International Journal of Mathematics Atud its Applications

Degree Square Sum Energy of Graphs

B. Basavanagoud ${ }^{1, *}$ and E. Chitra ${ }^{1}$
1 Department of Mathematics, Karnatak University, Dharwad, Karnataka, India.

Abstract

Degree square sum matrix $D S S(G)$ of a graph G is a square matrix of order equal to the order of G with its $(i, j)^{t h}$ entry as $d_{i}{ }^{2}+d_{j}{ }^{2}$ if $i \neq j$ and zero otherwise, where d_{i} is the degree of the $i^{t h}$ vertex of G. In this paper, we obtain the characteristic polynomial of the degree square sum matrix of graphs obtained by some graph operations. In addition, bounds for largest degree square sum eigenvalue and for degree square sum energy of graphs are obtained.

\section*{MSC: 05C50.}

Keywords: Degree square sum matrix, degree square sum polynomial, Eigenvalues, Graph operations.
Accepted on: 02.05.2018

1. Introduction

In the literature of Graph Theory, there are several graph polynomials based on matrices such as adjacency matrix [7], Laplacian matrix [12], signless Laplacian matrix [8, 15], distance matrix [1], degree sum matrix [11, 16], seidel matrix [4], degree exponent matrix [17] etc. In this paper, we introduce one more such new matrix of a graph, called degree square sum matrix. We study the characteristic polynomial of the degree square sum matrix of graphs obtained by some graph operations. We also give bounds for the maximum eigenvalue of this matrix named as largest degree square sum eigenvalue. We extend our work by giving bounds for degree square sum energy of a graph. Let G be a simple, undirected graph with n vertices and m edges. Let $V(G)$ be the vertex set and $E(G)$ be an edge set of G. The degree $\operatorname{deg} g_{G}(v)$ (or $d_{G}(v)$) of a vertex $v \in V(G)$ is the number of edges incident to it in G. The graph G is r-regular if the degree of each vertex in G is r. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of G and let $d_{i}=\operatorname{deg}_{G}\left(v_{i}\right)$. For undefined terminologies we refer [10]. The degree square sum matrix of a graph G is an $n \times n$ matrix denoted by $\operatorname{DSS}(G)=\left[d s s_{i j}\right]$ and whose elements are defined as

$$
d s s_{i j}= \begin{cases}d_{i}^{2}+d_{j}^{2} & \text { if } i \neq j \\ 0 & \text { otherwise }\end{cases}
$$

Let I be an identity matrix and J be a matrix whose all entries are equal to 1 . The degree square sum polynomial of a graph G is defined as

$$
P_{D S S(G)}(\mu)=\operatorname{det}(\mu I-D S S(G))
$$

The eigenvalues of $\operatorname{DSS}(G)$, denoted by $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are called the degree square sum eigenvalues of G and their collection is called the degree square sum spectra of G. It is easy to see that if G is an r-regular graph, then $\operatorname{DSS}(G)=2 r^{2} J-2 r^{2} I$.

[^0]Therefore, for an r-regular graph G of order n,

$$
\begin{equation*}
P_{D S S(G)}(\mu)=\left[\mu-2 r^{2}(n-1)\right]\left[\mu+2 r^{2}\right]^{n-1} . \tag{1}
\end{equation*}
$$

Example 1.1. Let $G=P_{4}$ be a graph.

G:

Figure 1.

Then the degree square sum matrix, degree square sum polynomial and the degree square sum energy of G are as follows:

$$
D S S(G)=\left[\begin{array}{cccc}
0 & 5 & 5 & 2 \\
5 & 0 & 8 & 5 \\
5 & 8 & 0 & 5 \\
2 & 5 & 5 & 0
\end{array}\right], P_{D S S}(G ; \mu)=\mu^{4}-168 \mu^{2}-100 \mu-1344, E_{D S S}(G)=20
$$

Example 1.2. Let $H=C_{4}$ be a 2 -regular graph.

Figure 2.

Then the degree square sum matrix, degree square sum polynomial and the degree square sum energy of H are as follows:

$$
D S S(H)=\left[\begin{array}{cccc}
0 & 8 & 8 & 8 \\
8 & 0 & 8 & 8 \\
8 & 8 & 0 & 8 \\
8 & 8 & 8 & 0
\end{array}\right], P_{D S S}(H ; \mu)=\mu^{4}-384 \mu^{2}-4096 \mu-12288, E_{D S S}(H)=4 r^{2}(n-1)=48
$$

where r is the degree of each vertex in H.

2. Degree Square Sum Polynomial of Graphs Obtained by Graph Operations

In this section, we obtain the degree square sum polynomial of graphs obtained by some graph operations. The line graph [10] $L(G)$ of a graph G is a graph with vertex set as the edge set of G and two vertices of $L(G)$ are adjacent whenever the corresponding edges in G are adjacent. The $k^{t h}$ iterated line graph $[5,6,10]$ of G is defined as $L^{k}(G)=L\left(L^{k-1}(G)\right)$, $k=1,2, \ldots$, where $L^{0}(G) \cong G$ and $L^{1}(G) \cong L(G)$.

