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Abstract: Degree square sum matrix DSS(G) of a graph G is a square matrix of order equal to the order of G with its (i, j)th

entry as di
2 + dj

2 if i 6= j and zero otherwise, where di is the degree of the ith vertex of G. In this paper, we obtain
the characteristic polynomial of the degree square sum matrix of graphs obtained by some graph operations. In addition,

bounds for largest degree square sum eigenvalue and for degree square sum energy of graphs are obtained.
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1. Introduction

In the literature of Graph Theory, there are several graph polynomials based on matrices such as adjacency matrix [7],

Laplacian matrix [12], signless Laplacian matrix [8, 15], distance matrix [1], degree sum matrix [11, 16], seidel matrix [4],

degree exponent matrix [17] etc. In this paper, we introduce one more such new matrix of a graph, called degree square

sum matrix. We study the characteristic polynomial of the degree square sum matrix of graphs obtained by some graph

operations. We also give bounds for the maximum eigenvalue of this matrix named as largest degree square sum eigenvalue.

We extend our work by giving bounds for degree square sum energy of a graph. Let G be a simple, undirected graph with n

vertices and m edges. Let V (G) be the vertex set and E(G) be an edge set of G. The degree degG(v) (or dG(v)) of a vertex

v ∈ V (G) is the number of edges incident to it in G. The graph G is r-regular if the degree of each vertex in G is r. Let

v1, v2,..., vn be the vertices of G and let di = degG(vi). For undefined terminologies we refer [10]. The degree square sum

matrix of a graph G is an n× n matrix denoted by DSS(G) = [dssij ] and whose elements are defined as

dssij =

 di
2 + dj

2 if i 6= j

0 otherwise.

Let I be an identity matrix and J be a matrix whose all entries are equal to 1. The degree square sum polynomial of a graph

G is defined as

PDSS(G)(µ) = det(µI −DSS(G)).

The eigenvalues of DSS(G), denoted by µ1, µ2, ..., µn are called the degree square sum eigenvalues of G and their collection

is called the degree square sum spectra of G. It is easy to see that if G is an r-regular graph, then DSS(G) = 2r2J − 2r2I.
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Degree Square Sum Energy of Graphs

Therefore, for an r-regular graph G of order n,

PDSS(G)(µ) = [µ− 2r2(n− 1)][µ+ 2r2]n−1. (1)

Example 1.1. Let G = P4 be a graph.

Figure 1.

Then the degree square sum matrix, degree square sum polynomial and the degree square sum energy of G are as follows:

DSS(G) =



0 5 5 2

5 0 8 5

5 8 0 5

2 5 5 0


, PDSS(G;µ) = µ4 − 168µ2 − 100µ− 1344, EDSS(G) = 20.

Example 1.2. Let H = C4 be a 2-regular graph.

Figure 2.

Then the degree square sum matrix, degree square sum polynomial and the degree square sum energy of H are as follows:

DSS(H) =



0 8 8 8

8 0 8 8

8 8 0 8

8 8 8 0


, PDSS(H;µ) = µ4 − 384µ2 − 4096µ− 12288, EDSS(H) = 4r2(n− 1) = 48,

where r is the degree of each vertex in H.

2. Degree Square Sum Polynomial of Graphs Obtained by Graph
Operations

In this section, we obtain the degree square sum polynomial of graphs obtained by some graph operations. The line graph

[10] L(G) of a graph G is a graph with vertex set as the edge set of G and two vertices of L(G) are adjacent whenever

the corresponding edges in G are adjacent. The kth iterated line graph [5, 6, 10] of G is defined as Lk(G) = L(Lk−1(G)),

k = 1, 2, ..., where L0(G) ∼= G and L1(G) ∼= L(G).
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Theorem 2.1. Let G be an r-regular graph of order n and nk be the order of Lk(G). Then the degree square sum polynomial

of Lk(G), k = 1, 2, ... is

PDSS(Lk(G))(µ) = [µ+ 2(2kr − 2k+1 + 2)2]nk−1[µ− 2(nk − 1)(2kr − 2k+1 + 2)2].

