On Adriatic Indices and its Application to Some Properties of Alkanes

Ishwar Baidari ${ }^{1}$, Preeti Savant ${ }^{1, *}$ and Ashwini Yalnaik ${ }^{2}$
1 Department of Computer Science, Karnatak University, Dharwad, Karnataka, India.
2 Department of Mathematics, Karnatak University, Dharwad, Karnataka, India.

Abstract

The adriatic indices like max-min and min-max deg indices are defined by V.Damir and G.Marija. In this paper we have given certain generalization for some graphs and presented few bounds for these two indices. Along with that some graph operations has been performed like join and corona product. Lastly some chemical applications of max-min and min-max degree indices for alkanes are explored. MSC: $\quad 05 \mathrm{C} 07,05 \mathrm{C} 12,05 \mathrm{C} 85$.

Keywords: Adriatic indices, Heat of Atomization, Heat of Formation, Chemical trees.

1. Introduction

Mathematical chemistry is the branch of theoretical chemistry in which mathematics is applied for mathematical modelling of chemical marvels. It is also called Computer chemistry and the main conceptions it involves are, molecular graph and topological index. One of the sub area of mathematical chemistry is chemical graph theory, which applies graph theory concepts to chemical phenomena, which has enormous applications in QSPR (Quantitative Structure-Property Relationships) [1]. Topological index is a numerical quantity acquired from graphical structure of chemical compound to assess the physicochemical properties of these compounds where, assorted research in this area is done with respect to QSAR/QSPR study [2] [3]. There are many bond-additive descriptors, but our work is focused on two such descriptors known as, max-min degree index and min-max degree index. The max-min deg index of a graph $\mu_{1}(G)$ is defined as, [4]

$$
\mu_{1}(G)=\sum_{u v \in E(G)} \frac{\max \left\{d_{u}, d_{v}\right\}}{\min \left\{d_{u}, d_{v}\right\}}
$$

The min-max deg index of a graph $\mu_{2}(G)$, is defined as,

$$
\mu_{2}(G)=\sum_{u v \in E(G)} \frac{\min \left\{d_{u}, d_{v}\right\}}{\max \left\{d_{u}, d_{v}\right\}}
$$

where d_{u} and d_{v} are degree of vertices u and $v,(u v)$ is an edge belongs to edge set of graph $(E(G))$. The graphs considered here are simple, undirected and connected graphs. The graph G can be defined as collection of vertices and edges. Set

[^0]of vertices and edges are represented by $V(G)$ and $E(G)$ respectively. The degree or valancy of vertex is the number of vertices that are incident to it. If each degree of a graph is same then it is known as regular graph. A graph whose all vertices degree is $n-1$ is called Complete graph, K_{n}. The path, P_{n} is a tree whose vertex degrees are either 1 or 2 . The diameter of star is always 2 and central vertex has degree $n-1$ other are leaf nodes. Let G_{1} and G_{2} be two graphs, denoted by $G_{1}+G_{2}$ the join of two graphs, which is obtained from G_{1} and G_{2} by joining every vertex of G_{1} to that of G_{2}. The corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \circ G_{2}$ formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} where the $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2} [5]. Here we consider the corona of $G \circ y\left(K_{1}\right)$, in particular, is the graph constructed from a copy of G and for each vertex $v \in V(G)$, the new vertices $u^{\prime}, v^{\prime}, \ldots, k^{\prime}$ and the pendent edge $v u^{\prime}, v v^{\prime}, \ldots, v k^{\prime}$ are added.

2. Adriatic Indices of Alkanes

In this article we present the association between max-min deg index and min-max deg index for some Alkanes. Alkanes belongs to the class of aliphatic hydrocarbons, whose structure is similar to tree structure in graph theory. So the structure can be classified into three types: path, star and general tree structure. The chemical tree involves four kinds of valancies $1,2,3$, and 4. Let m and n be the number of edges and vertices respectively, and in tree $m=n-1$ [6]. And possible edges are: $E(G)=\left\{\left(m_{1,1}\right),\left(m_{1,2}\right),\left(m_{1,3}\right),\left(m_{1,4}\right),\left(m_{2,2}\right),\left(m_{2,3}\right),\left(m_{2,4}\right),\left(m_{3,3}\right),\left(m_{3,4}\right),\left(m_{4,4}\right)\right\}$.