Theorem 2.1. Let G be an r-regular graph of order n and n_{k} be the order of $L^{k}(G)$. Then the degree square sum polynomial of $L^{k}(G), k=1,2, \ldots$ is

$$
P_{D S S\left(L^{k}(G)\right)}(\mu)=\left[\mu+2\left(2^{k} r-2^{k+1}+2\right)^{2}\right]^{n_{k}-1}\left[\mu-2\left(n_{k}-1\right)\left(2^{k} r-2^{k+1}+2\right)^{2}\right] .
$$

Proof. The line graph of a regular graph is a regular graph. In particular, the line graph of an r-regular graph G of order n is an $r_{1}=(2 r-2)$-regular graph of order $n_{1}=\frac{1}{2} n r$. Thus, $L^{k}(G)$ is an r_{k}-regular graph of order n_{k} given by [5, 6]

$$
n_{k}=\frac{n}{2^{k}} \prod_{i=0}^{k-1}\left(2^{i} r-2^{i+1}+2\right) \quad \text { and } \quad r_{k}=2^{k} r-2^{k+1}+2
$$

Hence the result follows from Equation (1).
The following lemma is useful for proving the forthcoming theorems.
Lemma 2.2 ([17]). If a, b, c and d are real numbers, then the determinant of the form

$$
\left|\begin{array}{cc}
(\mu+a) I_{n_{1}}-a J_{n_{1}} & -c J_{n_{1} \times n_{2}} \tag{2}\\
-d J_{n_{2} \times n_{1}} & (\mu+b) I_{n_{2}}-b J_{n_{2}}
\end{array}\right|
$$

of order $n_{1}+n_{2}$ can be expressed in the simplified form as

$$
(\mu+a)^{n_{1}-1}(\mu+b)^{n_{2}-1}\left\{\left[\mu-\left(n_{1}-1\right) a\right]\left[\mu-\left(n_{2}-1\right) b\right]-n_{1} n_{2} c d\right\}
$$

The subdivision graph [10] $S(G)$ of a graph G is a graph with vertex set $V(G) \cup E(G)$ and is obtained by inserting a new vertex of degree 2 into each edge of G.

Theorem 2.3. Let G be an r-regular graph of order n and size m. Then

$$
P_{D S S(S(G))}(\mu)=\left(\mu+2 r^{2}\right)^{n-1}(\mu+8)^{m-1}\left\{\mu^{2}-2\left[4(m-1)-r^{2}(n-1)\right] \mu+16 r^{2}(n-1)(m-1)-m n\left(r^{2}+4\right)^{2}\right\} .
$$

Proof. The subdivision graph of an r-regular graph has two types of vertices. The n vertices with degree r and m vertices are with degree 2. Hence

$$
\operatorname{DSS}(S(G))=\left[\begin{array}{cc}
2 r^{2}\left(J_{n}-I_{n}\right) & \left(r^{2}+2^{2}\right) J_{n \times m} \\
\left(2^{2}+r^{2}\right) J_{m \times n} & 2^{3}\left(J_{m}-I_{m}\right)
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
P_{D S S(S(G))}(\mu) & =|\mu I-D S S(S(G))| \\
& =\left|\begin{array}{cc}
\left(\mu+2 r^{2}\right) I_{n}-2 r^{2} J_{n} & -\left(r^{2}+2^{2}\right) J_{n \times m} \\
-\left(2^{2}+r^{2}\right) J_{m \times n} & \left.\left(\mu+2^{3}\right) I_{m}-2^{3} J_{m}\right)
\end{array}\right|
\end{aligned}
$$

Now using Lemma 2.2, we get the desired result.

The semitotal point graph [18] $T_{2}(G)$ of a graph G is a graph with vertex set $V(G) \cup E(G)$ where two vertices of $T_{2}(G)$ are adjacent if and only if they corresponds to two adjacent vertices of G or one is a vertex of G and another is an edge G incident with it in G.

Theorem 2.4. Let G be an r-regular graph of order n and size m. Then

$$
P_{D S S\left(T_{2}(G)\right)}(\mu)=\left(\mu+8 r^{2}\right)^{n-1}(\mu+8)^{m-1}\left\{\mu^{2}-8\left[(m-1)-r^{2}(n-1)\right] \mu+16\left[4 r^{2}(m-1)(n-1)-m n\left(r^{2}+1\right)^{2}\right]\right\}
$$

Proof. The semitotal point graph of an r-regular graph has two types of vertices. The n vertices with degree $2 r$ and m vertices are of degree 2. Hence

$$
D S S\left(T_{2}(G)\right)=\left[\begin{array}{cc}
8 r^{2}\left(J_{n}-I_{n}\right) & 4\left(r^{2}+1\right) J_{n \times m} \\
4\left(r^{2}+1\right) J_{m \times n} & 2^{3}\left(J_{m}-I_{m}\right)
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
P_{D S S\left(T_{2}(G)\right)}(\mu) & =\left|\mu I-D S S\left(T_{2}(G)\right)\right| \\
& =\left|\begin{array}{cc}
\left(\mu+8 r^{2}\right) I_{n}-8 r^{2} J_{n} & -4\left(r^{2}+1\right) J_{n \times m} \\
-4\left(r^{2}+1\right) J_{m \times n} & \left.(\mu+8) I_{m}-8 J_{m}\right)
\end{array}\right|
\end{aligned}
$$

Now using Lemma 2.2, we get the expected result.

The semitotal line graph [18] $T_{1}(G)$ of a graph G is a graph with vertex set $V(G) \cup E(G)$ where two vertices of $T_{1}(G)$ are adjacent if and only if they corresponds to two adjacent edges of G or one is a vertex of G and another is an edge G incident with it in G.

Theorem 2.5. Let G be an r-regular graph of order n and size m. Then

$$
P_{D S S\left(T_{1}(G)\right)}(\mu)=\left(\mu+2 r^{2}\right)^{n-1}\left(\mu+8 r^{2}\right)^{m-1}\left\{\mu^{2}-2 r^{2}[4(m-1)+(n-1)] \mu+r^{4}[16(n-1)(m-1)-25 m n]\right\}
$$

Proof. The semitotal line graph of an r-regular graph has two types of vertices. The n vertices with degree r and the remaining m vertices are of degree $2 r$. Hence

$$
\operatorname{DSS}\left(T_{1}(G)\right)=\left[\begin{array}{cc}
2 r^{2}\left(J_{n}-I_{n}\right) & 5 r^{2} J_{n \times m} \\
5 r^{2} J_{m \times n} & 8 r^{2}\left(J_{m}-I_{m}\right)
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
P_{D S S\left(T_{1}(G)\right)}(\mu) & =\left|\mu I-D S S\left(T_{1}(G)\right)\right| \\
& =\left|\begin{array}{cc}
\left(\mu+2 r^{2}\right) I_{n}-2 r^{2} J_{n} & -5 r^{2} J_{n \times m} \\
-5 r^{2} J_{m \times n} & \left.\left(\mu+8 r^{2}\right) I_{m}-8 r^{2} J_{m}\right)
\end{array}\right|
\end{aligned}
$$

Now by using Lemma 2.2, we get the required result.

