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1. Introduction

In this paper, we are concerned with the third order delay difference equation with several neutral terms of the form

∆(a(n)∆(b(n)z(n))) + q(n)xα(n− k) = 0, n ≥ n0 ≥ 0 (1)

where z(n) = x(n) +
m∑
i=1

pi(n)x(n− `i), m is a positive integer and we assume that

(H1) {a(n)}, {b(n)}, {pi(n)} and q(n) are positive real sequences with 0 ≤ pi(n) ≤ pi <∞ for i = 1, 2, . . . , m;

(H2) `i and k are positive integers for i = 1, 2, . . . , m and α is a ratio of odd positive integers.

Let θ = max{`1, `2, . . . , `m, k}. By a solution of equation (1), we mean a real sequence {x(n)} defined for n ≥ n0 − θ

and satisfies equation (1) for all n ≥ n0. We consider only those solutions {x(n)} of equation (1) which satisfy sup{|x(n)| :

n ≥ N} > 0 for all n ≥ N , and assume that the equation (1) possesses such solutions. A solution of equation (1) is called

oscillatory if it is neither eventually positive nor eventually negative; otherwise it is called nonoscillatory. Equation (1) is

said to be almost oscillatory if all its solutions are oscillatory or convergent to zero asymptotically. Recently, great attention

has been devoted to the oscillation problem of third order difference equations, see for example [1, 3–5, 7, 9–14], and the

references cited therein. In the following, we present some background details that motive our study. In [4], the authors

considered the equation

∆ (c(n)∆(d(n)∆x(n))) + q(n)f(x(n− σ + 1)) = 0 (2)
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and investigated the oscillatory and asymptotic behavior of solutions of equation (2). In [3], the authors considered the

equation

∆
(
c(n)(∆2x(n))α

)
+ q(n)f(x(σ(n))) = 0 (3)

and studied the oscillatory behavior of equation (3) under the condition
∞∑

n=n0

1

c
1
α (n)

<∞. In [9], the authors considered the

following equation

∆ (c(n)∆ (d(n)∆(x(n) + p(n)x(n− k)))) + q(n)f(x(n−m)) = 0 (4)

and established criteria for the oscillation of all solutions of equation (4) under the condition
∞∑

n=n0

1
c(n)

=
∞∑

n=n0

1
d(n)

=∞. In

[11], the authors considered the equation

∆
(
a(n)

(
∆2(x(n) + p(n)x(n− δ))

)α)
+ q(n)xα(n− τ) = 0 (5)

and derived several criteria for the almost oscillation of equation (5). Motivated be the above observation, in this paper we

shall further the investigation of the oscillation behavior of solutions of equation (1) under the following two cases:

∞∑
n=n0

1

a(n)
=∞,

∞∑
n=n0

1

b(n)
=∞, (6)

and
∞∑

n=n0

1

a(n)
<∞,

∞∑
n=n0

1

b(n)
=∞. (7)

The results obtained here reduced to those presented in [9, 11] for the particular case m = 1. In Section 2, we obtain some

sufficient conditions for the almost oscillatory of equation (1) and in Section 3 we provide some examples to illustrate the

main results.

2. Oscillation Results

In this section, we obtain some new oscillation criteria for the equation (1). We begin with a useful lemma which will be

used later. Without loss of generality, we can deal only with the positive solutions of equation (1) since the proof for the

opposite case is similar.

Lemma 2.1. Assume that yi ≥ 0 for i = 1, 2, . . . , m. Then

(a).
m∑
i=1

yαi ≥ 1
mα−1

(
m∑
i=1

yi

)α
for α ≥ 1;

(b).
m∑
i=1

yαi ≥
(
m∑
i=1

yi

)α
for 0 < α < 1.

Proof. The proof is similar to that of in [11] and hence the details are omitted.