2.1. Max-min deg index

In the path the number of pendent edges are 2 and the number of non-pendent edges are $m-2$. The value of max-min deg index of pendent edges is 2 and non-pendent edges is $2 / 2=1$. Hence the max-min deg index of path can be generalized as, $\mu_{1}\left(P_{n}\right)=4+m-2=m+2$. Star has vertices with degrees 1 and m, Therefore the max-min deg index of star is given as, $\mu_{1}\left(S_{n}\right)=m^{2}$. For chemical trees ten different kinds of edges are possible, which are mentioned above, whose vertex degrees are not more than 4. Hence this index for chemical trees can be generalized as follows:

$$
\begin{aligned}
\mu_{1}\left(T_{n}\right)= & \frac{4}{4} m_{4,4}+\frac{4}{3} m_{4,3}+\frac{4}{2} m_{4,2}+\frac{4}{1} m_{4,1}+\frac{3}{3} m_{3,3}+\frac{3}{2} m_{3,2}+\frac{3}{1} m_{3,1}+\frac{2}{2} m_{2,2} \\
& +\frac{2}{1} m_{2,1}+\frac{1}{1} m_{1,1} \\
= & 1 \cdot\left(m_{4,4}+m_{3,3}+m_{2,2}+m_{1,1}\right)+2 \cdot\left(m_{4,2}+m_{2,1}\right)+4 m_{4,1}+3 m_{3,1} \\
& +1.33 m_{4,3}+1.5 m_{3,2} .
\end{aligned}
$$

2.2. Min-max deg index

The min-max deg index μ_{2} of path graph is given as, $\mu_{2}\left(P_{n}\right)=m-1$. One can observe that min-max deg index of Star is, $\mu_{2}\left(S_{n}\right)=1$. Similarly like previous index, μ_{2} for chemical trees can be given as,

$$
\begin{aligned}
\mu_{2}\left(T_{n}\right)= & 1 m_{1,1}+0.5 m_{1,2}+0.33 m_{1,3}+0.25 m_{1,4}+1 m_{2,2}+0.66 m_{2,3}+0.5 m_{2,4}+1 m_{3,3} \\
& +0.75 m_{3,4}+1 m_{4,4} \\
= & 1\left(m_{1,1}+m_{2,2}+m_{3,3}+m_{4,4}\right)+0.5\left(m_{1,2}+m_{2,4}\right)+0.33 m_{1,3}+0.25 m_{1,4} \\
& +0.66 m_{2,3}+0.75 m_{3,4} .
\end{aligned}
$$

Figure 1: Types of tree structures in Alkane: (a) path, (b) star (c) chemical tree, with degree of each vertex.

3. Main Results

Theorem 3.1. Let T be tree then,

$$
\left.\begin{array}{rl}
M_{2}\left(P_{n}\right)-3(m-2) & \leq \mu_{1}(T)
\end{array}\right) \leq m^{2} .
$$

Proof. We know that in trees, $m=n+1$ is true, for equation (1), $M_{2}\left(P_{n}\right)$ and $\mu_{1}\left(P_{n}\right)$ end edge values are same and every other values differ by 3 so, path of max min degree in terms of second Zagreb index is given as $M_{2}\left(P_{n}\right)-3(m-2)$. As the complexity of connectivity increases, $\mu_{1}(T)$ raises, therefore left side inequality holds. Where as for S_{n}, μ_{1} is m times m hence its values is always greater than other trees, this satisfies right inequality. For equation (2), the left inequality holds if $n>3$ because $\mu_{2}\left(S_{n}\right)$ is always one and $\mu_{2}(T)$ varies due to distinct degrees of vertices in a graph. In P_{n}, pendent edge value is twice $1 / 2$ and 2 , for alternative edge values are 1 and 4 for μ_{2} and M_{2} respectively. The right inequality holds due to greater degrees of trees than path. For both equations equality restriction holds if $n=2$ and 3 .