Proof. The line graph of a regular graph is a regular graph. In particular, the line graph of an r-regular graph G of order

n is an r1 = (2r − 2)-regular graph of order n1 = 1
2
nr. Thus, Lk(G) is an rk-regular graph of order nk given by [5, 6]

nk =
n

2k

k−1∏
i=0

(2ir − 2i+1 + 2) and rk = 2kr − 2k+1 + 2.

Hence the result follows from Equation (1).

The following lemma is useful for proving the forthcoming theorems.

Lemma 2.2 ([17]). If a, b, c and d are real numbers, then the determinant of the form

∣∣∣∣∣∣∣
(µ+ a)In1 − aJn1 −cJn1×n2

−dJn2×n1 (µ+ b)In2 − bJn2

∣∣∣∣∣∣∣ (2)

of order n1 + n2 can be expressed in the simplified form as

(µ+ a)n1−1(µ+ b)n2−1{[µ− (n1 − 1)a][µ− (n2 − 1)b]− n1n2cd}.

The subdivision graph [10] S(G) of a graph G is a graph with vertex set V (G) ∪ E(G) and is obtained by inserting a new

vertex of degree 2 into each edge of G.

Theorem 2.3. Let G be an r-regular graph of order n and size m. Then

PDSS(S(G))(µ) = (µ+ 2r2)n−1(µ+ 8)m−1{µ2 − 2[4(m− 1)− r2(n− 1)]µ+ 16r2(n− 1)(m− 1)−mn(r2 + 4)2}.

Proof. The subdivision graph of an r-regular graph has two types of vertices. The n vertices with degree r and m vertices

are with degree 2. Hence

DSS(S(G)) =

 2r2(Jn − In) (r2 + 22)Jn×m

(22 + r2)Jm×n 23(Jm − Im)


Therefore,

PDSS(S(G))(µ) = |µI −DSS(S(G))|

=

∣∣∣∣∣∣∣
(µ+ 2r2)In − 2r2Jn −(r2 + 22)Jn×m

−(22 + r2)Jm×n (µ+ 23)Im − 23Jm)

∣∣∣∣∣∣∣
Now using Lemma 2.2, we get the desired result.

The semitotal point graph [18] T2(G) of a graph G is a graph with vertex set V (G) ∪ E(G) where two vertices of T2(G)

are adjacent if and only if they corresponds to two adjacent vertices of G or one is a vertex of G and another is an edge G

incident with it in G.
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Theorem 2.4. Let G be an r-regular graph of order n and size m. Then

PDSS(T2(G))(µ) = (µ+ 8r2)n−1(µ+ 8)m−1{µ2 − 8[(m− 1)− r2(n− 1)]µ+ 16[4r2(m− 1)(n− 1)−mn(r2 + 1)2]}.

Proof. The semitotal point graph of an r-regular graph has two types of vertices. The n vertices with degree 2r and m

vertices are of degree 2. Hence

DSS(T2(G)) =

 8r2(Jn − In) 4(r2 + 1)Jn×m

4(r2 + 1)Jm×n 23(Jm − Im)


Therefore,

PDSS(T2(G))(µ) = |µI −DSS(T2(G))|

=

∣∣∣∣∣∣∣
(µ+ 8r2)In − 8r2Jn −4(r2 + 1)Jn×m

−4(r2 + 1)Jm×n (µ+ 8)Im − 8Jm)

∣∣∣∣∣∣∣
Now using Lemma 2.2, we get the expected result.

The semitotal line graph [18] T1(G) of a graph G is a graph with vertex set V (G) ∪ E(G) where two vertices of T1(G) are

adjacent if and only if they corresponds to two adjacent edges of G or one is a vertex of G and another is an edge G incident

with it in G.

Theorem 2.5. Let G be an r-regular graph of order n and size m. Then

PDSS(T1(G))(µ) = (µ+ 2r2)n−1(µ+ 8r2)m−1{µ2 − 2r2[4(m− 1) + (n− 1)]µ+ r4[16(n− 1)(m− 1)− 25mn]}.

