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1. Introduction

Petri Net has its origin in Carl Adam Petri’s dissertation submitted in the year 1962. Tokens are used in these nets to

simulate the dynamic and concurrent activities of systems [4]. Petri net is a bipartite graph with place nodes, transition

nodes and directed arcs connecting places with transitions. Places are connected only by transitions. Similarly, transitions

are connected only by places. ie, an arc can be drawn from place to transition or transition to place. The place from which

an arc enters a transition is called the input place of the transition and the place to which an arc enters from a transition is

called the output place of the transition. Any number of tokens are given on places. A distribution of tokens over the places

of a net is called a marking. Transitions act on input tokens by a process known as firing. An enabled transition can fire.

ie, if there are tokens in every input place of the transition, then a transition fires. In that case tokens are removed from

the input place of the transition and added at all of its output places [4].

A coloured Petri Net (CPN) has the net structure of a Petri Net and colours are assosiated with places, transitions and

tokens. A transition can fire with respect to each of its colours [1]. A different kind of CPN, called string - token Petri Net

was introduced in [1] by labeling the tokens with strings of symbols and the transition with evolution rules [6]. Firing of

a transition removes token with a string label from the input places and deposits it in the output places of the transition

after performing on the strings, the evolution rule indicated at the transition. In [9], a new two-dimensional 2D grammar

based on pure Context-free rules, called pure 2D context-free grammar (P2DCFG), for rectangular picture array generation

is introduced. In this 2D model, any column or any row of the rectangular array rewritten without any priority of rewriting

columns and rows as in [7] and [8]. Certain closure properties of this 2D model were also obtained.

On the other hand an extension of the string-token Petri net called array-token Petri net is introduced in [2] and [5] by

labeling tokens by arrays and is used to generate picture languages. It has been shown in [3] that the class of languages
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generated by array-token Petri nets intersects certain classes of picture languages generated by 2D matrix grammars. Also in

[2], the languages generated by these Array-token Petri nets were compared with the languages generated by 2D grammars.

In this paper, the languages generated by P2DCFG are compared with the languages generated by these ATPN’s. Some of

it’s closure properties are discussed. These are illustrated by examples.

2. Preliminaries

Definition 2.1. A pure 2D context-free grammar(P2DCFG) is a 4-tuple G = (Σ, Pc, Pr, A0) where

• Σ is a finite set of symbols.

• Pc = {tci |1 ≤ i ≤ m}, Pr = {trj |1 ≤ j ≤ n}. Each tci , (1 ≤ i ≤ m), called a column table, is a set of context-free rules

of the form a→ α, a ∈ Σ, α ∈ Σ∗ such that for any two rules a→ α, b→ β in tci , we have |α| = |β| where |α| denotes

the length of α. Each trj , (1 ≤ j ≤ n), called a row table, is a set of context free rules of the form c→ γT , c ∈ Σ and

γ ∈ Σ∗ such that for any two rules c→ γT , d→ δT in trj , we have |γ| = |δ|.

• A0 ⊆ Σ∗∗ − {λ} is a finite set of axiom arrays.

Definition 2.2. Evolution rules R(t) which are used in Array-Token Petri Net (ATPN) are as follows:

(a). I is the identity rule that keeps the array unaltered (for example A→ A is an identity rule, where A denotes an array).

(b). λ→ A(l) is the left insertion rule,

λ→ A(r) is the right insertion rule,

λ→ A(u) is the up (above) insertion rule,

λ→ A(d) is the down insertion rule, where λ is the empty array.

(c). A→ λ(l) is the left deletion rule,

A→ λ(r) is the right deletion rule,

A→ λ(u) is the deletion above (up) rule,

A→ λ(d) is the deletion below (down) rule.

(d). A→ B is the substitution rule where A and B are arrays

(array A is replaced by array B).

Definition 2.3. An Array - Token Petri Net (ATPN) is a 7-tuple N = (Q,T, V,A,R(t), F,M0) where

• Q = {q1, q2, ..., qn} is a finite set of places.

• T = {t1, t2, ..., tm} is a finite set of transitions and each ti is the label of evolution rules.

• V is a finite non-empty set of arrays.

• A ⊆ (QXT ) ∪ (TXQ) is a set of arcs (flow relation).

• R(t) is the set of evolution rules associated with each transition t of T .

• F is a set of final places that is places which are not having output arcs or input places of transition which are not

enabled.

• M0 : Q→ (an array over V ) is the initial marking.

