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Abstract: A locating-dominating set (LDS) S of a graph G is a dominating set S of G such that for every two vertices u and v
in V (G) \ S, N(u) ∩ S 6= N(v) ∩ S. The locating-domination number γL(G) is the minimum cardinality of a LDS of

G. Further, if S is a total dominating set then S is called a locating-total dominating set (LTDS). In this paper, we
determine the locating-domination and locating-total domination numbers of the shadow graph and for a special class of

path connected graph.
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1. Introduction

A set S of vertices in a graph G is called a dominating set of G if every vertex in V (G) \ S is adjacent to some vertex in S.

The set S is said to be a total dominating set of G if every vertex in V (G) is adjacent to some vertex in S. The minimum

cardinality of a dominating set and a total dominating set of G is denoted as γ(G) and γt(G), respectively. Domination

arises in facility location problems, where the number of facilities such as hospitals or fire stations are fixed and one attempts

to minimize the distance that a person needs to travel to get to the closest facility. Domination has also been widely used

in areas like locating radar station problem, coding theory, modelling biological networks, nuclear power plants and so on

[1–4]. Total domination plays a role in the problem of placing monitoring devices in a system in such a way that every

site in the system, including the monitors, is adjacent to a monitor site so that, if a monitor goes down, then an adjacent

monitor can still protect the system. Installing minimum number of expensive sensors in the system which will transmit a

signal at the detection of faults and uniquely determining the location of the faults motivates the concept of locating sets

and locating-total dominating sets [5].

In a parallel computer, the processors and interconnection networks are modeled by the graph G = (V,E), where each

processor is associated with a vertex ofG and a direct communication link between two processors is indicated by the existence

of an edge between the associated vertices. Suppose we have limited resources such as disks, input-output connections, or

software modules, and we want to place a minimum number of these resource units at the processors, so that every processor

is adjacent to at least one resource unit, then finding such a placement involves constructing a minimum dominating set for

the graph G. Installing minimum number of expensive sensors in a system which will transmit a signal at the detection of
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faults and uniquely determining the location of the faults give rise to the concept of locating-dominating sets and locating-

total dominating sets [5]. Determining if an arbitrary graph has a locating-dominating set and locating-total dominating

set of a given size are well-known NP -complete problems [6, 7].

In this paper, we obtain a lower bound for locating-dominating set and locating-total dominating set for the shadow graph

and for a special class of path connected graph. We also give some graphs for which the lower bound attained for a special

class of path connected graph is sharp.

2. Basic Concepts and Known Results

In this section, we give the preliminaries that are required for this study. All graphs considered in this paper are simple and

connected. Here, Pm and Cm denotes a path and a cycle on m vertices, respectively.

Definition 2.1. A locating-dominating set (LDS) in a graph G is a dominating set S of G such that for every pair of

vertices u and v in V (G) \ S, N(u) ∩ S 6= N(v) ∩ S. The minimum cardinality of a locating-dominating set of G is called

the locating-domination number γL(G).

Definition 2.2. A locating-total dominating set (LTDS) in a graph G is a total dominating set S of G such that for every

pair of vertices u and v in V (G) \ S, N(u) ∩ S 6= N(v) ∩ S. The minimum cardinality of a locating total-dominating set of

G is called the locating-total domination number γL
t (G).

Every locating-total dominating set of a graph G is also a locating-dominating set of the graph G, and so γL
t (G) ≥ γL

t (G)

for every graph G. We say a vertex u ∈ V \ S is located by S (S ⊆ V (G)), if N(u) ∩ S is distinct from any N(v) ∩ S, for all

v ∈ V (G) \ S.

Definition 2.3. The shadow graph D2(G) of a graph G is constructed by taking two copies of G, say G1 and G2. Join each

vertex u in G1 to the neighbors of the corresponding vertex u′ in G2.

A shadow graph D2(P5) and D2(S5) is shown in Figure 1, where P5 and S5 is path and star graph on 5 vertices, respectively.

Definition 2.4. A path connected graph P (G,Pm, k) of G is obtained by taking k copies of G, say G1, G2, . . . , Gk. Gi is

connected with Gi+1 by a path Pm (call it as, binding path), such that left and right end vertices of Pm is joined by an edge

to a vertex of Gi and Gi+1, 1 ≤ i ≤ k − 1, respectively. Moreover, the distance between two consecutive binding paths must

be three. See Figure 2.

P
5

Copy of P
5

S
5

Copy of S5

(a) (b)

Figure 1. (a)D2(P5) and (b)D2(S5)

Lemma 2.5 ([8]). Let G be a graph of order n and maximum degree ∆. Then γL(G) ≥ 2n
∆+3

.

Lemma 2.6 ([9]). If G is a graph of order n ≥ 3 and maximum degree ∆ ≥ 2 with no isolated vertex, then γL
t (G) ≥ 2n

∆+2
.
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3. Main Results

In this section, we discuss about the locating-domination number and locating-total domination number for shadow graph

and path connected graph.

3.1. Shadow graph D2(G)

Lemma 3.1. Let S be a locating-dominating set of G. If there exists vertices u and v in G such that N(u) = N(v), then

either u or v must be in S.