Proof. The semitotal line graph of an r-regular graph has two types of vertices. The n vertices with degree r and the

remaining m vertices are of degree 2r. Hence

DSS(T1(G)) =

 2r2(Jn − In) 5r2Jn×m

5r2Jm×n 8r2(Jm − Im)


Therefore,

PDSS(T1(G))(µ) = |µI −DSS(T1(G))|

=

∣∣∣∣∣∣∣
(µ+ 2r2)In − 2r2Jn −5r2Jn×m

−5r2Jm×n (µ+ 8r2)Im − 8r2Jm)

∣∣∣∣∣∣∣
Now by using Lemma 2.2, we get the required result.

The total graph [10] T (G) of a graph G is the graph whose vertex set is V (G)∪E(G) and two vertices of T (G) are adjacent

if and only if the corresponding elements of G are either adjacent or incident.

Theorem 2.6. Let G be an r-regular graph of order n and size m. Then

PDSS(T (G))(µ) = (µ+ 8r2)n+m−1[µ− 8r2(n+m− 1)].
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Proof. The total graph of an r-regular graph is a regular graph of degree 2r with n+m vertices. Hence the result follows

from Equation (1).

The graph G+k [17] is a graph obtained from the graph G by attaching k pendant edges to each vertex of G. If G is a graph

of order n and size m, then G+k is graph of order n+ nk and size m+ nk.

Theorem 2.7. Let G be an r-regular graph of order n and size m. Then

PDSS(G+k)(µ) = [µ+ 2(r + k)2]n−1(µ+ 2)nk−1{µ2 − 2[(nk − 1) + (n− 1)(r + k)2]µ

+4(n− 1)(nk − 1)(r + k)2 − n2k[1 + (r + k)2]2}.

Proof. The graph G+k of an r-regular graph has two types of vertices. The n vertices with degree r+k and the remaining

nk vertices are of degree 1. Hence

DSS(G+k) =

 2(r + k)2(Jn − In) [(r + k)2 + 1]Jn×nk

[(r + k)2 + 1]Jnk×n 2(Jnk − Ink)


Therefore,

PDSS(G+k)(µ) = |µI −DSS(G+k)|

=

∣∣∣∣∣∣∣
[µ+ 2(r + k)2]In − 2(r + k)2Jn −[(r + k)2 + 1]Jn×nk

−[(r + k)2 + 1]Jnk×n (µ+ 2)Ink − 2Jnk

∣∣∣∣∣∣∣
Next by using Lemma 2.2, we get the desired result.

The union [10] of the graphs G1 and G2 is a graph G1 ∪G2 whose vertex set is V (G1 ∪G2) = V (G1)∪ V (G2) and the edge

set E(G1 ∪G2) = E(G1) ∪ E(G2).

Theorem 2.8. Let G be an r1-regular graph of order n1 and H be an r2-regular graph of order n2. Then

PDSS(G∪H)(µ) = PDSS(G)(µ)PDSS(H)(µ)− (µ+ 2r21)n1−1(µ+ 2r22)n2−1n1n2(r21 + r22)2.

Proof. The degree square matrix of G ∪H will be of the form

DSS(G ∪H) =

 DSS(G) (r21 + r22)Jn1×n2

(r21 + r22)Jn2×n1 DSS(H)


=

 2r21(Jn1 − In1) (r21 + r22)Jn1×n2

(r21 + r22)Jn2×n1 2r22(Jn2 − In2)


Therefore,

PDSS(G∪H)(µ) = |µI −DSS(G ∪H)|

=

∣∣∣∣∣∣∣
(µ+ 2r21)In1 − 2r21Jn1 −(r21 + r22)Jn1×n2

−(r21 + r22)Jn2×n1 (µ+ 2r22)In2 − 2r22Jn2)

∣∣∣∣∣∣∣
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Using Lemma 2.2, we get

PDSS(G∪H)(µ) = (µ+ 2r21)n1−1(µ+ 2r22)n2−1{[µ− (n1 − 1)2r21][µ− (n2 − 1)2r22]− n1n2(r21 + r22)2} (3)

As G and H are regular graphs of order n1 and n2 and of degree r1 and r2 respectively, by Equation (1) we have

PDSS(G)(µ) = (µ+ 2r21)n1−1[µ− (n1 − 1)2r21] (4)

and

PDSS(H)(µ) = (µ+ 2r22)n2−1[µ− (n2 − 1)2r22] (5)

The result follows by substituting the Equations (4) and (5) in Equation (3).