The total graph [10] $T(G)$ of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices of $T(G)$ are adjacent if and only if the corresponding elements of G are either adjacent or incident.

Theorem 2.6. Let G be an r-regular graph of order n and size m. Then

$$
P_{D S S(T(G))}(\mu)=\left(\mu+8 r^{2}\right)^{n+m-1}\left[\mu-8 r^{2}(n+m-1)\right]
$$

Proof. The total graph of an r-regular graph is a regular graph of degree $2 r$ with $n+m$ vertices. Hence the result follows from Equation (1).

The graph $G^{+k}[17]$ is a graph obtained from the graph G by attaching k pendant edges to each vertex of G. If G is a graph of order n and size m, then G^{+k} is graph of order $n+n k$ and size $m+n k$.

Theorem 2.7. Let G be an r-regular graph of order n and size m. Then

$$
\begin{aligned}
P_{D S S\left(G^{+k}\right)}(\mu)= & {\left[\mu+2(r+k)^{2}\right]^{n-1}(\mu+2)^{n k-1}\left\{\mu^{2}-2\left[(n k-1)+(n-1)(r+k)^{2}\right] \mu\right.} \\
& \left.+4(n-1)(n k-1)(r+k)^{2}-n^{2} k\left[1+(r+k)^{2}\right]^{2}\right\} .
\end{aligned}
$$

Proof. The graph G^{+k} of an r-regular graph has two types of vertices. The n vertices with degree $r+k$ and the remaining $n k$ vertices are of degree 1. Hence

$$
D S S\left(G^{+k}\right)=\left[\begin{array}{cc}
2(r+k)^{2}\left(J_{n}-I_{n}\right) & {\left[(r+k)^{2}+1\right] J_{n \times n k}} \\
{\left[(r+k)^{2}+1\right] J_{n k \times n}} & 2\left(J_{n k}-I_{n k}\right)
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
P_{D S S\left(G^{+k)}\right.}(\mu) & =\left|\mu I-D S S\left(G^{+k}\right)\right| \\
& =\left|\begin{array}{cc}
{\left[\mu+2(r+k)^{2}\right] I_{n}-2(r+k)^{2} J_{n}} & -\left[(r+k)^{2}+1\right] J_{n \times n k} \\
-\left[(r+k)^{2}+1\right] J_{n k \times n} & (\mu+2) I_{n k}-2 J_{n k}
\end{array}\right|
\end{aligned}
$$

Next by using Lemma 2.2, we get the desired result.

The union [10] of the graphs G_{1} and G_{2} is a graph $G_{1} \cup G_{2}$ whose vertex set is $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Theorem 2.8. Let G be an r_{1}-regular graph of order n_{1} and H be an r_{2}-regular graph of order n_{2}. Then

$$
P_{D S S(G \cup H)}(\mu)=P_{D S S(G)}(\mu) P_{D S S(H)}(\mu)-\left(\mu+2 r_{1}^{2}\right)^{n_{1}-1}\left(\mu+2 r_{2}^{2}\right)^{n_{2}-1} n_{1} n_{2}\left(r_{1}^{2}+r_{2}^{2}\right)^{2} .
$$

Proof. The degree square matrix of $G \cup H$ will be of the form

$$
\begin{aligned}
D S S(G \cup H) & =\left[\begin{array}{cc}
D S S(G) & \left(r_{1}^{2}+r_{2}^{2}\right) J_{n_{1} \times n_{2}} \\
\left(r_{1}^{2}+r_{2}^{2}\right) J_{n_{2} \times n_{1}} & D S S(H)
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 r_{1}^{2}\left(J_{n_{1}}-I_{n_{1}}\right) & \left(r_{1}^{2}+r_{2}^{2}\right) J_{n_{1} \times n_{2}} \\
\left(r_{1}^{2}+r_{2}^{2}\right) J_{n_{2} \times n_{1}} & 2 r_{2}^{2}\left(J_{n_{2}}-I_{n_{2}}\right)
\end{array}\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
P_{D S S(G \cup H)}(\mu) & =|\mu I-D S S(G \cup H)| \\
& =\left|\begin{array}{cc}
\left(\mu+2 r_{1}^{2}\right) I_{n_{1}}-2 r_{1}^{2} J_{n_{1}} & -\left(r_{1}^{2}+r_{2}^{2}\right) J_{n_{1} \times n_{2}} \\
-\left(r_{1}^{2}+r_{2}^{2}\right) J_{n_{2} \times n_{1}} & \left.\left(\mu+2 r_{2}^{2}\right) I_{n_{2}}-2 r_{2}^{2} J_{n_{2}}\right)
\end{array}\right|
\end{aligned}
$$

Using Lemma 2.2, we get

$$
\begin{equation*}
P_{D S S(G \cup H)}(\mu)=\left(\mu+2 r_{1}^{2}\right)^{n_{1}-1}\left(\mu+2 r_{2}^{2}\right)^{n_{2}-1}\left\{\left[\mu-\left(n_{1}-1\right) 2 r_{1}^{2}\right]\left[\mu-\left(n_{2}-1\right) 2 r_{2}^{2}\right]-n_{1} n_{2}\left(r_{1}^{2}+r_{2}^{2}\right)^{2}\right\} \tag{3}
\end{equation*}
$$

As G and H are regular graphs of order n_{1} and n_{2} and of degree r_{1} and r_{2} respectively, by Equation (1) we have

$$
\begin{equation*}
P_{D S S(G)}(\mu)=\left(\mu+2 r_{1}^{2}\right)^{n_{1}-1}\left[\mu-\left(n_{1}-1\right) 2 r_{1}^{2}\right] \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{D S S(H)}(\mu)=\left(\mu+2 r_{2}^{2}\right)^{n_{2}-1}\left[\mu-\left(n_{2}-1\right) 2 r_{2}^{2}\right] \tag{5}
\end{equation*}
$$

The result follows by substituting the Equations (4) and (5) in Equation (3).