• Q ∪ T 6= φ; Q ∩ T = φ.
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Definition 2.4. In order to simulate the dynamic behaviour of a system, a state or marking in an ATPN is changed

according to the following transition (firing) rule:

(i). A transition t is said to be enabled if each input place p of t consists of an array or part of an array, called sub array

with a left side expression of the transition rule. Suppose

t :
a b

a c
→

a a b

b b d
then

a b

a c
should be there in input place q of t.

(ii). An enabled transition may fire.

(iii). A firing of an enabled transition t removes an array or sub array say

X X X

a b X

a c X

X X X

from its input place q of t and adds

an

array say

X X X X

a a b X

b b d X

X X X X

on the output place of t.

Definition 2.5. A language L is an ATPN language if there exists an ATPN N = (Q,T, V,A,R(t), F,M0) such that

L = {A/A ∈M(Q),M is a reachable marking of N, q ∈ F}

Example 2.6. Consider the pure 2D context-free grammar

G1 = (Σ1, Pc1 , Pr1 , A0) where

Σ1 = {a, b, c, •}, Pc1 = {tc1}, Pr1 = {tr1},

tc1 = {• → ••, b→ bb}, tr1 = {b→

•

b

•

, c→

a

c

a

}, A0 =

a • a

c b c

a • a

An ATPN that generates G1 is given below (see Figure 1):

q1

q2

q0

tc11

A0

tc12

tc13

tr12

tr13

tr11

N1 :

Figure 1.

q1

q2

q0

tc11

tc12

tc13

tr12

tr13

A1

tr11

Figure 2.

q2

q0

tc11

tc12

tc13

tr12

tr13

A2 q1

tr11

Figure 3.

tc11 stands for 1st transition with tc1 as evolution rule, tc12
stands for 2nd transition with tc1 as evolution rule and so on.
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q2

q0

tc11

tc12

tc13

tr12

tr13

q1

A3
tr11

Figure 4.

q3

tc21

tc22

tc23

tr22

tr23

q4

q5

A01

tr21

N2 :

Figure 5.

q3

tc21

tc22

tc23

tr22

tr23

q4

q5

A02

tr21

Figure 6.

In Figure 2, when tc11
fires, we would get A1 on q1 where A1 =

a • • a

c b b c

a • • a

. In Figure 3, when tr12 fires, we would get A2

on q1 where A2 =

a • • a

a • • a

c b b c

a • • a

a • • a

. In Figure 4, when tr11 fires, we would get A3 on q2 where A3 =

a • a

a • a

c b c

a • a

a • a

and so on.

q3

tc21

tc22

tc23

tr22

tr23

q5

q4A03

tr21

Figure 7.

q3

tc21

tc22

tc23

tr22

tr23

q5tr21

q4

A04

Figure 8.

Example 2.7. Consider the P2DCFG G2 = (Σ2, Pc2 , Pr2 , A01), where Σ2 = {a, b, c, •}, Pc2 = {tc2}, Pr2 = {tr2}, tc2 =

{b→ a b a, c→ • c •}, tr2 =

a→ a

•
, b→

b

c

,

A01 =
a b a

• c •
. Here, tr23 stands for 3rd transition with tr2 as evolution rule, tc22 stands for 2nd transition with tc2 as

evolution rule and so on (see Figure 5). In Figure 6, when tc21 fires, we would get A02 on q4 where A02 =
a a b a a

• • c • •
. In

Figure 7, when tc22 fires, we would get A03 on q4 where A03 =
a a a b a a a

• • • c • • •
. In Figure 8, when tr21 fires, we would
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get A04 on q5 where A04 =

a b a

• c •

• c •

and so on.

Theorem 2.8. If L is a P2DCFL, then there exists an ATPN ’N’ such that L is generated by ATPN.

Proof. Let G = (Σ, Pc, Pr, A0) be a P2DCFG that generates L.

q0 A0

Figure 9.

q1

q2

q0

tc11

A0

tc21

Figure 10.

q1

q0 A0

tc21
q2

q5 q4

q3

tr11

tr21

tr31

tc11

Figure 11.

q0 A0

tc21
q2

q5 q4

q3

tr11

tr21

tr31

tc11

q1

tc12

tc22tr12

tr32

tr22

Figure 12.