Theorem 3.2. For any regular graph G,

$$
\mu_{1}=\mu_{2}=\frac{n r}{2}
$$

Proof. The degrees in regular graphs is same so, from definition (1) and (2) we get mentioned results.

Corollary 3.3. For cycle and complete graph μ_{1} and μ_{2} is,

$$
\begin{aligned}
\mu_{1}\left(C_{n}\right) & =\mu_{2}\left(C_{n}\right)=n \\
\mu_{1}\left(K_{n}\right) & =\mu_{2}\left(K_{n}\right)=\frac{n(n-1)}{2}
\end{aligned}
$$

Theorem 3.4. Let $P_{n_{1}}$ and $P_{n_{2}}$ be two paths with $n_{1}>n_{2} \geq 2$. then join of these is given as,

$$
\begin{aligned}
& \mu_{1}\left(P_{n_{1}}+P_{n_{2}}\right)=\frac{a^{3} b^{2}+a^{3} b+4 a^{2} b^{2}+6 a^{2} b+a b^{3}+4 a b^{2}+7 a b-4 a+b^{3}+3 b^{2}+8 b}{(a+1) \cdot(b+1) \cdot(b+2)} \\
& \mu_{2}\left(P_{n_{1}}+P_{n_{2}}\right)=\frac{a^{3} b+2 a^{3}+a^{2} b^{3}+5 a^{2} b^{2}+7 a^{2} b+a b^{3}+7 a b^{2}+8 a b-10 a-10 b-24}{(a+2) \cdot(b+2) \cdot(a+1)}
\end{aligned}
$$

Proof. Consider paths $P_{n_{1}}$ and $P_{n_{2}}$, where $\left|P_{n_{1}}\right|=a,\left|P_{n_{2}}\right|=b$ and each vertex set consists of 2 pendent vertices and $n-2$ non pendent vertices. For $P_{n_{1}}$ degree of 2 vertices is $b+1$ rest are $b+2$. similarly for $P_{n_{2}}$ degree of 2 vertices is $a+1$
rest are $a+2$. For max-min deg index,

$$
\begin{aligned}
\mu_{1}\left(P_{n_{1}}+P_{n_{2}}\right)= & 2 \cdot \frac{(a+2)}{(a+1)}+(a-3) \cdot \frac{(a+2)}{(a+2)}+2 \cdot \frac{(b+2)}{(b+1)}+(b-3) \cdot \frac{(b+2)}{(b+2)}+4 \cdot \frac{(a+1)}{(b+1)} \\
& +(a-2) \cdot(b-2) \cdot \frac{(a+2)}{(b+2)}+2 \cdot(b-2) \frac{(a+2)}{(b+1)}+2 \cdot(a-2) \cdot \frac{(a+1)}{(b+2)} \\
= & \frac{(2 a+4)}{(a+1)}+a-3+\frac{(2 b+4)}{(b+1)}+b-3+\frac{4 a+4}{(b+1)}+\frac{(a+2) \cdot(a-2) \cdot(b-2)}{(b+2)} \\
& +\frac{2 \cdot(a+2) \cdot(b-2)}{(b+1)}+\frac{2 \cdot(a-2) \cdot(a+1)}{(b+2)} \\
= & \frac{a^{2} b+a b^{2}+a+b^{2}+b+2}{(a+1) \cdot(b+1)}+\frac{2 \cdot(a+2) \cdot(b-2)}{(b+1)}+\frac{2 \cdot(a-2) \cdot(a+1)}{(b+2)}+\frac{(a+2) \cdot(a-2) \cdot(b-2)}{b+2} \\
= & \frac{a^{3} b^{2}-a^{3} b-2 a^{3}+4 a^{2} b^{2}+6 a^{2} b+a b^{3}+4 a b^{2}+13 a b+2 a+b^{3}+3 b^{2}+12 b+4}{(a+1) \cdot(b+1) \cdot(b+2)} \\
& +\frac{2 \cdot(a-2) \cdot(a+1)}{(b+2)} \\
= & \frac{a^{3} b^{2}+a^{3} b+4 a^{2} b^{2}+6 a^{2} b+a b^{3}+4 a b^{2}+7 a b-4 a+b^{3}+3 b^{2}+8 b}{(a+1) \cdot(b+1) \cdot(b+2)}
\end{aligned}
$$

