Prime Labelings of Some Wheel And Crown Related Graphs

J. Naveen ${ }^{1, *}$ and S. Meena ${ }^{1}$
1 Department of Mathematics, Government Arts College, C. Mutlur, Chidambaram, Tamil Nadu, India.

Abstract

A Graph G with n vertices is said to admit prime labeling if its vertices can be labeled with distinct positive integers not exceeding n such that the labels of each pair of adjacent vertices are relatively prime. A graph G which admits prime labeling is called a prime graph. In this paper we investigate the existence of prime labeling of some graphs related to wheel W_{n} and crown C_{n}^{*}. We discuss prime labeling in the context of the graph operation namely corona product.

Keywords: Graph Labeling, Prime Labeling, corona product, Prime Graph.
(C) JS Publication.

Accepted on: 14.02.2018

1. Introduction

In this paper, we consider only finite simple undirected graph. The graph G is a set of vertices $V(G)$, together with a set of edges $E(G)$ and incidence relation. If $u, v \in V(G)$ are connected by an edge, we say u and v are adjacent and the corresponding edge is denoted by $u v$ or $v u$. The degree of a vertex u is the number of edges adjacent with u. A graph is connected if it does not consist of two or more disjoint "pieces". The path P_{n} is the connected graph consisting of two vertices of degree 1 and $n-2$ vertices of degree 2 . An n-cycle C_{n}, is the connected graph consisting of n vertices each of degree 2. An $n-\operatorname{star} S_{n}$, is the graph consisting of one vertex of degree n and n vertices of degree 1 . But S_{n} consist of $n+1$ vertices and n edges. A tree is a graph contains no cycle. Path and stars are example of trees. For notations and terminology we refer to Bondy and Murthy [1].

The notion of prime labeling was introduced by Roger Entringer and was discussed in a paper by Tout [8]. Two integers a and b are said to be relatively prime if their greatest common divisor is 1 denoted by $(a, b)=1$. Every path P_{n}, cycle C_{n} and star S_{n} are prime [2]. Every wheel W_{n} if and only if n is even [2], all helm H_{n}, crown C_{n}^{*} and gear graph G_{n} are prime [2]. We refer Gallian's dynamic survey [2] for a comprehensive listing of the families of graphs that are known to have or known not to have prime vertex labeling. S.K.Vaidya $[5,6,7]$ investigated about the existence of prime labeling for some path, cycle and wheel related graphs in the context of some graph operations namely duplication, fusion and vertex switching etc. Let G and H be two graphs. The corona product $G \odot H$ is obtained by taking one copy of G and $|V(G)|$ copies of H and by joining each vertex of the i-th copy of H to the i-th vertex of G where $1 \leq i \leq|V(G)|[3]$. For all $m, n \in N$ with $n \geq 3$, an m-hairy n-cycle, denoted by $C_{n} * S_{m}$, is the cycle C_{n} with m pendants attached to each cycle vertex [4]. In other words this graph is corona product $C_{n} \odot \bar{K}_{m}$. The crown graph C_{n}^{*} is obtained from a cycle C_{n} by attaching a pendent edge at

[^0]each vertex of the n-cycle. We consider the graph obtained by, attaching the centre vertex of a copy of the star S_{m} to each vertex of Wheel W_{n} and crown C_{n}^{*}. The resulting graph will have m pendants at each vertex and it is denoted by $W_{n} * S_{m}$ and $C_{n}^{*} * S_{m}$. The star notation indicates that we attach a copy of the star S_{m} at its vertex of the degree m to all the vertices of W_{n} and C_{n}^{*}. In other words $W_{n} * S_{m}$ is the corona product $W_{n} \odot \bar{K}_{m}$ and $C_{n}^{*} * S_{m}$ is the corona product $C_{n}^{*} \odot \bar{K}_{m}$. In this paper, we proved that the graphs obtained by attaching m-star to each vertex of Wheel W_{n} and crown C_{n}^{*} are all prime graphs.

