagger} = \{v\} \cup \{v_i : 1 \le i \le n\} \cup \{u_i : 1 \le i \le n\} \cup \{w_i : 1 \le i \le n\}$ be the vertices of derived graph of triple star graph. The following procedure gives the dominator chromatic number of derived graph of triple star graph. In $V(K_{1,n,n,n})^{\dagger}$ induced subgraph $v_i : 1 \le i \le n$ forms a clique of order n, so we have to assign color c_i to $v_i : 1 \le i \le n$. For $1 \le i \le n$, assign the color c_{n+1} to $w_i, u_i : 1 \le i \le n$ and assign the color c_{n+2} to v, By the definition of dominator coloring w_i dominates the color class $c_i : 1 \le i \le n$ and $u_i : 1 \le i \le n$ dominates the color class c_{n+2} and v dominates itself. Hence $\chi_d(K_{1,n,n,n})^{\dagger} = n+2$, where $c_i = \{v_i : 1 \le i \le n\}$, $c_{n+1} = \{u_iw_i : 1 \le i \le n\}$, $c_{n+2} = v$.

Theorem 2.4. Let $m, n \ge 3$, the dominator chromatic number of derived graph of Bi-star graph is,

$$\chi_d(B_{m,n})^{\dagger} = \begin{cases} m+2 \ when \ m > n \\ n+2 \ when \ n \ge m \end{cases}$$

Proof. Consider the Bistar $B_{m,n}$ let $\{u_i : 1 \le i \le m\}$ be the *m* pendant edges attached to the vertex *u* and $\{v_i : 1 \le i \le n\}$ be the another *n* pendant edges attached to the vertex *v*. By the definition of derived,

$$V(B_{m,n})^{\dagger} = \{u, u_i : 1 \le i \le m\} \cup \{v, v_i : 1 \le i \le n\}.$$

In $(B_{m,n})^{\dagger}$ the vertices $u_i : 1 \le i \le m$ along with v forms a clique of order n+1. Also we see that the vertices $v_i : 1 \le i \le n$ together with u forms another clique of order n+1. Consider the following cases.

Case 1: When m > n. Consider the color class $C = \{c_1, c_2, c_3, ..., c_m, c_{m+1}, c_{m+2}\}$.

- Assign the color c_i to $u_i : 1 \le i \le m$ and assign color c_{m+1} for u.
- For $1 \leq i \leq n$ assign color c_i to v_i and assign color c_{m+2} to v.

By the definition of dominator coloring every vertex of u_i dominates the color class c_{m+2} and v_i dominates the color class c_{m+1} . Vertices u, v dominates itself. Hence $C = \{c_1, c_2, c_3, \ldots, c_m, c_{m+1}, c_{m+2}\}$ is a dominator coloring of $(B_{m,n})^{\dagger}$, where

$$c_i = \{v_i : 1 \le i \le n, u_i : 1 \le i \le m, \}$$

 $c_{m+1} = \{u\}, c_{m+2} = \{v\}.$

Case 2: When $n \ge m$. Consider the color class $C = \{c_1, c_2, c_3, \dots, c_n c_{n+1}, c_{n+2}\}$. Since $u_i : 1 \le i \le m$ along with v forms a clique of order n + 1. Also we see that the vertices $v_i : 1 \le i \le n$ together with u forms another clique of order n + 1 for the reason that assign color c_i to $u_i : 1 \le i \le m$ and $v_i : 1 \le i \le n$. Next assign the color c_{n+1} to the vertex v and c_{n+2} to u. Thus $\chi_d(B_{m,n})^{\dagger} \le n + 2$. On the other hand if we assign c_{n+1} colors to all the vertices in $(B_{m,n})^{\dagger}$ then it contradicts the definition of dominator coloring . Hence an easy observation shows that $\chi_d(B_{m,n})^{\dagger} = n + 2$.

The *n*-centipede C_n is a tree with 2n vertices and 2n - 1 edges obtained by joining the bottoms of *n* copies of the path graph P_2 laid in a row with edges.

Theorem 2.5. For $n \ge 3$, the dominator chromatic number of derived graph of Centipede graph is.

$$\chi_d(C_n)^{\dagger} = \begin{cases} \lceil n/2 \rceil + 2 & \text{when } n \equiv 3, 0 \mod 4 \\ n/2 + 3 & \text{when } n \equiv 2 \mod 4 \\ \lfloor n/2 \rfloor + 3 & \text{when } n \equiv 1 \mod 4. \end{cases}$$

Proof. Let us define the vertex set V of C_n as $(C_n)^{\dagger} = \{v_i : \leq i \leq n\} \cup \{u_i : 1 \leq i \leq n\}$. A procedure to obtain dominator coloring of derived graph of centipede graph as follows. Define a coloring function f on $V(C_n)^{\dagger}$ such that for any vertex v_i and u_i .