Theorem 2.2. Assume that (6) holds and α ≥ 1. If

∞∑
n=n0

1

b(n)

∞∑
s=n

1

a(s)

∞∑
t=s

q(t) =∞ (8)

and the first order difference inequality

∆

(
y(n) +

m∑
i=1

pαi y(n− `i)

)
+
Q(n)Bα(n− k)

(m+ 1)α−1
yα(n− k) ≤ 0 (9)

where Q(n) = min{q(n), q(n− `), . . . , q(n− `m)} and B(n) =
n−1∑
s=n2

s−1∑
t=n1

1
a(t)

b(s)
for n ≥ n2 ≥ n1, has no positive decreasing

solution, then equation (1) is almost oscillatory.
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Proof. Assume that {x(n)} is a positive solution of equation (1). Based on the condition (6) there exist two possible

cases:

(I) z(n) > 0, ∆z(n) > 0, ∆(b(n)∆z(n)) > 0, ∆(a(n)∆(b(n)∆z(n))) < 0,

(II) z(n) > 0, ∆z(n) < 0, ∆(b(n)∆z(n)) > 0, ∆(a(n)∆(b(n)∆z(n))) < 0,

for n ≥ n1 where n1 is large enough. Assume that Case (I) holds. From equation (1), we have

m∑
i=1

pαi ∆ (a(n− `i)∆(b(n− `i)∆z(n− `i))) +

m∑
i=1

pαi q(n− `i)xα(n− `i − k) = 0. (10)

Combining (1) and (10), we obtain

∆(a(n)∆(b(n)∆z(n))) +

m∑
i=1

pαi ∆ (a(n− `i)∆(b(n− `i)∆z(n− `i))) +Q(n)

(
xαn−k +

m∑
i=1

pαi x
α
n−`i−k

)
≤ 0. (11)

Using Lemma 2.1(a), we get

∆(a(n)∆(b(n)∆z(n))) +

m∑
i=1

pαi ∆ (a(n− `i)∆(b(n− `i)∆z(n− `i))) +
Q(n)

(m+ 1)α−1
zαn−k ≤ 0. (12)

Now

b(n)∆z(n) ≥
n−1∑
s=n1

a(s)∆(b(s)∆z(s))

a(s)
≥ a(n)∆(b(n)∆z(n))

n−1∑
s=n1

1

a(s)
(13)

we have that

∆

 b(n)∆z(n)
n−1∑
s=n1

1
a(s)

 ≤ 0. (14)

Thus, we have

z(n) = z(n2) +

n−1∑
s=n2

b(s)∆z(s)
s−1∑
t=n1

1
a(t)

s−1∑
t=n1

1
a(t)

b(s)

≥ b(n)∆z(n)
n−1∑
s=n1

1
a(s)

n−1∑
s=n2

s−1∑
t=n1

1
a(t)

b(s)
(15)

where we have used (14). From (13) and (15), we obtain

z(n) ≥ B(n)a(n)∆(b(n)∆z(n)). (16)

Let y(n) = a(n)∆(b(n)∆z(n)) > 0 be decreasing and from (12) and (16), we see that

∆

(
y(n) +

m∑
i=1

pαi y(n− `i)

)
+
Q(n)Bα(n− k)

(m+ 1)α−1
yαn−k ≤ 0. (17)

Hence {y(n)} is a positive decreasing solution of (9), which is a contradiction.

Case (II) Assume that Case (II) holds. Since z(n) > 0 and ∆z(n) < 0, we have limn→∞ z(n) = L ≥ 0. If L > 0
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then limn→∞

(
x(n) +

m∑
i=1

pi(n)x(n− k)

)
= L or limn→∞ x(n) = L1 ≤ L. Then there exists n2 ≥ n1 ≥ n0 such that

L1 < x(n) < L1 + ε for n ≥ n2. Hence from equation (1), we have

∆ (a(n)∆(b(n)∆z(n))) ≤ −L1q(n), n ≥ n2. (18)

Summing (18) from n ≥ n2 to ∞ and using the fact that a(n)∆(b(n)∆z(n)) is positive and decreasing, we obtain

a(n)∆(b(n)∆z(n)) ≥ L1

∞∑
s=n

q(s).

Summing again gives

b(n)∆z(n) ≤ −L1

∞∑
s=n

1

a(s)

∞∑
t=s

q(t)

and a finial summation yields

z(n2) ≥ L1

∞∑
n=n2

1

b(n)

∞∑
s=n

1

a(s)

∞∑
t=s

q(t).

This contradicts (8) and shows that L = 0, that is, z(n) → 0. Since z(n) > x(n) > 0, we have x(n) → 0 as n → ∞. This

completes the proof of theorem.