The join [10] $G_{1}+G_{2}$ of two graphs G_{1} and G_{2} is the graph obtained from G_{1} and G_{2} by joining every vertex of G_{1} to all vertices of G_{2}.

Theorem 2.9. Let G be an r_{1}-regular graph of order n_{1} and H be an r_{2}-regular graph of order n_{2}. Then

$$
\begin{aligned}
P_{D S S(G+H)}(\mu)= & {\left[\mu+2 R_{1}^{2}\right]^{n_{1}-1}\left[\mu+2 R_{2}^{2}\right]^{\left(n_{2}-1\right)}\left\{\mu^{2}-2\left[\left(n_{2}-1\right) R_{2}^{2}+\left(n_{1}-1\right) R_{1}^{2}\right] \mu\right.} \\
& \left.+4\left(n_{1}-1\right)\left(n_{2}-1\right) R_{1}^{2} R_{2}^{2}-n_{1} n_{2}\left[R_{1}^{2}+R_{2}^{2}\right]\right\}
\end{aligned}
$$

Proof. If G is an r_{1}-regular graph of order n_{1} and H is an r_{2}-regular graph of order n_{2}, then $G+H$ has two types of vertices, the n_{1} vertices of degree $R_{1}=r_{1}+n_{2}$ and the remaining n_{2} vertices are of degree $R_{2}=r_{2}+n_{1}$. Hence

$$
D S S(G+H)=\left[\begin{array}{cc}
2 R_{1}^{2}\left(J_{n_{1}}-I_{n_{1}}\right) & \left(R_{1}^{2}+R_{2}^{2}\right) J_{n_{1} \times n_{2}} \\
\left(R_{1}^{2}+R_{2}^{2}\right) J_{n_{2} \times n_{1}} & 2 R_{2}^{2}\left(J_{n_{2}}-I_{n_{2}}\right)
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
P_{D S S(G+H)}(\mu) & =|\mu I-D S S(G+H)| \\
& =\left|\begin{array}{cc}
\left(\mu+2 R_{1}^{2}\right) I_{n_{1}}-2 R_{1}^{2} J_{n_{1}} & -\left(R_{1}^{2}+R_{2}^{2}\right) J_{n_{1} \times n_{2}} \\
-\left(R_{1}^{2}+R_{2}^{2}\right) J_{n_{2} \times n_{1}} & \left(\mu+2 R_{2}^{2}\right) I_{n_{2}}-2 R_{2}^{2} J_{n_{2}}
\end{array}\right|
\end{aligned}
$$

Now by using Lemma 2.2, we get the required result.

The product [10] $G \times H$ of two graphs G and H is defined as follows:
Consider any two points $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V=V_{1} \times V_{2}$. Then u and v are adjacent in $G \times H$ whenever $\left[u_{1}=v_{1}\right.$ and $\left.u_{2} a d j v_{2}\right]$ or $\left[u_{2}=v_{2}\right.$ and $\left.u_{1} a d j v_{1}\right]$.

Theorem 2.10. Let G be an r_{1}-regular graph of order n_{1} and H be an r_{2}-regular graph of order n_{2}. Then

$$
P_{D S S(G \times H)}(\mu)=\left[\mu-2\left(n_{1} n_{2}-1\right)\left(r_{1}+r_{2}\right)^{2}\right]\left[\mu+2\left(r_{1}+r_{2}\right)^{2}\right]^{\left(n_{1} n_{2}-1\right)}
$$

Proof. G is an r_{1}-regular graph of order n_{1} and H is an r_{2}-regular graph of order n_{2}. Then $G \times H$ is an $\left(r_{1}+r_{2}\right)$-regular graph with $n_{1} n_{2}$ vertices. Hence the result follows from Equation (1).

The composition [10] $G[H]$ of two graphs G and H is defined as follows:
Consider any two points $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V=V_{1} \times V_{2}$. Then u and v are adjacent in $G[H]$ whenever $\left[u_{1} a d j\right.$ $\left.v_{1}\right]$ or $\left[u_{1}=v_{1}\right.$ and $\left.u_{2} \operatorname{adj} v_{2}\right]$.

Theorem 2.11. Let G be an r_{1}-regular graph of order n_{1} and H be an r_{2}-regular graph of order n_{2}. Then

$$
P_{D S S(G[H])}(\mu)=\left[\mu-2\left(n_{1} n_{2}-1\right)\left(n_{2} r_{1}+r_{2}\right)^{2}\right]\left[\mu+2\left(r_{1}+r_{2}\right)^{2}\right]^{\left(n_{1} n_{2}-1\right)}
$$

Proof. G is an r_{1}-regular graph of order n_{1} and H is an r_{2}-regular graph of order n_{2}. Then $G[H]$ is an $\left(n_{2} r_{1}+r_{2}\right)$-regular graph with $n_{1} n_{2}$ vertices. Hence the result follows from Equation (1). Similarly one can write degree square sum polynomial for $H[G]$.

The corona [10] $G \circ H$ of graphs G and H is a graph obtained from G and H by taking one copy of G and $|V(G)|$ copies of H and then joining by an edge each vertex of the $i^{t h}$ copy of H is named (H, i) with the $i^{t h}$ vertex of G.