For min-max deg index,

$$
\begin{aligned}
\mu_{2}\left(P_{n_{1}}+P_{n_{2}}\right)= & \frac{2 \cdot(a+1)}{(a+2)}+(a-3)+\frac{2 \cdot(b+1)}{(b+2)}+(b-3)+\frac{4 \cdot(b+1)}{(a+1)}+\frac{(a-2) \cdot(b-2) \cdot(b+2)}{(a+2)} \\
& +\frac{2 \cdot(b-2) \cdot(b+1)}{(a+2)}+\frac{2 \cdot(a-2) \cdot(b+2)}{(a+1)} \\
= & \frac{2 a+2}{(a+2)}+a-3+\frac{2 b+2}{(b+2)}+b-3+\frac{4 b+4}{(a+1)}+\frac{(a-2) \cdot(b-2) \cdot(b+2)}{(a+2)} \\
& +\frac{2 \cdot(b+1) \cdot(b-2)}{(a+2)}+\frac{2 \cdot(a-2) \cdot(b+2)}{(a+1)} \\
= & \frac{a^{3} b+2 a^{3}+a^{2} b^{3}+3 a^{2} b^{2}-a^{2} b-8 a^{2}+a b^{3}+7 a b^{2}+8 a b-10 a+8 b^{2}+22 b+8}{(a+2) \cdot(b+2) \cdot(a+1)} \\
& +\frac{2 \cdot(a-2)(b+2)}{(a+1)} \quad \\
= & \frac{a^{3} b+2 a^{3}+a^{2} b^{3}+5 a^{2} b^{2}+7 a^{2} b+a b^{3}+7 a b^{2}+8 a b-10 a-10 b-24}{(a+2) \cdot(b+2) \cdot(a+1)}
\end{aligned}
$$

Theorem 3.5. Let $P_{n_{1}}$ and R_{n} be path and regular graph then join of these becomes,

$$
\begin{aligned}
\mu_{1}\left(P_{n}+R_{n}\right) & =\frac{b^{4}+2 b^{3}+2 b^{2} a^{2}+2 b^{2} a r+2 b^{2} a-3 b^{2}+2 b a^{2}+2 b a r+10 b a+4 b r-4 b+4 a+4}{2 \cdot(b+1) \cdot(b+2)} \\
\mu_{2}\left(P_{n}+R_{n}\right) & =\frac{3 b^{3} a+b^{3} r+9 b^{2} a+b^{2} r-4 b^{2}+2 b a^{2}+2 a b r+4 a b-4 b r-8 b+4 a^{2}+4 a r-8 a-8 r}{2 \cdot(b+2) \cdot(a+r)}
\end{aligned}
$$

Proof. The $\left|P_{n}\right|=a,\left|R_{n}\right|=b$ and r be the regularity, the degrees vertices in P_{n} are $b+1$ for pendent vertices, $b+2$ for
non pendent vertices and for R_{n} is $r+a$. Hence max-min deg index becomes,

$$
\begin{aligned}
\mu_{1}\left(P_{n}+R_{n}\right) & =\frac{2 \cdot(b+2)}{b+1}+a-3+\frac{b \cdot(b-1)}{2}+\frac{2 b \cdot(r+a)}{b+1}+\frac{b(a-2) \cdot(r+a)}{b+2} \\
& =\frac{b^{3}+2 b a-3 b+2 a+2}{2 \cdot(b+1)}+\frac{2 b \cdot(a+r)}{b+1}+\frac{b \cdot(a-2) \cdot(a+r)}{b+2} \\
& =\frac{b^{4}+2 b^{3}+2 b^{2} a^{2}+2 b^{2} a r+2 b^{2} a-3 b^{2}+2 b a^{2}+2 b a r+10 b a+4 b r-4 b+4 a+4}{2 \cdot(b+1) \cdot(b+2)}
\end{aligned}
$$