Theorem 2.3. Assume that (6) holds and α ≥ 1. Let ` = max{`1, . . . , `m} with ` < k. If (8) holds and the first order

difference inequality

∆w(n) +
Q(n)Bα(n− k)

(m+ 1)α−1

(
1 +

m∑
i=1

pαi

)αwα(n+ `− k) ≤ 0 (19)

has no positive decreasing solution, then equation (1) is almost oscillatory.

Proof. Proceeding as in the proof of Theorem 2.2, wee see that {z(n)} satisfies Case (I) and Case (II) for all n ≥ n1. Let

Case (I) holds. Then as in the proof of Case (I) of Theorem 2.2, we obtain (17). We now define

w(n) = y(n) +

m∑
i=1

pαi y(n− `i).

Then w(n) > 0 and in view of ` = max{`1, . . . , `m}, we have

w(n) ≤

(
1 +

m∑
i=1

pαi

)
y(n− `).

Substituting the last inequality into (17), we see that {w(n)} is a positive decreasing solution of inequality (19) which is a

contradiction. The proof for the Case (II) is similar to that of Case (II) of Theorem 2.2. Now the proof is complete.

Remark 2.4. Theorem 2.2 complements to that of in [11] when m = 1. Theorem 2.3 extends some results in [9] in the case

m = 1 and α = 1.

Next, by adding additional assumption on α, one can derive explicit oscillation criteria for the equation (1) from Theorem

2.3.

Corollary 2.5. In addition to assumption of Theorem 2.3, let α = 1. If

lim
n→∞

inf

n−1∑
s=n−k+`

Q(s)B(s− k) >

(
1 +

m∑
i=1

pi

)(
k − `

k − `+ 1

)k−`+1

(20)

then equation (1) is almost oscillatory.
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Proof. By Theorem 2 of [6], assumption (20) ensure that the inequality (19) has no positive solutions. The conclusion

now follows from Theorem 2.3.

Corollary 2.6. In addition to assumptions of Theorem 2.3, let α > 1. If there exists a λ > 1
k−` lnα such that

lim
n→∞

inf
[
Q(n)Bα(n− k)exp(−eλn)

]
> 0 (21)

then equation (1) is almost oscillatory.

Proof. By Theorem 2 of [8], condition (21) ensures that the inequality (19) has no positive solutions. The conclusion now

follows from Theorem 2.3.

Next, we turn our attention to the case 0 < α < 1.

Theorem 2.7. Assume that (6) holds and 0 < α < 1. If (8) holds and the first order difference inequality

∆

(
y(n) +

m∑
i=1

pαi y(n− `i)

)
+Q(n)Bα(n− k)yα(n− k) ≤ 0 (22)

has no positive decreasing solution, then equation (1) is almost oscillatory.

Proof. The proof is exactly same as that of Theorem 2.2 except by using Lemma 2.1(b) instead Lemma 2.1(a). Hence the

details are omitted.

Theorem 2.8. Assume that (6) holds and 0 < α < 1. Let ` = max{`1, . . . , `m} with ` < k. If (8) holds and the first

order difference inequality

∆w(n) +
Q(n)Bα(n− k)(

1 +
m∑
i=1

pαi

)α wα(n+ `− k) ≤ 0 (23)

has no positive decreasing solution, then equation (1) is almost oscillatory.

Proof. The proof is similar to that of Theorem 2.3 and hence the details are omitted.

Corollary 2.9. In addition to assumption of Theorem 2.8, let

∞∑
n=n0

Q(n)Bα(n− k) =∞. (24)

Then equation (1) is almost oscillatory.

Proof. By Theorem 1 of [8], the condition (24) ensure that the difference inequality (23) has no positive solution. The

results now follows from Theorem 2.8.

In the following result we assume that condition (7) holds and 0 ≤
m∑
i=1

pi(n) < 1 for all n ≥ n0, and α = 1.

Theorem 2.10. Assume that condition (7) holds, 0 ≤
m∑
i=1

pi(n) < 1 and α = 1. If condition (8) holds and

∞∑
n=n0

q(n)

(
1−

m∑
i=1

pi(n− k)

)
B(n− k)
n−1∑
s=n0

1
a(s)

 =∞ (25)

and

lim
n→∞

sup

n−1∑
s=n2

[
δ(s)q(s)

(
1−

m∑
i=1

pi(s− k)

)
s−k−1∑
t=n1

1

b(t)
− 1

4a(s)δ(s)

]
=∞ (26)

where δ(n) =
∞∑
s=n

1
a(s)

, then equation (1) is almost oscillatory.