Theorem 2.12. Let G be an r_{1}-regular graph of order n_{1} and H be an r_{2}-regular graph of order n_{2}. Then

$$
P_{D S S}(G \circ H ; \mu)=\left[\mu+2 R_{1}^{2}\right]^{n_{1}-1}\left[\mu+2 R_{2}^{2}\right]^{n_{1} n_{2}-1}\left(\left[\mu-2\left(n_{1}-1\right) R_{1}^{2}\right]\left[\mu-2\left(n_{1} n_{2}-1\right) R_{2}^{2}\right]-n_{1}^{2} n_{2}\left[R_{1}^{2}+R_{2}^{2}\right]\right)
$$

Proof. If G is an r_{1}-regular graph of order n_{1} and H is an r_{2}-regular graph of order n_{2}, then $G \circ H$ has two types of vertices, the n_{1} vertices with degree $R_{1}=r_{1}+n_{2}$ and the remaining $n_{1} n_{2}$ vertices are of degree $R_{2}=r_{2}+1$. Hence

$$
D S S(G \circ H)=\left[\begin{array}{cc}
2 R_{1}^{2}\left(J_{n_{1}}-I_{n_{1}}\right) & \left(R_{1}^{2}+R_{2}^{2}\right) J_{n_{1} \times n_{1} n_{2}} \\
\left(R_{1}^{2}+R_{2}^{2}\right) J_{n_{1} n_{2} \times n_{1}} & 2 R_{2}^{2}\left(J_{n_{1} n_{2}}-I_{n_{1} n_{2}}\right)
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
P_{D S S}(G \circ H ; \mu) & =|\mu I-D S S(G \circ H)| \\
& =\left|\begin{array}{cc}
\left(\mu+2 R_{1}^{2}\right) I_{n_{1}}-2 R_{1}^{2} J_{n_{1}} & -\left(R_{1}^{2}+R_{2}^{2}\right) J_{n_{1} \times n_{1} n_{2}} \\
-\left(R_{1}^{2}+R_{2}^{2}\right) J_{n_{1} n_{2} \times n_{1}} & \left.\left(\mu+2 R_{2}^{2}\right) I_{n_{1} n_{2}}-2 R_{2}^{2} J_{n_{1} n_{2}}\right)
\end{array}\right|
\end{aligned}
$$

Using Lemma 2.2, we get the required result.

The Cauchy-Schwarz inequality [2] states that if $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ are n real vectors, then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) \tag{6}
\end{equation*}
$$

3. Bounds for the Largest Degree Square Sum Eigenvalue

Since $\operatorname{trace}(D S S(G))=0$, the eigenvalues of $D S S(G)$ satisfies the following relations:

$$
\begin{equation*}
\sum_{i=1}^{n} \mu_{i}=0 \tag{7}
\end{equation*}
$$

Further,

$$
\sum_{i=1}^{n} \mu_{i}^{2}=\operatorname{trace}\left([D S S(G)]^{2}\right)
$$

$$
\begin{gather*}
=\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j} d_{j i} \\
=\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}^{2} \\
=2 \sum_{i<j}\left(d_{i}^{2}+d_{j}^{2}\right)^{2} . \\
\sum_{i=1}^{n} \mu_{i}^{2}=2 \mathcal{K}, \text { where } \mathcal{K}=\sum_{i<j}\left(d_{i}^{2}+d_{j}^{2}\right)^{2} . \tag{8}
\end{gather*}
$$

The following results are useful for proving further results in this paper.

Theorem 3.1 ([14]). Let a_{i} and b_{i} are nonnegative real numbers, then

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2} \leq \frac{1}{4}\left(\sqrt{\frac{M_{1} M_{2}}{m_{1} m_{2}}}+\sqrt{\frac{m_{1} m_{2}}{M_{1} M_{2}}}\right)^{2}\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} . \tag{9}
\end{equation*}
$$

where, $M_{1}=\max _{1 \leq i \leq n}\left(a_{i}\right) ; M_{2}=\max _{1 \leq i \leq n}\left(b_{i}\right) ; m_{1}=\min _{1 \leq i \leq n}\left(a_{i}\right) ; m_{2}=\min _{1 \leq i \leq n}\left(b_{i}\right)$.
Theorem 3.2 ([13]). Let a_{i} and b_{i} are nonnegative real numbers, then

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq \frac{n^{2}}{4}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} . \tag{10}
\end{equation*}
$$

where, $M_{1}=\max _{1 \leq i \leq n}\left(a_{i}\right) ; M_{2}=\max _{1 \leq i \leq n}\left(b_{i}\right) ; m_{1}=\min _{1 \leq i \leq n}\left(a_{i}\right) ; m_{2}=\min _{1 \leq i \leq n}\left(b_{i}\right)$.

Theorem 3.3 ([3]). Let a_{i} and b_{i} are nonnegative real numbers, then

$$
\begin{equation*}
\left|n \sum_{i=1}^{n} a_{i} b_{i}-\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} b_{i}\right| \leq \alpha(n)(A-a)(B-b) \tag{11}
\end{equation*}
$$

where a, b, A and B are real constants such that $a \leq a_{i} \leq A$ and $b \leq b_{i} \leq B$ for each $i, 1 \leq i \leq n$. Further, $\alpha(n)=$ $n\left\lfloor\frac{n}{2}\right\rfloor\left(1-\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\right)$.

Theorem 3.4 ([9]). Let a_{i} and b_{i} are nonnegative real numbers, then

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i}^{2}+C_{1} C_{2} \sum_{i=1}^{n} a_{i}^{2} \leq\left(C_{1}+C_{2}\right)\left(\sum_{i=1}^{n} a_{i} b_{i}\right) \tag{12}
\end{equation*}
$$

where C_{1} and C_{2} are real constants such that $C_{1} a_{i} \leq b_{i} \leq C_{2} a_{i}$ for each $i, 1 \leq i \leq n$.