We construct an ATPN that generates L as follows:

We start with a place q0 with A0 as the initial array token (see Figure 9). For every tci , 1 ≤ i ≤ m, and trj , 1 ≤ j ≤ n,

construct transitions with tci1 , trj1 , tci2 , trj2 , and so on as evolution rules. Let m = 2, n = 3. ie, Assume that tc1 , tc2 , tr1 ,

tr2 , tr3 are given in Pc and Pr. Now construct tc11 , tc12 , . . . , tr11 , tr12 , . . . , tc21 , tc22 , . . . , tr21 , tr22 , . . . , tr31 , tr32 , . . . as

evolution rules. From q0, attach transitions tc11 , tc21 , tr11 , tr21 , tr31 . From these transitions attach places q1, q2, q3, q4, q5

(see Figures 10 and 11). We attach transitions to q1 that gives loop structure. Let tc12 , tc22 , tr12 , tr22 , tr32 be the transitions

that gives loop structure. So, attach these transitions to q1 (see Figure 12). Likewise on q2, q3, q4, q5, we attach transitions

with loop structure. Hence, the resulting ATPN ‘N’ will generate given L.

Example 2.9. Consider the P2DCFG as in Example 7. Since A01 is the axiom array, we construct a place q3 with A01 as

initial token array (see Figure 13). Now from q3, attach transitions for tc2 and tr2 . We call them tc21 and tr21 because tc21

stands for first transition with tc2 as evolution rule and tr21 stands for first transition with tr2 as evolution rule. Connect

transitions tc21 and tr21 to the places q4 and q5 (see Figure 14). We can see that tc2 and tr2 will give a loop. From q4 attach
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tc22 and tr22 that gives loop structure. Similarly, from q5 attach tc23 and tr23 (see Figures 15 and 16). Now the resulting

net will be N = ({q3, q4, q5}, {tc21 , tc22 , tc23 , tr21 , tr22 , tr23}, A, {tc2 , tr2}, F,A01). We can see that N generates P2DCFL L.

q3 A01

Figure 13.

q4

q5

q3

tr21

tc21

A01

Figure 14.

q3

tc21

tc22

tr22

q4

q5

A01

tr21

Figure 15.

q3

tc21

tc22

tc23

tr22

tr23

q4

q5

A01

tr21

Figure 16.

Theorem 2.10. The class of ATPN’s that generates P2DCFL is closed under union.

Proof. Let N1 be an ATPN that generates a P2DCFL L1 and N2 be an ATPN that generates a P2DCFL L2.

Now, we can construct an ATPN that generates L1 ∪ L2 as follows:

Let qs be the place with an array λ (any empty array of desirable size). Delete the axiom arrays of N1 and N2. Attach a

transition from qs with evolution rule λ → A0 that connects to N1 where A0 is the initial array of N1. Similarly from qs ,

attach a transition with evolution rule λ→ A1 that connects to N2 where A1 is the initial array of N2. Now, N will generate

L1 ∪ L2 (see Figure 17).

rest of the

rest of the

part of N1

part of N2

λ
qs

λ → A0

λ → A1

Figure 17.

Example 2.11. Consider ATPNs as in Examples 6 and 7. Start with the place qs consisting of an empty array λ. Delete

A0 and A01 from ATPNs in Examples 6 and 7. Attach qs to the transition with the evolution rule λ → A0. Connect this

transition to initial place of N1. Similarly attach qs to the transition with the evolution rule λ → A01 and connect this

transition to the initial place of N2. Rest of the operations in N1 and N2 are same. Now, we obtain a net that generates

L1 ∪ L2 (see Figure 18).
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tc21

tc22

tc23

tr22

tr23

q4

q5tr21

q1

q2

tc11

tc12

tc13

tr12

tr13

tr11

q0

q3

qs λ

λ → A01

λ → A0

Figure 18.

Theorem 2.12. The class of ATPN’s that generate P2DCFL is closed under column catenation.

Proof. Let N1 be the ATPN generated by P2DCFL L1 and N2 be the ATPN generated by P2DCFL L2. Let the symbol

©| denote column catenation. Here, L1 and L2 must have same number of rows. Then L1 ©| L2 can be generated by ATPN

N as follows (see Figure 19):

rest of the

rest of the

initial place

initial place

part of N2

part of N1

tx : λ → (axiom array of N1)ℓ

ty : λ → (axiom array of N1)ℓ

tz : λ → (axiom array of N1)ℓ

of N2

of N1

Figure 19.

Consider the ATPN N2. From the final places of ATPN N2, attach transitions with the evolution rule λ → ( axiom array

of N1 )` and delete the axiom array of N1 from N1. Connect final places of N2 with the initial place of N1 through the

transitions with the evolution rule λ→ ( axiom array of N1 ) `. Here, λ→ ( axiom array of N1 ) ` means left insertion as

in Definition 2. Rest of the operations are done as in N1 and N2 (see Figure 19). Similarly, L2 ©| L1 can be done by taking

N1 first and then N2.