217



Oscillation of Third Order Nonlinear Difference Equations With Several Neutral Terms

Proof. Assume that {x(n)} is a positive solution of equation (1). Based on the condition (7), there exist three possible

Cases (I), (II) (as in Theorem 2.2), and

Case (III) z(n) > 0, ∆z(n) > 0, ∆(b(n)∆z(n)) > 0, ∆ (a(n)∆(b(n)∆z(n))) < 0 for all n ≥ n1, n1 is large enough. Assume

that Case (I) holds. Define

w(n) =
a(n)∆(b(n)∆z(n))

b(n)∆z(n)
, n ≥ n1. (27)

Then w(n) > 0 for n ≥ n1. Using ∆z(n) > 0, we have

x(n) ≥

(
1−

m∑
i=1

pi(n)

)
z(n). (28)

Since

b(n)∆z(n) ≥ a(n)∆(b(n)∆z(n))

n−1∑
s=n1

1

a(s)
, (29)

we have

∆

 b(n)∆z(n)
n−1∑
s=n1

1
a(s)

 ≤ 0. (30)

Thus, we get

z(n) ≥ b(n)∆z(n)
n−1∑
s=n1

1
a(s)

B(n), n ≥ n2 > n1. (31)

From (27), we obtain

∆w(n) =
∆(a(n)∆(b(n)∆z(n)))

b(n)∆z(n)
− a(n+ 1)∆(b(n+ 1)∆z(n+ 1))

b(n+ 1)∆z(n+ 1)b(n)∆z(n)
∆(b(n)∆z(n))

≤ −
q(n)

(
1−

m∑
i=1

pi(n− k)

)
z(n− k)

b(n)∆z(n)
. (32)

From (31) we have

z(n− k) ≥ b(n− k)∆z(n− k)
n−k−1∑
s=n1

1
a(s)

B(n− k) ≥ b(n)∆z(n)
n−1∑
s=n1

1
a(s)

B(n− k) (33)

where we have used (30). Using (33) in (32) we obtain

∆w(n) ≤ −q(n)

(
1−

m∑
i=1

pi(n− k)

)
B(n− k)
n−1∑
s=n1

1
a(s)

, n ≥ n2 ≥ n1.

Summing the last inequality from n2 to n, we obtain

n∑
s=n2

q(s)
(

1−
m∑
i=1

pi(s− k)

)
B(s− k)
s−1∑
s=n1

1
a(t)

 ≤ w(n2) <∞

which contradicts. Assume Case (II) holds. Then as in the proof of Theorem 2.2(Case II)) we see that limn→∞ x(n) = 0.

Assume that Case (III) holds. Since a(n)∆(b(n)∆z(n)) is negative decreasing, we have

a(s)∆(b(s)∆z(s)) ≤ a(n)∆(b(n)∆z(n)), s ≥ n ≥ n1. (34)
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Dividing the last inequality by a(s) and then summing it from n to `− 1, we obtain

b(`)∆z(`) ≤ b(n)∆z(n) + a(n)∆(b(n)∆z(n))

`−1∑
s=n

1

a(s)
.

Letting `→∞, we get

0 ≤ b(n)∆z(n) + a(n)∆(b(n)∆z(n))

∞∑
s=n

1

a(s)
,

that is,

− a(n)∆(b(n)∆z(n))

b(n)∆z(n)

∞∑
s=n

1

a(s)
≤ 1. (35)

Define

v(n) =
a(n)∆(b(n)∆z(n))

b(n)∆z(n)
, n ≥ n1. (36)

Then v(n) < 0 for n ≥ n1 and by (35) and (36), we obtain

− δ(n)v(n) ≤ 1. (37)

From (36), we have

∆v(n) =
∆(a(n)∆(b(n)∆z(n)))

b(n)∆z(n)
− a(n+ 1)∆(b(n+ 1)∆z(n+ 1))∆(b(n)∆z(n))

b(n+ 1)∆z(n+ 1)b(n)∆z(n)
. (38)

Using ∆z(n) > 0, we have (28). From equation (1) and (38), we have

∆v(n) ≤ −q(n)