The join [10] G1 +G2 of two graphs G1 and G2 is the graph obtained from G1 and G2 by joining every vertex of G1 to all

vertices of G2.

Theorem 2.9. Let G be an r1-regular graph of order n1 and H be an r2-regular graph of order n2. Then

PDSS(G+H)(µ) = [µ+ 2R2
1]n1−1[µ+ 2R2

2](n2−1){µ2 − 2[(n2 − 1)R2
2 + (n1 − 1)R2

1]µ

+4(n1 − 1)(n2 − 1)R2
1R

2
2 − n1n2[R2

1 +R2
2]}.

Proof. If G is an r1-regular graph of order n1 and H is an r2-regular graph of order n2, then G + H has two types of

vertices, the n1 vertices of degree R1 = r1 + n2 and the remaining n2 vertices are of degree R2 = r2 + n1. Hence

DSS(G+H) =

 2R2
1(Jn1 − In1) (R2

1 +R2
2)Jn1×n2

(R2
1 +R2

2)Jn2×n1 2R2
2(Jn2 − In2)


Therefore,

PDSS(G+H)(µ) = |µI −DSS(G+H)|

=

∣∣∣∣∣∣∣
(µ+ 2R2

1)In1 − 2R2
1Jn1 −(R2

1 +R2
2)Jn1×n2

−(R2
1 +R2

2)Jn2×n1 (µ+ 2R2
2)In2 − 2R2

2Jn2

∣∣∣∣∣∣∣
Now by using Lemma 2.2, we get the required result.

The product [10] G×H of two graphs G and H is defined as follows:

Consider any two points u = (u1, u2) and v = (v1, v2) in V = V1 × V2. Then u and v are adjacent in G × H whenever

[u1 = v1 and u2 adj v2] or [u2 = v2 and u1 adj v1].

Theorem 2.10. Let G be an r1-regular graph of order n1 and H be an r2-regular graph of order n2. Then

PDSS(G×H)(µ) = [µ− 2(n1n2 − 1)(r1 + r2)2][µ+ 2(r1 + r2)2](n1n2−1).

Proof. G is an r1-regular graph of order n1 and H is an r2-regular graph of order n2. Then G×H is an (r1 + r2)-regular

graph with n1n2 vertices. Hence the result follows from Equation (1).
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The composition [10] G[H] of two graphs G and H is defined as follows:

Consider any two points u = (u1, u2) and v = (v1, v2) in V = V1 × V2. Then u and v are adjacent in G[H] whenever [u1 adj

v1 ] or [u1 = v1 and u2 adj v2].

Theorem 2.11. Let G be an r1-regular graph of order n1 and H be an r2-regular graph of order n2. Then

PDSS(G[H])(µ) = [µ− 2(n1n2 − 1)(n2r1 + r2)2][µ+ 2(r1 + r2)2](n1n2−1).

Proof. G is an r1-regular graph of order n1 and H is an r2-regular graph of order n2. Then G[H] is an (n2r1 + r2)-regular

graph with n1n2 vertices. Hence the result follows from Equation (1). Similarly one can write degree square sum polynomial

for H[G].

The corona [10] G ◦H of graphs G and H is a graph obtained from G and H by taking one copy of G and |V (G)| copies of

H and then joining by an edge each vertex of the ith copy of H is named (H, i) with the ith vertex of G.

Theorem 2.12. Let G be an r1-regular graph of order n1 and H be an r2-regular graph of order n2. Then

PDSS(G ◦H;µ) = [µ+ 2R2
1]n1−1[µ+ 2R2

2]n1n2−1([µ− 2(n1 − 1)R2
1][µ− 2(n1n2 − 1)R2

2]− n2
1n2[R2

1 +R2
2]
)
.