For min-max deg index

$$
\begin{aligned}
\mu_{2}\left(P_{n}+R_{n}\right) & =\frac{2 \cdot(b+1)}{b+2}+a-3+\frac{b \cdot(b-1)}{2}+\frac{2 b \cdot(b+1)}{r+a}+\frac{b \cdot(a-2) \cdot(b+2)}{r+a} \\
& =\frac{b a-b+2 a-4}{b+2}+\frac{b \cdot(b+1)}{2}+\frac{2 b \cdot(b+1)}{a+r}+\frac{b \cdot(a-2) \cdot(b+2)}{a+r} \\
& =\frac{3 b^{3} a+b^{3} r+9 b^{2} a+b^{2} r-4 b^{2}+2 b a^{2}+2 a b r+4 a b-4 b r-8 b+4 a^{2}+4 a r-8 a-8 r}{2 \cdot(b+2) \cdot(a+r)} .
\end{aligned}
$$

Corollary 3.6. Let P_{n} and C_{n} be path and cycle. Then

$$
\begin{aligned}
& \mu_{1}\left(P_{n}+C_{n}\right)=\frac{b^{3}+b^{2} a^{2}+3 b^{2} a+2 b^{2}+b a^{2}+7 a b+5 b+2 a+2}{(b+1) \cdot(b+2)} \\
& \mu_{2}\left(P_{n}+C_{n}\right)=\frac{b^{3} a+5 b^{2} a+b a^{2}+7 b a-2 b+2 a^{2}-8}{(b+2) \cdot(a+2)}
\end{aligned}
$$

Corollary 3.7. Let P_{n} and K_{n} be path and complete graph. Then

$$
\begin{aligned}
& \mu_{1}\left(P_{n}+K_{n}\right)=\frac{b^{4}+2 b^{3} a+2 b^{3}+2 a^{2} b^{2}+2 b^{2} a+b^{2}+2 a^{2} b+8 a b+4 a-8 b+4}{2 \cdot(b+1) \cdot(b+2)} \\
& \mu_{2}\left(P_{n}+K_{n}\right)=\frac{b^{4}+3 b^{2} a+11 b^{2} a-9 b^{2}+2 a^{2} b+6 a b-12 b+4 a^{2}-12 a+8}{2 \cdot(b+2) \cdot(a+b-1)}
\end{aligned}
$$

Theorem 3.8. Let R be a regular graph then, μ_{1} and μ_{2} of corona of R and y times K_{1} is,

$$
\begin{aligned}
& \mu_{1}\left(R \circ y\left(K_{1}\right)\right)=\frac{n r+2 n y(r+y)}{2} . \\
& \mu_{2}\left(R \circ y\left(K_{1}\right)\right)=\frac{n r^{2}+2 n y+n r y}{2(r+y)} .
\end{aligned}
$$

Proof. Let r be a degree of R and K_{1} be the trivial graph. The leaf nodes are represented by $n y$ and degree of its adjacent vertices is $r+y$, where $n r / 2$ is number of edges in R. Therefore,

$$
\begin{aligned}
\mu_{1}\left(R \circ y\left(K_{1}\right)\right) & =n y(r+y)+\frac{n r}{2} \\
& =\frac{n r+2 n y(r+y)}{2} . \\
\mu_{2}\left(R \circ y\left(K_{1}\right)\right) & =\frac{n y}{r+y}+\frac{n r}{2} \\
& =\frac{n r^{2}+2 n y+n r y}{2(r+y)} .
\end{aligned}
$$