2. Main Results

Theorem 2.1. The graph $W_{n} * S_{2}$ admits prime labeling where W_{n} is the wheel graph if $n \not \equiv 1(\bmod 5)$.
Proof. Let c_{0} be the centre of the wheel graph W_{n}. And let $c_{1}, c_{2}, \ldots, c_{n}$ be the rim vertices of the wheel graph W_{n}. let p_{0}^{1}, p_{0}^{2} be the pendant vertices adjacent to the central vertex c_{0} and let $p_{i}^{j}, 1 \leq j \leq 2$ be the pendant vertices attached at c_{i} for $1 \leq i \leq n$. The graph $W_{n} * S_{2}$ has $3 n+3$ vertices. Define a labeling $f: V \rightarrow\{1,2,3, \ldots, 3 n+3\}$ as follows. Let

$$
\begin{aligned}
f\left(c_{0}\right) & =1, \quad f\left(c_{i}\right)=3 i+2, & & \text { for } 1=i=n, \\
f\left(p_{0}^{j}\right) & =j+1, & & \text { for } 1 \leq j \leq 2 \\
f\left(p_{i}^{1}\right) & =3 i+1, & & \text { for } 1 \leq i \leq n \\
f\left(p_{i}^{2}\right) & =3 i+3, & & \text { for } 1 \leq i \leq n \\
\operatorname{gcd}\left(f\left(c_{0}\right), f\left(p_{0}^{j}\right)\right) & =\operatorname{gcd}(1, j+1)=1, & & \text { for } 1 \leq j \leq 2 .
\end{aligned}
$$

For $1 \leq i \leq n$,

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(c_{0}\right), f\left(c_{i}\right)\right) & =\operatorname{gcd}(1,3 i+2)=1, \\
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(c_{i+1}\right)\right) & =\operatorname{gcd}(3 i+2,3(i+1)+2) \\
& =\operatorname{gcd}(3 i+2,(3 i+2)+3)=1 .
\end{aligned}
$$

among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 3

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(c_{1}\right), f\left(c_{n}\right)\right)=\operatorname{gcd}(5,3 n+2)=1, \text { for } 3 n \not \equiv 3(\bmod 5), 3 n+2 \not \equiv 0(\bmod 5) \\
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{1}\right)\right)=\operatorname{gcd}(3 i+2,3 i+1)=1 \\
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{2}\right)\right)=\operatorname{gcd}(3 i+2,3 i+3)=1
\end{aligned}
$$

as these two number are consecutive integers. Thus f is a prime labeling. Hence $W_{n} * S_{2}$ is a prime graph.

Theorem 2.2. The graph $W_{n} * S_{3}$ admits prime labeling where W_{n} is the wheel graph if $n \not \equiv 1(\bmod 7)$.

Proof. Let c_{0} be the centre of the wheel graph W_{n}. And let $c_{1}, c_{2}, \ldots c_{n}$ be the rim vertices of the wheel graph W_{n} and let $p_{i}^{j}, 1 \leq j \leq 3$ be the pendant vertices attached at c_{i} for $0 \leq i \leq n$ respectively. The graph $W_{n} * S_{3}$ has $4 n+4$ vertices and $5 n+3$ edges. Define a labeling $f: V \rightarrow\{1,2,3, \ldots, 4 n+4\}$ as follows. Let

$$
\begin{aligned}
f\left(c_{0}\right) & =1, \quad f\left(c_{i}\right)=4 i+3, & \text { for } 1 \leq i \leq n, \\
f\left(p_{0}^{j}\right) & =j+1, & \text { for } 1 \leq j \leq 3
\end{aligned}
$$

For $1 \leq i \leq n$

$$
\begin{aligned}
f\left(p_{i}^{1}\right) & =4 i+1, \quad f\left(p_{i}^{2}\right)=4 i+2, \quad f\left(p_{i}^{3}\right)=4 i+4 . \\
\operatorname{gcd}\left(f\left(c_{0}\right), f\left(p_{0}^{j}\right)\right) & =\operatorname{gcd}(1, j+1)=1,
\end{aligned}
$$