Proof. If G is an r1-regular graph of order n1 and H is an r2-regular graph of order n2, then G ◦ H has two types of

vertices, the n1 vertices with degree R1 = r1 + n2 and the remaining n1n2 vertices are of degree R2 = r2 + 1. Hence

DSS(G ◦H) =

 2R2
1(Jn1 − In1) (R2

1 +R2
2)Jn1×n1n2

(R2
1 +R2

2)Jn1n2×n1 2R2
2(Jn1n2 − In1n2)


Therefore,

PDSS(G ◦H;µ) = |µI −DSS(G ◦H)|

=

∣∣∣∣∣∣∣
(µ+ 2R2

1)In1 − 2R2
1Jn1 −(R2

1 +R2
2)Jn1×n1n2

−(R2
1 +R2

2)Jn1n2×n1 (µ+ 2R2
2)In1n2 − 2R2

2Jn1n2)

∣∣∣∣∣∣∣
Using Lemma 2.2, we get the required result.

The Cauchy-Schwarz inequality [2] states that if (a1, a2, ..., an) and (b1, b2, ..., bn) are n real vectors, then

(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
(6)

3. Bounds for the Largest Degree Square Sum Eigenvalue

Since trace(DSS(G)) = 0, the eigenvalues of DSS(G) satisfies the following relations:

n∑
i=1

µi = 0 (7)

Further,

n∑
i=1

µ2
i = trace([DSS(G)]2)
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=

n∑
i=1

n∑
j=1

dijdji

=

n∑
i=1

n∑
j=1

d2ij

= 2
∑
i<j

(d2i + d2j )2.

n∑
i=1

µ2
i = 2K, where K =

∑
i<j

(d2i + d2j )2. (8)

The following results are useful for proving further results in this paper.

Theorem 3.1 ([14]). Let ai and bi are nonnegative real numbers, then

n∑
i=1

a2i

n∑
i=1

b2i ≤
1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2( n∑
i=1

aibi

)2

. (9)

where, M1 = max1≤i≤n(ai); M2 = max1≤i≤n(bi); m1 = min1≤i≤n(ai); m2 = min1≤i≤n(bi).

Theorem 3.2 ([13]). Let ai and bi are nonnegative real numbers, then

n∑
i=1

a2i

n∑
i=1

b2i −

(
n∑

i=1

aibi

)2

≤ n2

4
(M1M2 −m1m2)2 . (10)

where, M1 = max1≤i≤n(ai); M2 = max1≤i≤n(bi); m1 = min1≤i≤n(ai); m2 = min1≤i≤n(bi).

Theorem 3.3 ([3]). Let ai and bi are nonnegative real numbers, then

∣∣∣∣∣n
n∑

i=1

aibi −
n∑

i=1

ai

n∑
i=1

bi

∣∣∣∣∣ ≤ α(n)(A− a)(B − b) (11)

where a, b, A and B are real constants such that a ≤ ai ≤ A and b ≤ bi ≤ B for each i, 1 ≤ i ≤ n. Further, α(n) =

nbn
2
c(1− 1

n
bn
2
c).

Theorem 3.4 ([9]). Let ai and bi are nonnegative real numbers, then

n∑
i=1

b2i + C1C2

n∑
i=1

a2i ≤ (C1 + C2)

(
n∑

i=1

aibi

)
(12)

where C1 and C2 are real constants such that C1ai ≤ bi ≤ C2ai for each i, 1 ≤ i ≤ n.

Theorem 3.5. Let G be an r-regular graph of order n. Then G has only one positive degree square sum eigenvalue

µ = 2r2(n− 1).

Proof. Let G be a connected r-regular graph of order n and {v1, v2, ..., vn} be the vertex set of G. Let di = r be the

degree of vi, i = 1, 2, ..., n. Then

dij =

 d2i + d2j = 2r2 if i 6= j

0 otherwise.