Proof. Let u and v be the vertices in G such that N(u) = N(v). Suppose S does not contain u and v. Then N(u) ∩ S =

N(v) ∩ S, since every neighbor of u is a neighbor of v. This is a contradiction to S. Thus S contains either u or v.

Theorem 3.2. Let D2(G) be a shadow graph of G and o(G) = n, n ≥ 2. Then γL(D2(G)) = γL
t (D2(G)) ≥ n.

Proof. Let S be a locating-dominating set of D2(G). Let G1 and G2 be the graphs isomorphic to G in D2(G). Let u

be a vertex in G1 which is connected to the neighbors of the corresponding vertex u′ in G2. By the definition of shadow

graph, we have N(u) = N(u′) in D2(G). Thus by Lemma 3.1, either u or u′ must be in S. Moreover, in D2(G) there are at

least n such pairs like u and u′ such that N(u) = N(u′). Therefore, |S| ≥ n. As S contains no isolated vertex, S is also a

locating-total dominating set of D2(G). Therefore, γL
t (D2(G)) ≥ n.

Corollary 3.3. Let D2(G) be a shadow graph of G and o(G) = n, n ≥ 2. If there exist no vertices u and v in G such that

N(u) = N(v), then γL(D2(G)) = γL
t (D2(G)) = n.

Corollary 3.4. Let D2(G) be a shadow graph of G and o(G) = n, n ≥ 2. If there exist m vertices, say u1, u2, . . . , um in G

such that N(ui) = N(uj), 1 ≤ i, j ≤ m, then γL(D2(G)) = γL
t (D2(G)) = n+m− 1.

Share vertices

First copy of
5

C Second copy of
5

C Third copy of
5

C

Binding path
3

P

Figure 2. P (C5, P3, 3)

3.2. Path connected graph

The following notions will be helpful for proving the results. Two cycles, say Cn and C′n of G are said to be distinct if they

don’t share a vertex in common. A vertex u of Cn in G is called a share vertex if N(u) has a member outside Cn. See

Figure 2.

Theorem 3.5. Let G be a path connected graph of P (Cn, Pm, k), k ≥ 2 and n,m ≥ 1. Then γL(G) ≥ k
⌈

2(n−2)
5

⌉
+ (k −

1)
⌈

2m
5

⌉
.

Proof. Let S be a locating-dominating set of G. Let G1, G2, . . . , Gk be the k copies of Cn, and Pm be a binding path in

G. Consider the worst case when one copy of Cn, say Gi, contains two share vertices. Now to locate the remaining vertices

of Gi, by Lemma 2.5, we need at least 2(n − 2)/5 vertices from Gi in S, since the remaining vertices of Gi induces a path
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on k − 2 vertices. Hence, S contains at least k
⌈

2(n−2)
5

⌉
vertices, since Gi is taken as a random copy. It is clear that, if G

contains k copies of Cn, then G contains k − 1 copies of binding path Pm. By Lemma 2.5, we need at least 2m/5 vertices

from every copy of Pm. Hence, S contains at least (k− 1)
⌈

2m
5

⌉
vertices from k− 1 copies of Pm. From the above arguments

we can conclude that |S| ≥ k
⌈

2(n−2)
5

⌉
+ (k − 1)

⌈
2m
5

⌉
.
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Figure 3. Vertices in a locating-dominating set of P (C10, P5, 3) are circled

Theorem 3.6. Let G be a path connected graph of P (C5n, P5m, k), k ≥ 2 and n,m ≥ 1. Then γL(G) = k
⌈

2(n−2)
5

⌉
+ (k −

1)
⌈

2m
5

⌉
.

Proof. Label the vertices of Gi as ui
j where 1 ≤ j ≤ 5n and 1 ≤ i ≤ k in G. Let P 1

m, P
2
m, . . . , P

k−1
m be the k − 1

copies of binding path Pm in G. Label the vertices of Pm as vqp, where 1 ≤ p ≤ 5m and 1 ≤ q ≤ k − 1 in G. See

Figure 3. Let S = ∪1≤i≤k ∪1≤j≤n ∪1≤q≤k−1 ∪1≤p≤m

{
ui

5j−1, u
i
5j−3, v

q
5p−1, v

q
5p−3

}
. We claim that S is a locating-dominating

set of G. Clearly S is a dominating set. We have only to prove that S is a locating-dominating set of G. Let x, y ∈

V \ S. If x and y are in different cycles, then N(x) ∩ S 6= N(y) ∩ S. Suppose x and y are in the same cycle, say Gi.