(
1−

m∑
i=1

pi(n− k)

)
z(n− k)

b(n)∆z(n)
− v2(n)

a(n)
, (39)

where we have used a(n)∆(b(n)∆z(n)) is negative and decreasing and b(n)∆z(n) is positive and decreasing. Also

z(n) ≥ b(n)∆z(n)

n−1∑
s=n1

1

b(s)
, (40)

and hence

∆

z(n)
n−1∑
s=n1

1

b(s)

 ≤ 0,

which implies that

z(n− k)

z(n)
≥

n−k−1∑
s=n1

1
b(s)

n−1∑
s=n1

1
b(s)

. (41)

By (39), (40) and (41), we obtain

∆v(n) ≤ −q(n)

(
1−

m∑
i=1

pi(n− k)

)
n−k−1∑
s=n1

1

b(s)
− v2(n+ 1)

a(n)
.

Multiplying the last inequality δ(n) and then summing it from n2 to n− 1, we have

δ(n)v(n)− δ(n2)v(n2) +

n−1∑
s=n2

δ(s)q(s)

(
1−

m∑
i=1

pi(s− k)

)
s−k−1∑
s=n1

1

b(t)
−

n−1∑
s=n2

v(s+ 1)

a(s)
+

n−1∑
s=n2

δ(s)
v2(s+ 1)

a(s)
≤ 0

which on completing the square yields

n−1∑
s=n2

[
δ(s)q(s)

(
1−

m∑
i=1

pi(s− k)

)
s−k−1∑
t=n1

1

b(t)
− 1

4a(s)δ(s)

]
≤ −1 + δ(n2)v(n2)

when using (37), which contradicts (26). This completes the proof.
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3. Examples

In this section, we present some examples to illustrate the main results.

Example 3.1. Consider the third order neutral delay difference equation

∆

(
n∆2

(
x(n) +

1

2
x(n− 1) + 2x(n− 2)

))
+

1

(n+ 1)
x(n− 3) = 0, n ≥ 1. (42)

Here a(n) = n, b(n) = 1, p1(n) = 1
2
, p2(n) = 2, `1 = 1, `2 = 2, q(n) = 1

(n+1)
, k = 3 and α = 1. The condition (6) clearly

satisfied and condition (8) becomes

∞∑
n=1

1

b(n)

∞∑
s=n

1

a(s)

∞∑
t=s

q(t) =

∞∑
n=1

∞∑
s=n

1

s

∞∑
t=s

1

(t+ 1)
=∞.

Further the condition (20) becomes

lim
n→∞

inf

n−1∑
s=n−1

1

s+ 1

s−1∑
t=2

(
t−1∑
u=1

1

u

)
> lim
n→∞

inf

n−1∑
s=n−1

s− 2

s+ 1
= 1 >

7

8
.

Hence all conditions of Corollary 2.5 are satisfied and so the equation (42) is almost oscillatory.

Example 3.2. Consider the third order neutral delay difference equation

∆

(
1

n
∆2

(
x(n) +

1

2
x(n− 1) + x(n− 2)

))
+

1

(n+ 1)
x

1
3 (n− 3) = 0, n ≥ 1. (43)

Here a(n) = 1
n
, b(n) = 1, p1(n) = 1

2
, p2(n) = 1, `1 = 1, `2 = 2, q(n) = 1

(n+1)
, k = 3 and α = 1

3
. It is easy to see that all

conditions of Corollary 2.9 are satisfied and so the equation (43) is almost oscillatory.

Example 3.3. Consider the third order neutral delay difference equation

∆

(
n2∆2

(
x(n) +

1

4
x(n− 1) +

1

2
x(n− 2)

))
+ nx(n− 3) = 0, n ≥ 1. (44)

Here a(n) = n2, b(n) = 1, p1(n) = 1
4
, p2(n) = 1

2
, `1 = 1, `2 = 2, q(n) = n, k = 3 and α = 1. It is easy to see that all

conditions of Theorem 2.10 are satisfied and hence equation (44) is almost oscillatory.

We conclude this paper with the following remark.

Remark 3.4. In this paper, we have established some new oscillation theorems for the equation (1) by reducing to the

oscillation of first order delay difference equation. The obtained results complement and generalize some of the results in

[3–5, 7, 9–14].
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