Example 2.13. Consider ATPN’s as in Examples 6 and 7. Here, number of rows should be the same. Since the number
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of rows should be the same, we consider A01 to be A01 =

a b a

• c •

• c •

. Rest of the operations of N2 are the same. Connect final

places of N2 to the transition with the evolution rule λ → (axiom array of N1)`. i.e., λ → A0`. Delete the axiom array of

N1 from its initial place. Now connect the transitions with the evolution rule λ→ A0` to the initial place of N1 (see Figure

20). Now, after completing all possible firings, the resulting array will be of the form L1 ©| L2.

q3

tc21

tc22

tc23

tr22

tr23

A01

tr21

q1

q2

q0

tc12

tc13

tr12

tr13

q4

q5

tx : λ → A0ℓ

tc11

ty : λ → A0ℓ
tr11

Figure 20.

Theorem 2.14. The class of ATPN’s that generate P2DCFL is closed under row catenation.

Proof. Let N1 be the ATPN generated by P2DCFL L1 and N2 be the ATPN generated by P2DCFL L2. Let the symbol

	 denote row catenation. Here, L1 and L2 must have same number of columns. Then L1 	 L2 can be generated by ATPN

N as follows (see Figure 21): Consider the ATPN N2. From the final places of ATPN N2, attach transitions with evolution

rule λ→ (axiom array of N1)u and delete the axiom array of N1 from N1. Connect final places of N2 with the initial places

of N1 through the transitions with evolution rule λ→ (axiom array of N1)u. Here, λ→ (axiom array of N1)u means above

(up) insertion as in Definition 2. Rest of the operations are done as in N1 and N2 (see Figure 21).

rest of the

rest of the

initial place

initial place

part of N2

part of N1

tx : λ → (axiom array of N1)u

ty : λ → (axiom array of N1)u

tz : λ → (axiom array of N1)u

of N2

of N1

Figure 21.
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Example 2.15. Consider ATPNs as in Examples 6 and 7. Here the number of column should be the same. Delete axiom

array of N1 from N1. Consider first ATPN N2. From the final places of N2 attach transition with evolution rule λ→ A0u.

Connect final places of N2 with the initial place of N1 through the transitions with evolution rule λ→ A0u. Now, λ→ A0u

means up insertion as in Definition 2. Rest of the operations are done as in N1 and N2 (see Figure 22).

q3

tc21

tc22

tc23

tr22

tr23

A01

tr21

q1

q2

q0

tc12

tc13

tr12

tr13

q4

q5

tx : λ → A0u

tc11

ty : λ → A0u
tr11

Figure 22.

Theorem 2.16. The class of ATPN’s that generate P2DCFL is closed under transposition. ie, If P2DCFL L is generated

by ATPN N3, then there exists ATPN N4 such that N4 generates LT .

Proof. Let N3 be the ATPN that generates L. LT is the transposition of L which can be generated by ATPN N4 as

follows. Column tables of L is taken as row tables of LT and row tables in L is taken as column tables of LT . Suppose

A→ α is in a column table of L, then take A→ αT , α ∈ Σ∗∗ as corresponding row table of LT . Likewise, for a rule B → βT

in a row table of L, the rule B → β is taken as the corresponding column table of LT . The resulting N4 will generate LT

(see Figures 23 and 24).

q1

q2

q0

tc11

tr12

tc15

tc13

tr16

tr14

N3 :

Figure 23.

q1

q2

q0

tr11

tc12

tr15

tr13

tc16

tc14

N4 :

Figure 24.

Example 2.17. Consider ATPN as in Example 6. Now • → ••, b → bb are in column table of L, that is in tc1 , we take

• →
•

•
and b→

b

b
as corresponding row table of LT . We call it as t′r1 where t′r1 =

• → •

•
, b→

b

b

. In a row table of
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L, that is in tr1 , we have b →

•

b

•

, c →

a

c

a

convert it as b → •b•, c → aca in corresponding column table of LT . We call it

as t′c1 where t′c1 = {b→ •b•, c→ aca} (see Figure 25).

q1

q2

q0

t′r11

A0

t′c12

t′c13

t′r12

t′r13

t′c11

N1 :

Figure 25.

3. Conclusion

Thus, it can be concluded that every Pure 2D Context-Free Language can be generated by Array Token Petri Net. Also,

the class of Array Token Petri Nets that generates Pure 2D Context-Free Languages is closed with respect to union, column

catenation, row concatenation and transposition.
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