Now V (G) \ S = {ui
5j , u

i
5j−2, u

i
5j−4, v

q
5p, v

q
5p−2, v

q
5p−4}. If x = ui

5j and y = ui
5j−2, 1 ≤ i ≤ k and 1 ≤ j ≤ n, then

N(ui
5j) ∩ S = {ui

5j−1} 6= {ui
5j−1, u

i
5j−3} = N(ui

5j−2) ∩ S. If x = ui
5j and y = ui

5j−4, 1 ≤ i ≤ k and 1 ≤ j ≤ n,

then N(ui
5j) ∩ S = {ui

5j−1} 6= {ui
5j−3} = N(ui

5j−4) ∩ S. If x = ui
5j−2 and y = ui

5j−4, 1 ≤ i ≤ k and 1 ≤ j ≤ n, then

N(ui
5j−2)∩S = {ui

5j−1, u
i
5j−3} 6= {ui

5j−3} = N(ui
5j−4)∩S. Thus N(x)∩S 6= N(y)∩S. Now consider if x and y are in different

binding paths, then N(x) ∩ S 6= N(y) ∩ S. Suppose x and y are in the same binding path, then by the similar argument as

in the case of x and y are in different cycles, we can conclude that N(x) ∩ S 6= N(y) ∩ S. Thus S is a locating-dominating

set of G. Therefore |S| ≤ k
⌈

2(n−2)
5

⌉
+ (k − 1)

⌈
2m
5

⌉
. By Theorem 3.5, |S| = k

⌈
2(n−2)

5

⌉
+ (k − 1)

⌈
2m
5

⌉
.

Theorem 3.7. Let G be a path connected graph of P (Cn, Pm, k), k ≥ 2 and n,m ≥ 1. Then γL
t (G) ≥ k

⌈
2(n−2)

4

⌉
+ (k −

1)
⌈

2m
4

⌉
Proof. Let S be a locating-total dominating set of G. Let G1, G2, . . . , Gk be the k copies of Cn and Pm be a binding path

in G. Consider the worst case when one copy of Cn say, Gi, contains two share vertex. Now to locate the remaining vertices

of Gi, by Lemma 2.6, we need at least 2(n − 2)/4 vertices from Gi in S, since the remaining vertices of Gi induces a path

on k − 2 vertices. Hence, S contains at least k
⌈

2(n−2)
4

⌉
vertices, since Gi is taken as a random copy. It is clear that, if G

contains k copies of Cn then G contains k − 1 copies of binding path Pm. By Lemma 2.6, we need at least 2m/4 vertices

from every copy of Pm. Hence, S contains at least (k − 1)
⌈

2m
4

⌉
vertices. From the above arguments we can conclude that

|S| ≥ k
⌈

2(n−2)
4

⌉
+ (k − 1)

⌈
2m
4

⌉
.

Theorem 3.8. Let G be a path connected graph of P (C4n, P4m, k), k ≥ 2 and n,m ≥ 1. Then γL
t (G) = k

⌈
2(n−2)

4

⌉
+ (k −

1)
⌈

2m
4

⌉
.
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Figure 4. Vertices in a locating-total dominating set of P (C8, P4, 3) are circled

Proof. Label the vertices of Gi as ui
j where 1 ≤ j ≤ 45n and 1 ≤ i ≤ k in G. Let P 1

m, P
2
m, . . . , P

k−1
m be the k − 1

copies of binding path Pm in G. Label the vertices of Pm as vqp where 1 ≤ p ≤ 4m and 1 ≤ q ≤ k − 1 in G. See Figure

4. Let S = ∪1≤i≤k ∪1≤j≤n ∪1≤q≤k−1 ∪1≤p≤m

{
ui

4j−1, u
i
4j−2, v

q
4p−1, v

q
4p−2

}
. We claim that S is a locating-total dominating

set of G. Clearly S is a total dominating set. We have only to prove that S is a locating-total dominating set of G.

Let x, y ∈ V \ S. If x and y are in different cycles, then N(x) ∩ S 6= N(y) ∩ S. Suppose x and y are in the same

cycle, say Gi. Now V (G) \ S = {ui
4j , u

i
4j−3, v

q
4p, v

q
4p−3}. If x = ui

4j and y = ui
4j−3, 1 ≤ i ≤ k and 1 ≤ j ≤ n, then

N(ui
4j) ∩ S = {ui

4j−1} 6= {ui
4j−2} = N(ui

4j−3) ∩ S. Thus N(x) ∩ S 6= N(y) ∩ S. Now consider if x and y are in different

binding paths, then N(x) ∩ S 6= N(y) ∩ S. Suppose x and y are in the same binding path, then by the similar argument

as in the case of x and y are in different cycles, we can conclude that N(x) ∩ S 6= N(y) ∩ S. Thus S is a locating-total

dominating set of G. Therefore |S| ≤ k
⌈

2(n−2)
4

⌉
+ (k − 1)

⌈
2m
4

⌉
. By Theorem 3.7, |S| = k

⌈
2(n−2)

4

⌉
+ (k − 1)

⌈
2m
4

⌉
.

4. Conclusion

In this paper, we have determined a lower bound for the locating-dominating set and locating-total dominating set for the

shadow graph and path connected graph P (Cn, Pm, k), k ≥ 2. Moreover, the bound attained for the locating-domination and

locating-total domination problems for a path connected graph are sharp for P (C5n, P5m, k) and P (C4n, P4m, k), respectively.

It would be interesting to focus our study on finding the locating-domination number and locating-total domination number

for P (Cn, Pm, k).
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