Corollary 3.9. For μ_{1} and μ_{2} of corona of C_{n} and $y\left(K_{1}\right)$ is,

$$
\begin{aligned}
& \mu_{1}\left(C_{n} \circ y\left(K_{1}\right)\right)=n(y+1)^{2} . \\
& \mu_{2}\left(C_{n} \circ y\left(K_{1}\right)\right)=\frac{2 n(y+1)}{y+2} .
\end{aligned}
$$

Corollary 3.10. For μ_{1} and μ_{2} of corona of K_{n} and $y\left(K_{1}\right)$ is,

$$
\begin{aligned}
& \mu_{1}\left(K_{n} \circ y\left(K_{1}\right)\right)=\frac{n\left(2 y^{2}-2 y+2 n y+n-1\right)}{2} . \\
& \mu_{2}\left(K_{n} \circ y\left(K_{1}\right)\right)=\frac{n\left(n^{2}+y+n y-2 n+1\right)}{2(n+y-1)} .
\end{aligned}
$$

4. Correlation Between μ_{1}, μ_{2} with Properties of Alkanes

This section comprises of linear regression analysis of μ_{1} and μ_{2} with π-electronic energy E_{π}, Heat of Atomization ΔH_{a} and Heat of Formation ΔH_{t}. Table 1 represents experimental values of $E_{\pi}, \Delta H_{a}, \Delta H_{t}$ and index values μ_{1}, μ_{2} and also the product of two indices $\left(\mu_{2} * \mu_{2}\right)$ of alkanes are listed. Table 2 and 3 depicts the statistical outcome like, coefficient of determination $\left(R^{2}\right)$; standard error of the estimate (S) and regression expression, of linear regression analysis of figure 2 and 3 respectively.

Molecule	μ_{1}	μ_{2}	$\mu_{1} * \mu_{2}$	E_{π}	ΔH_{a}	ΔH_{t}
Propane	4	1	4	2.828427	955.49	24.82
2-Methylbutane	9.5	1.83	17.385	5.226252	1518.57	36.92
2,3-Dimethylbutane	13	2.33	30.29	6	1799.63	42.49
2,4-Dimethylpentane	15	2.67	40.05	6.828427	2080.92	48.3
3,3-Diethylpentane	16	4	64	10.472136	2639.05	55.81
3,3-Dimethylpentane	16	2.5	40	7.595865	2080.81	48.17
2,5-Dimethylhexane	16	3.67	58.72	8.472136	2361.33	53.21
2,2-Dimethylpentane	17	2.75	46.75	6.720566	2081.91	49.29
2,2,3-Trimethylpentane 17	3.5	59.5	8.519258	2360.73	52.61	
2,3,3-Trimethylpentane 19.33	2.92	56.4436	8.375131	2359.85	51.73	
3,3-Dimethylhexane	19.83	3	59.49	8.261125	2360.73	52.61

Table 1: Max-min deg index $\left(\mu_{1}\right)$, min-max deg index $\left(\mu_{2}\right)$, product of values of these two indices $\left(\mu_{2} * \mu_{2}\right)$, π - electronic energy $\left(E_{\pi}\right)$, heat of atomization $\left(\Delta H_{a}\right)$, heat of formation $\left(\Delta H_{t}\right)$ of alkanes.

The values of π-electrnic energy is evaluated using MathChem, an open source Python package for calculating topological indices [7] and Heat of Atomization, Heat of Formation are taken from the book Molecular Connectivity in Chemistry and Drug Research [8].

Figure 2: Illustration of the linear regression analysis of π-electronic energy, E_{π}; heat of atomization, ΔH_{a} and heat of formation, ΔH_{t} with max-min μ_{1} and min-max μ_{2} deg index.