Theorem 3.5. Let G be an r-regular graph of order n. Then G has only one positive degree square sum eigenvalue $\mu=2 r^{2}(n-1)$.

Proof. Let G be a connected r-regular graph of order n and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of G. Let $d_{i}=r$ be the degree of $v_{i}, i=1,2, \ldots, n$. Then

$$
d_{i j}= \begin{cases}d_{i}^{2}+d_{j}^{2}=2 r^{2} & \text { if } i \neq j \\ 0 & \text { otherwise }\end{cases}
$$

Therefore, the characteristic polynomial of $\operatorname{DSS}(G)$ is,

$$
\begin{aligned}
P_{D S S}(G ; \mu) & =\operatorname{det}(\mu I-D S S(G)) \\
\Longrightarrow \operatorname{det}(\mu I-D S S(G)) & =\operatorname{det}\left(\mu I-2 r^{2} A\left(K_{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(2 r^{2}\right)^{n}\left|\frac{\mu}{2 r^{2}} I-A\left(K_{n}\right)\right| \\
& =\left(2 r^{2}\right)^{n}\left(\frac{\mu}{2 r^{2}}-n+1\right)\left(\frac{\mu}{2 r^{2}}+1\right)^{n-1} \\
& =\left(\mu-2 r^{2}(n-1)\right)\left(\mu+2 r^{2}\right)^{n-1}
\end{aligned}
$$

Thus, $\left(\mu-2 r^{2}(n-1)\right)\left(\mu+2 r^{2}\right)^{n-1}=0$ will give

$$
\mu= \begin{cases}2 r^{2}(n-1) & 1 \text { time } \\ -2 r^{2} & (n-1) \text { times }\end{cases}
$$

Theorem 3.6. Let G be any graph of order n and μ_{1} be the largest degree square sum eigenvalue. Then

$$
\begin{equation*}
\mu_{1} \leq \sqrt{\frac{2 \mathcal{K}(n-1)}{n}} \tag{13}
\end{equation*}
$$

Proof. Substituting $a_{i}=1$ and $b_{i}=\mu_{i}$ for $i=2,3, \ldots, n$ in Equation (6), we get

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \mu_{i}\right)^{2} \leq(n-1)\left(\sum_{i=1}^{n} \mu_{i}^{2}\right) \tag{14}
\end{equation*}
$$

Again from Equations (7) and (8), we have

$$
\sum_{i=2}^{n} \mu_{i}=-\mu_{1} \text { and } \sum_{i=2}^{n} \mu_{i}^{2}=2 \mathcal{K}-\mu_{1}^{2}
$$

Therefore, Equation (14) becomes,

$$
\left(-\mu_{1}\right)^{2} \leq(n-1)\left(2 \mathcal{K}-\mu_{1}^{2}\right) .
$$

Hence,

$$
\mu_{1} \leq \sqrt{\frac{2 \mathcal{K}(n-1)}{n}}
$$

Equality holds when G is a regular graph.

4. Bounds for the Degree Square Sum Energy of Graphs

Theorem 4.1. Let G be an r-regular graph of order n. Then $-2 r^{2}$ and $2 r^{2}(n-1)$ are degree square sum eigenvalues of G with multiplicities $(n-1)$ and 1 respectively and $E_{D S S}(G)=4 r^{2}(n-1)$.

Proof.

$$
\begin{aligned}
|\mu I-D S S(G)| & =\left|\begin{array}{ccccc}
\mu & -2 r^{2} & -2 r^{2} & \ldots & -2 r^{2} \\
-2 r^{2} & \mu & -2 r^{2} & \ldots & -2 r^{2} \\
-2 r^{2} & -2 r^{2} & \mu & \ldots & -2 r^{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
-2 r^{2} & -2 r^{2} & -2 r^{2} & \ldots & \mu
\end{array}\right| \\
& =\left(\mu+2 r^{2}\right)^{n-1}\left|\begin{array}{cccccc}
\mu & -2 r^{2} & -2 r^{2} & \ldots & -2 r^{2} \\
-1 & 1 & 0 & \ldots & 0 \\
-1 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
-1 & 0 & 0 & \ldots & 1
\end{array}\right|
\end{aligned}
$$

$$
=\left(\mu-2 r^{2}(n-1)\right)\left(\mu+2 r^{2}\right)^{n-1} .
$$

Thus,

$$
E_{D S S}(G)=4 r^{2}(n-1)
$$

Theorem 4.2. Let G be a graph of order n and size m. Then

$$
\begin{equation*}
E_{D S S}(G) \geq \sqrt{2 n \mathcal{K}-\frac{n^{2}}{4}\left(\left|\mu_{1}\right|-\left|\mu_{n}\right|\right)^{2}} \tag{15}
\end{equation*}
$$

where $\left|\mu_{1}\right|$ and $\left|\mu_{2}\right|$ are maximum and minimum of the absolute value of μ_{i} 's.

Proof. Suppose $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are the eigenvalues of $D S S(G)$. Substituting $a_{i}=1$ and $b_{i}=\left|\mu_{i}\right|$ in Equation (10), we get

$$
\begin{aligned}
\sum_{i=1}^{n} 1^{2} \sum_{i=1}^{n}\left|\mu_{i}\right|^{2}-\left(\sum_{i=1}^{n}\left|\mu_{i}\right|\right)^{2} & \leq \frac{n^{2}}{4}\left(\left|\mu_{1}\right|-\left|\mu_{n}\right|\right)^{2} \\
2 \mathcal{K} n-\left(E_{D S S}(G)\right)^{2} & \leq \frac{n^{2}}{4}\left(\left|\mu_{1}\right|-\left|\mu_{n}\right|\right)^{2} \\
E_{D S S}(G) & \geq \sqrt{2 n \mathcal{K}-\frac{n^{2}}{4}\left(\left|\mu_{1}\right|-\left|\mu_{n}\right|\right)^{2}}
\end{aligned}
$$