Therefore, the characteristic polynomial of DSS(G) is,

PDSS(G;µ) = det(µI −DSS(G))

=⇒ det(µI −DSS(G)) = det(µI − 2r2A(Kn))
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= (2r2)n
∣∣∣ µ
2r2

I −A(Kn)
∣∣∣

= (2r2)n
( µ

2r2
− n+ 1

)( µ

2r2
+ 1
)n−1

= (µ− 2r2(n− 1))(µ+ 2r2)n−1

Thus, (µ− 2r2(n− 1))(µ+ 2r2)n−1 = 0 will give

µ =

 2r2(n− 1) 1 time

−2r2 (n− 1) times.

Theorem 3.6. Let G be any graph of order n and µ1 be the largest degree square sum eigenvalue. Then

µ1 ≤
√

2K(n− 1)

n
(13)

Proof. Substituting ai = 1 and bi = µi for i = 2, 3, ..., n in Equation (6), we get

(
n∑

i=1

µi

)2

≤ (n− 1)

(
n∑

i=1

µ2
i

)
(14)

Again from Equations (7) and (8), we have

n∑
i=2

µi = −µ1and

n∑
i=2

µ2
i = 2K − µ2

1

Therefore, Equation (14) becomes,

(−µ1)2 ≤ (n− 1)(2K − µ2
1).

Hence,

µ1 ≤
√

2K(n− 1)

n

Equality holds when G is a regular graph.

4. Bounds for the Degree Square Sum Energy of Graphs

Theorem 4.1. Let G be an r-regular graph of order n. Then −2r2 and 2r2(n− 1) are degree square sum eigenvalues of G

with multiplicities (n− 1) and 1 respectively and EDSS(G) = 4r2(n− 1).

Proof.

|µI −DSS(G)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −2r2 −2r2 ... −2r2

−2r2 µ −2r2 ... −2r2

−2r2 −2r2 µ ... −2r2

... ... ... ... ...

−2r2 −2r2 −2r2 ... µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (µ+ 2r2)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −2r2 −2r2 ... −2r2

−1 1 0 ... 0

−1 0 1 ... 0

... ... ... ... ...

−1 0 0 ... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (µ− 2r2(n− 1))(µ+ 2r2)n−1.

Thus,

EDSS(G) = 4r2(n− 1).

Theorem 4.2. Let G be a graph of order n and size m. Then

EDSS(G) ≥
√

2nK − n2

4
(|µ1| − |µn|)2 (15)

where |µ1| and |µ2| are maximum and minimum of the absolute value of µi’s.

Proof. Suppose µ1, µ2, ..., µn are the eigenvalues of DSS(G). Substituting ai = 1 and bi = |µi| in Equation (10), we get

n∑
i=1

12
n∑

i=1

|µi|2 −

(
n∑

i=1

|µi|

)2

≤ n2

4
(|µ1| − |µn|)2

2Kn− (EDSS(G))2 ≤ n2

4
(|µ1| − |µn|)2

EDSS(G) ≥
√

2nK − n2

4
(|µ1| − |µn|)2.

Corollary 4.3. If G is an r-regular graph of order n, then

EDSS(G) ≥ nr2
√

8(n− 1)− n2

Theorem 4.4. Let G be a graph of order n. Then

√
2K ≤ EDSS(G) ≤

√
2nK.

Proof. Upper bound: By substituting ai = 1 and bi = µi in Equation (6), we get

(
n∑

i=1

|µi|

)2

≤
n∑

i=1

12
n∑

i=1

|µi|2

(EDSS(G))2 ≤ 2Kn

which implies,

EDSS(G) ≤
√

2nK. (16)

Lower bound: We have

(EDSS(G))2 =

(
n∑

i=1

|µi|

)2

≥
n∑

i=1

|µi|2 = 2K

which implies,

EDSS(G) ≥
√

2K (17)

Combining Equations (16) and (17), we get the desired result.