Figure Index Property $R^{2} \quad S \quad$ Expression
(a) $\begin{array}{llll}\mu_{1} & E_{\pi} & 0.7081 .16 \quad E_{\pi}=(0.376 \pm .080) \mu_{1}+(1.646 \pm 1.241)\end{array}$
(b) $\mu_{2} \quad E_{\pi} \quad 0.9210 .603 \quad E_{\pi}=(2.305 \pm .0 .225) \mu_{2}+(0.887 \pm 0.643)$.
(c) $\quad \mu_{1} \quad \Delta H_{a} \quad 0.839202 .0 \quad \Delta H_{a}=(95.888 \pm 14.011) \mu_{1}+(636.470 \pm 215.954)$
(d) $\quad \mu_{2} \quad \Delta H_{a} \quad 0.918144 .14 \Delta H_{a}=(538.974 \pm 53.719) \mu_{2}+(576.362 \pm 153.597)$
(e) $\quad \mu_{1} \quad \Delta H_{t} \quad 0.8783 .335 \quad \Delta H_{t}=(1.865 \pm 0.231) \mu_{1}+(19.319 \pm 3.566)$
(f) $\quad \mu_{2} \quad \Delta H_{t} \quad 0.88933 .18 \quad \Delta H_{t}=(10.086 \pm 1.185) \mu_{2}+(19.245 \pm 3.389)$

Table 2: Regression analysis details of figure 2.

Figure 3: Illustration of correlation of $E_{\pi}, \Delta H_{a}, \Delta H_{t}$ with product of values of two indices i.e ($\mu_{1} * \mu_{2}$) of alkanes.

| Index Property R^{2} | $S \quad$ Expression |
| :--- | :--- | :--- |
| $\mu_{1} * \mu_{2} E_{\pi}$ | $0.9100 .644 E_{\pi}=(0.10 \pm 0.01)\left(\mu_{1} * \mu_{2}\right)+(2.877 \pm 0.494)$ |
| $\mu_{1} * \mu_{2} \Delta H_{a}$ | $0.96397 .43 \Delta H_{a}=(24.08 \pm 1.584)\left(\mu_{1} * \mu_{2}\right)+(1011.02 \pm 74.669)$ |
| $\mu_{1} * \mu_{2} \Delta H_{t}$ | $0.9422 .294 \Delta H_{t}=(0.453 \pm 0.37)\left(\mu_{1} * \mu_{2}\right)+(27.276 \pm 1.759)$ |

Table 3: Report of linear regression analysis of figure 3.

5. Conclusion

In this work we made an attempt to correlate two degree based adriatic indices with π electronic energy, heat of atomization and heat of formation of alkanes. The bounds and explicit formulas for their values under some graph operations are presented.

Acknowledgement

Authors are grateful to referees for their valuable suggestions. The authors are also thankful to the University Grants Commission (UGC), Govt. of India for support through Rajiv Gandhi National Fellowship No. F1-17.1/2014-15/RGNF-2014-15-SC-KAR-71055.

References

[1] J. Devillers and A. T. Balaban, Topological indices and related descriptors in QSAR and QSPAR, CRC Press, (2000).
[2] M. V. Diudea, I. Gutman and L. Jantschi, Molecular topology, Nova Science Publishers New York, (2001).
[3] F. Shafiei, Relationship between Topological Indices and Thermodynamic Properties and of the Monocarboxylic Acids Applications in $Q S P R$, Iranian Journal of Mathematical Chemistry, 6(15)(2015).
[4] D. Vukicevic and M. Gasperov, Bond additive modeling 1. Adriatic indices, Croatica Chemica Acta, 83(2010).
[5] J. L. Gross, P. Z. Yellen and Jay, Handbook of graph theory, 2nd Ed, CRC press, (2014).
[6] T. W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of domination in graphs, CRC Press, (1998).
[7] A. Vasilyev and D. Stevanovic, MathChem: a Python package for calculating topological indices, MATCH Commun. Math. Comput. Chem., 71(2014).
[8] G. L. Amidon, Molecular connectivity in chemistry and drug research, Journal of Pharmaceutical Sciences, 66(1977).

[^0]: * E-mail: savant.priti5@gmail.com