Corollary 4.3. If G is an r-regular graph of order n, then

$$
E_{D S S}(G) \geq n r^{2} \sqrt{8(n-1)-n^{2}}
$$

Theorem 4.4. Let G be a graph of order n. Then

$$
\sqrt{2 \mathcal{K}} \leq E_{D S S}(G) \leq \sqrt{2 n \mathcal{K}}
$$

Proof. Upper bound: By substituting $a_{i}=1$ and $b_{i}=\mu_{i}$ in Equation (6), we get

$$
\begin{aligned}
\left(\sum_{i=1}^{n}\left|\mu_{i}\right|\right)^{2} & \leq \sum_{i=1}^{n} 1^{2} \sum_{i=1}^{n}\left|\mu_{i}\right|^{2} \\
\left(E_{D S S}(G)\right)^{2} & \leq 2 \mathcal{K} n
\end{aligned}
$$

which implies,

$$
\begin{equation*}
E_{D S S}(G) \leq \sqrt{2 n \mathcal{K}} \tag{16}
\end{equation*}
$$

Lower bound: We have

$$
\left(E_{D S S}(G)\right)^{2}=\left(\sum_{i=1}^{n}\left|\mu_{i}\right|\right)^{2} \geq \sum_{i=1}^{n}\left|\mu_{i}\right|^{2}=2 \mathcal{K}
$$

which implies,

$$
\begin{equation*}
E_{D S S}(G) \geq \sqrt{2 \mathcal{K}} \tag{17}
\end{equation*}
$$

Combining Equations (16) and (17), we get the desired result.

Theorem 4.5. Let G be a graph of order n and let Δ be the absolute value of the determinant of $D S S(G)$. Then

$$
\sqrt{2 \mathcal{K}+n(n-1) \Delta^{2 / n}} \leq E_{D S S}(G) \leq \sqrt{2 n \mathcal{K}}
$$

Proof. Lower bound: By definition of degree square sum energy, we have

$$
\begin{align*}
\left(E_{D S S}(G)\right)^{2} & =\left(\sum_{i=1}^{n}\left|\mu_{i}\right|\right)^{2} \\
& =\sum_{i=1}^{n} \mu_{i}^{2}+2 \sum_{i<j}\left|\mu_{i}\right|\left|\mu_{j}\right| \\
& =2 \mathcal{K}+2 \sum_{i<j}\left|\mu_{i}\right|\left|\mu_{j}\right| \\
& =2 \mathcal{K}+\sum_{i \neq j}\left|\mu_{i}\right|\left|\mu_{j}\right| \tag{18}
\end{align*}
$$

Since we know for nonnegative numbers, the arithmetic mean is always greater than or equal to the geometric mean

$$
\begin{aligned}
\frac{1}{n(n-1)} \sum_{i \neq j}\left|\mu_{i}\right|\left|\mu_{j}\right| & \geq\left(\prod_{i \neq j}\left|\mu_{i}\right|\left|\mu_{j}\right|\right)^{\frac{1}{n(n-1)}} \\
& =\left(\prod_{i=1}^{n}\left|\mu_{i}\right|^{2(n-1)} \mid\right)^{\frac{1}{n(n-1)}} \\
& =\prod_{i=1}^{n}\left|\mu_{i}\right|^{2 / n)} \\
& =\Delta^{2 / n}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\sum_{i \neq j}\left|\mu_{i}\right|\left|\mu_{j}\right| \geq n(n-1) \Delta^{2 / n} \tag{19}
\end{equation*}
$$

Combining Equations (18) and (19), we get

$$
\begin{equation*}
E_{D S S}(G) \geq \sqrt{2 \mathcal{K}+n(n-1) \Delta^{2 / n}} \tag{20}
\end{equation*}
$$

Upper bound: Consider a nonnegative quantity

$$
Y=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\left|\mu_{i}\right|-\left|\mu_{j}\right|\right)^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\left|\mu_{i}\right|^{2}-\left|\mu_{j}\right|^{2}-2\left|\mu_{i}\right|\left|\mu_{j}\right|\right)
$$

By direct expansion, we get

$$
Y=n \sum_{i=1}^{n}\left|\mu_{i}\right|^{2}+n \sum_{j=1}^{n}\left|\mu_{j}\right|^{2}-2\left(\sum_{i=1}^{n}\left|\mu_{i}\right|\right)\left(\sum_{j=1}^{n}\left|\mu_{j}\right|\right)
$$

Now, by definition of degree square sum energy of a graph and Equation (8) we have

$$
Y=4 n \mathcal{K}-2\left(E_{D S S}(G)\right)^{2}
$$

Since $Y \geq 0$,

$$
\begin{gather*}
4 n \mathcal{K}-2\left(E_{D S S}(G)\right)^{2} \geq 0 \\
E_{D S S}(G) \leq \sqrt{2 n \mathcal{K}} \tag{21}
\end{gather*}
$$

Combining Equations (20) and (21), we get the desired result.
Corollary 4.6. If G is an r-regular graph of order n, then

$$
E_{D S S}(G) \leq 2 n r^{2} \sqrt{n-1}
$$

Theorem 4.7. Let G be a graph of order n and size m. Let $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n}$ be a non-increasing arrangement of degree square sum eigenvalues. Then

$$
\begin{equation*}
E_{D S S}(G) \geq \sqrt{2 n \mathcal{K}-\alpha(n)\left(\left|\mu_{1}\right|-\left|\mu_{n}\right|\right)^{2}} \tag{22}
\end{equation*}
$$

where $\alpha(n)=n\left\lfloor\frac{n}{2}\right\rfloor\left(1-\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\right)$.
Proof. Suppose $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are the degree square sum eigenvalues of G. Then by substituting $a_{i}=\left|\mu_{i}\right|=b_{i}, a=\left|\mu_{n}\right|=b$ and $A=\left|\mu_{1}\right|=B$ in Equation (11), we get

$$
\begin{equation*}
\left.\left|n \sum_{i=1}^{n}\right| \mu_{i}\right|^{2}-\left(\sum_{i=1}^{n}\left|\mu_{i}\right|\right)^{2} \mid \leq \alpha(n)\left(\left|\mu_{1}\right|-\left|\mu_{n}\right|\right)^{2} \tag{23}
\end{equation*}
$$

Since $E_{D S S}(G)=\sum_{i=1}^{n}\left|\mu_{i}\right|, \sum_{i=1}^{n}\left|\mu_{i}\right|^{2}=2 \mathcal{K}$, we get the required result.
Remark 4.8. Since $\alpha(n) \leq \frac{n^{2}}{4}$, from Equations (15) and (22) one can easily observe that the inequality in Equation (22) is sharper than the inequality in Equation (15).