Theorem 4.5. Let G be a graph of order n and let ∆ be the absolute value of the determinant of DSS(G). Then

√
2K+ n(n− 1)∆2/n ≤ EDSS(G) ≤

√
2nK.
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Proof. Lower bound: By definition of degree square sum energy, we have

(EDSS(G))2 =

(
n∑

i=1

|µi|

)2

=

n∑
i=1

µ2
i + 2

∑
i<j

|µi||µj |

= 2K+ 2
∑
i<j

|µi||µj |

= 2K+
∑
i 6=j

|µi||µj | (18)

Since we know for nonnegative numbers, the arithmetic mean is always greater than or equal to the geometric mean

1

n(n− 1)

∑
i 6=j

|µi||µj | ≥

∏
i6=j

|µi||µj |

 1
n(n−1)

=

(
n∏

i=1

|µi|2(n−1)|

) 1
n(n−1)

=

n∏
i=1

|µi|2/n)

= ∆2/n

Therefore, ∑
i6=j

|µi||µj | ≥ n(n− 1)∆2/n (19)

Combining Equations (18) and (19), we get

EDSS(G) ≥
√

2K+ n(n− 1)∆2/n (20)

Upper bound: Consider a nonnegative quantity

Y =

n∑
i=1

n∑
j=1

(|µi| − |µj |)2 =

n∑
i=1

n∑
j=1

(|µi|2 − |µj |2 − 2|µi||µj |)

By direct expansion, we get

Y = n

n∑
i=1

|µi|2 + n

n∑
j=1

|µj |2 − 2

(
n∑

i=1

|µi|

)(
n∑

j=1

|µj |

)

Now, by definition of degree square sum energy of a graph and Equation (8) we have

Y = 4nK − 2(EDSS(G))2

Since Y ≥ 0,

4nK − 2(EDSS(G))2 ≥ 0

EDSS(G) ≤
√

2nK (21)

Combining Equations (20) and (21), we get the desired result.

Corollary 4.6. If G is an r-regular graph of order n, then

EDSS(G) ≤ 2nr2
√
n− 1.
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Theorem 4.7. Let G be a graph of order n and size m. Let µ1 ≥ µ2 ≥ ... ≥ µn be a non-increasing arrangement of degree

square sum eigenvalues. Then

EDSS(G) ≥
√

2nK − α(n)(|µ1| − |µn|)2 (22)

where α(n) = nbn
2
c(1− 1

n
bn
2
c).

Proof. Suppose µ1, µ2, ..., µn are the degree square sum eigenvalues of G. Then by substituting ai = |µi| = bi, a = |µn| = b

and A = |µ1| = B in Equation (11), we get

∣∣∣∣∣n
n∑

i=1

|µi|2 −

(
n∑

i=1

|µi|

)2∣∣∣∣∣ ≤ α(n)(|µ1| − |µn|)2 (23)

Since EDSS(G) =
n∑

i=1

|µi|,
n∑

i=1

|µi|2 = 2K, we get the required result.

Remark 4.8. Since α(n) ≤ n2

4
, from Equations (15) and (22) one can easily observe that the inequality in Equation (22)

is sharper than the inequality in Equation (15).

Theorem 4.9. Let G be a graph of order n and size m. Let µ1 ≥ µ2 ≥ ... ≥ µn be a non-increasing arrangement of degree

square sum eigenvalues. Then

EDSS(G) ≥ |µ1||µn|n+ 2K
|µ1|+ |µn|

(24)

where |µ1| and |µ2| are maximum and minimum of the absolute value of µi’s.

Proof. Suppose µ1, µ2, ..., µn are the degree square sum eigenvalues of G. Then by substituting bi = |µi|, ai = 1, C1 = |µn|

and C2 = |µ1| in Equation (12), we get

n∑
i=1

|µi|2 + |µ1||µn|
n∑

i=1

12 ≤ (|µ1|+ |µn|)

(
n∑

i=1

|µi|

)
(25)

Since EDSS(G) =
n∑

i=1

|µi| and
n∑

i=1

|µi|2 = 2K, we get the required result.

5. Conclusion

In this paper, we have obtained the characteristic polynomial of the degree square sum matrix of graphs obtained by some

graph operations. Also, bounds for both largest degree square sum eigenvalue and degree square sum energy of graphs are

established. It can be observed that the lower bound for degree square sum energy given in Theorem 4.7 is sharper.
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