Case 1: When $n \equiv 3, 0 \mod 4$

$$f(v_i, u_i) = \begin{cases} i \text{ for } v_{2i} \text{ when } i = 2k - 1, 1 \le k \le \lceil n/4 \rceil \\ i \text{ for } v_{2i-1} \text{ when } i = 2k, 1 \le k \le \lceil n/4 \rceil \\ \lceil n/2 \rceil + 1 \text{ for } u_i : 1 \le i \le n. \\ \lceil n/2 \rceil + 2 \text{ otherwise} \end{cases}$$

Case 2: When $n \equiv 2 \mod 4$

$$f(v_i, u_i) = \begin{cases} i \text{ for } v_{2i} \text{ when } i = 2k - 1, 1 \le k \le \lfloor n/4 \rfloor \\ i \text{ for } v_{2i-1} \text{ when } i = 2k, 1 \le k \le \lfloor n/4 \rfloor \\ \lceil n/2 \rceil \text{ for } u_n \\ \lceil n/2 \rceil + 1 \text{ for } v_n \\ \lceil n/2 \rceil + 2 \text{ for } u_i : 1 \le i \le n \\ \lceil n/2 \rceil + 3 \text{ otherwise} \end{cases}$$

Case 3: When $n \equiv 1 \mod 4$

$$f(v_i, u_i) = \begin{cases} i \text{ for } v_{2i} \text{ when } i = 2k - 1, 1 \le k \le \lfloor n/4 \rfloor \\ i \text{ for } v_{2i-1} \text{ when } i = 2k, 1 \le k \le \lfloor n/4 \rfloor \\ \lfloor n/2 \rfloor + 1 \text{ for } u_n : \\ \lfloor n/2 \rfloor + 2 \text{ for } u_i : 1 \le i \le n. \\ \lfloor n/2 \rfloor + 3 \text{ otherwise} \end{cases}$$

Hence this completes the proof of the theorem.

Theorem 2.6. For $n \ge 9$, the dominator chromatic number of derived graph of cycle is

$$\chi_d(C_n^{\dagger}) = \begin{cases} \lceil n/3 \rceil + 2 & \text{when } n \equiv 0, 1 \mod 3\\ 2 \lceil n/6 \rceil + 2 & \text{when } n \equiv 2 \mod 3 \end{cases}$$

Proof. By the definition of derived graph $\{v_1, v_2, v_3, \ldots, v_n\}$ be the vertices of derived graph of cycle graph. The following procedure gives the dominator chromatic number of derived graph of cycle graph. Consider the color classes $C = \{c_1, c_2, c_3, \ldots, \lfloor n/3 \rfloor + 2\}.$

Case 1: When $n \equiv (0,1) \mod 3$

For v_i where $i = 3k - 2, 1 \le k \le \lceil n/3 \rceil$ are colored by color $c_{\lceil i/3 \rceil}$ and assign the color $c_{\lceil n/3 \rceil+2}, c_{\lceil n/3 \rceil+1}$ to the remaining vertices of v_i . By the definition of dominator coloring v_i where $i = 3k - 2, 1 \le k \le \lceil n/3 \rceil$ Dominate itself and the remaining vertices dominates at least any one color classes $c_i, i = 3k - 2, 1 \le k \le \lceil n/3 \rceil$.

Case 2: $n \equiv 2 \mod 3$

First Assign the color $c_{\lceil i/3 \rceil}$ to $v_i, i = 6k - 5$ where $1 \le k \le \lfloor n/3 \rfloor - 2$ and assign $\operatorname{color} c_{\lceil i/3 \rceil} + 1$ to $v_i, i = 6k - 4, 1 \le k \le \lfloor n/3 \rfloor - 2$. Next the color $c_{\lceil n/3 \rceil + 2}$ and $c_{\lceil n/3 \rceil + 1}$ are assigned to the remaining vertices of v_i . Hence,

$$\chi_d(G^{\dagger}(C_n)) = \begin{cases} \lceil n/3 \rceil + 2 & \text{when } n \equiv (0,1) \mod 3 \\ \lceil n/3 \rceil + 2 & \text{when } n \equiv 2 \mod 3 \end{cases}$$

1	-	_

References

- [1] M. Chellali and F. Maffray, Dominator Colorings in Some Classes of Graphs, Graphs Combin., 28(2012), 97-107.
- [2] C. Devadas Nayak, Ph.D Thesis, Studies In The Theory Of Graph Labeling Problems, Manipal University, (2014).
- [3] R. Gera, On The Dominator Colorings in Bipartite Graphs, in: Proceedings of the 4th International Conference on Information Technology: New Generations, (2007), 947-952.
- [4] R. Gera, S Horton and C. Rasmussen, Dominator Colorings and Safe Clique Partitions, Congressus Numerantium, (2006).
- [5] R. M. Gera, On dominator coloring in graphs, Graph Theory Notes N.Y., LII(2007), 947-952.
- [6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, (1998).
- [7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Domination in Graphs: Advanced Topics*, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, (1998).
- [8] D. B. West, Introduction to Graph Theorey, 2nd ed., Prentice Hall, USA, (2001).
- [9] K. Kavitha and N. G. David, Dominator Coloring of Central Graphs, International Journal of Computer Applications, 51(12)(2012).
- [10] K. Kavitha and N. G. David, Dominator Coloring on Star and Double Star Graph Families, International Journal of Computer Applications, (2012), 22-25.