Theorem 4.9. Let G be a graph of order n and size m. Let $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n}$ be a non-increasing arrangement of degree square sum eigenvalues. Then

$$
\begin{equation*}
E_{D S S}(G) \geq \frac{\left|\mu_{1}\right|\left|\mu_{n}\right| n+2 \mathcal{K}}{\left|\mu_{1}\right|+\left|\mu_{n}\right|} \tag{24}
\end{equation*}
$$

where $\left|\mu_{1}\right|$ and $\left|\mu_{2}\right|$ are maximum and minimum of the absolute value of μ_{i} 's.
Proof. Suppose $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are the degree square sum eigenvalues of G. Then by substituting $b_{i}=\left|\mu_{i}\right|, a_{i}=1, C_{1}=\left|\mu_{n}\right|$ and $C_{2}=\left|\mu_{1}\right|$ in Equation (12), we get

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\mu_{i}\right|^{2}+\left|\mu_{1}\right|\left|\mu_{n}\right| \sum_{i=1}^{n} 1^{2} \leq\left(\left|\mu_{1}\right|+\left|\mu_{n}\right|\right)\left(\sum_{i=1}^{n}\left|\mu_{i}\right|\right) \tag{25}
\end{equation*}
$$

Since $E_{D S S}(G)=\sum_{i=1}^{n}\left|\mu_{i}\right|$ and $\sum_{i=1}^{n}\left|\mu_{i}\right|^{2}=2 \mathcal{K}$, we get the required result.

5. Conclusion

In this paper, we have obtained the characteristic polynomial of the degree square sum matrix of graphs obtained by some graph operations. Also, bounds for both largest degree square sum eigenvalue and degree square sum energy of graphs are established. It can be observed that the lower bound for degree square sum energy given in Theorem 4.7 is sharper.

Acknowledgement

*This work is partially supported by the University Grants Commission (UGC), New Delhi, through UGC-SAP DRS-III for 2016-2021: F.510/3/DRS-III/2016(SAP-I).
${ }^{1}$ This work is supported by the DST INSPIRE Fellowship 2017: No.DST/INSPIRE Fellowship/[IF170465].

References

[^1][3] M. Biernacki, H. Pidek and C. Ryll-Nardzewsk, Sur une iné galité entre des intégrals définies., Maria Curie SkÅĆodowska Univ., A4(1950), 1-4.
[4] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer, Berlin, (2012).
[5] F. Buckley, Iterated line graphs, Congr. Numer., 33(1981), 390-394.
[6] F. Buckley, The size of iterated line graphs, Graph Theory Notes New York, 25(1993), 33-36.
[7] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, New York, (1980).
[8] D. Cvetković, P. Rowlinson and S. K. Simić, Eigenvalue bounds for the signless Laplacian, Publ. Inst. Math.(Beograd), 81(2007), 11-27.
[9] J. B. Diaz and F. T. Metcalf, Stronger forms of a class of inequalities of G. Póly-G.Szegő and L. V. Kantorovich., Bulletin of the AMS, 60(2003), 415-418.
[10] F. Harary, Graph Theory, Addison-Wesely, Reading, Mass, (1969).
[11] S. R. Jog, S. P. Hande and D. S. Revankar, Degree sum polynomial of graph valued functions on regular graphs, Int. J. Graph Theory, 1(2013), 108-115.
[12] B. Mohar, The Laplacian spectrum of graphs, in: Y. Alavi, G. Chartrand, O. R. Ollermann, A. J. Schwenk (Eds.), Graph Theory, Combinatorics and Applications, Wiley, New York, 2(1991), 871-898.
[13] N. Ozeki, On the estimation of inequalities by maximum and minimum values., J. College Arts and Science, Chiba Univ., 5(1968), 199-203.
[14] G. Pólya and G. Szegő, Problems and Theorems in analysis., Series, Integral calculus, Theory of Functions, Springer, Berlin, (1972).
[15] H. S. Ramane, S. B. Gudimani and S. S. Shinde, Signless Laplacian polynomial and characteristic polynomial of a graph, J. Discrete Math., Article ID 105624 (2013), 4 pages. http://dx.doi.org/10.1155/2013/105624.
[16] H. S. Ramane, D. S. Revankar and J. B. Patil, Bounds for the degree sum eigenvalues and degree sum energy of a graph, Int. J. Pure Appl. Math. Sci., 6(2013), 161-167.
[17] H. S. Ramane and S. S. Shinde, Degree exponent polynomial of graphs obtained by some graph operations, Electronic Notes in Discrete Math., 63(2017), 161-168.
[18] E. Sampathkumar and S. B. Chikkodimath, Semitotal graphs of a graph-I, J. Karnatak Univ. Sci., 18(1973), 274-280.

[^0]: * E-mail: b.basavanagoud@gmail.com

[^1]: [1] M. Aouchiche and P. Hansen, Distance spectra of graphs: A survey, Linear Algebra Appl., 458(2014), 301-386.
 [2] S. Bernard and J. M. Child, Higher Algebra, Macmillan India Ltd., New Delhi, (2001).