For $1 \leq i \leq n$ and $1 \leq j \leq 3$

$$
\begin{aligned}
g c d\left(f\left(c_{0}\right), f\left(c_{i}\right)\right) & =\operatorname{gcd}(1,4 i+3)=1 . \\
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(c_{i+1}\right)\right) & =\operatorname{gcd}(4 i+3,4(i+1)+3) \\
& =\operatorname{gcd}(4 i+3,(4 i+3)+4)=1 .
\end{aligned}
$$

as these two numbers are odd and their difference is 4 both are not multiples of 3

$$
\operatorname{gcd}\left(f\left(c_{1}\right), f\left(c_{n}\right)\right)=\operatorname{gcd}(7,3 n+2)=1,
$$

Since $n \not \equiv 1(\bmod 7), 4 n \not \equiv 4(\bmod 7), 4 n+3 \not \equiv 0(\bmod 7)$

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{1}\right)\right)=\operatorname{gcd}(4 i+3,4 i+1)=1
$$

as these two number are consecutive odd integers.

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{2}\right)\right)=\operatorname{gcd}(4 i+3,4 i+2)=1 \\
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{3}\right)\right)=\operatorname{gcd}(4 i+3,4 i+4)=1
\end{aligned}
$$

as these two number are consecutive integers. Thus f is a prime labeling. Hence $W_{n} * S_{3}$ is a prime graph.

Illustration 2.3.

Figure 1. Prime labeling of $W_{4} * S_{3}$

Theorem 2.4. The graph $W_{n} * S_{5}$ admits prime labeling where W_{n} is the wheel graph if $n \not \equiv 1(\bmod 11)$.
Proof. Let c_{0} be the centre of the wheel graph W_{n}. And let $c_{1}, c_{2}, \ldots c_{n}$ be the rim vertices of the wheel graph W_{n} and let p_{i}^{j} be the pendant vertices adjacent to c_{i}, for $0 \leq i \leq n$ and $1 \leq j \leq 5$ respectively. The graph $W_{n} * S_{5}$ has $6 n+6$ vertices and $7 n+5$ edges. Define a labeling $f: V \rightarrow\{1,2,3, \ldots, 6 n+6\}$ as follows. Let

$$
f\left(c_{0}\right)=1, \quad f\left(c_{i}\right)=6 i+5, \text { for } 1 \leq i \leq n,
$$

$$
f\left(p_{0}^{j}\right)=j+1, \quad \text { for } 1 \leq j \leq 5
$$

For $1 \leq i \leq n$

$$
f\left(p_{i}^{j}\right)=6 i+j, \quad \text { for } 1 \leq j \leq 5, \quad f\left(p_{i}^{5}\right)=6 i+6
$$

For $1 \leq i \leq n$ and $1 \leq j \leq 5$

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(c_{0}\right), f\left(p_{0}^{j}\right)\right) & =g c d(1, j+1)=1 \\
\operatorname{gcd}\left(f\left(c_{0}\right), f\left(c_{i}\right)\right) & =g c d(1,6 i+5)=1 . \\
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(c_{i+1}\right)\right) & =\operatorname{gcd}(6 i+5,6(i+1)+5) \\
& =\operatorname{gcd}(6 i+5,(6 i+5)+6)=1 .
\end{aligned}
$$

as these two numbers are odd and their difference is 6 and both are not multiples of $3, \operatorname{gcd}\left(f\left(c_{1}\right), f\left(c_{n}\right)\right)=\operatorname{gcd}(11,6 n+5)=$ 1 , since $n \not \equiv 1(\bmod 11)$.

For $1 \leq i \leq n$

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{1}\right)\right)=\operatorname{gcd}(6 i+5,6 i+1)=1
$$

as these two number are odd and their difference is 4

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{2}\right)\right)=\operatorname{gcd}(6 i+5,6 i+2)=1
$$

as among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 3

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{3}\right)\right)=\operatorname{gcd}(6 i+5,6 i+3)=1
$$

as these two numbers are consecutive odd integers.

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{4}\right)\right)=\operatorname{gcd}(6 i+5,6 i+4)=1 \\
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{5}\right)\right)=\operatorname{gcd}(6 i+5,6 i+6)=1, \quad \text { for } \quad 1 \leq i \leq n,
\end{aligned}
$$

as these two numbers are consecutive integers. Thus f is a prime labeling. Hence $W_{n} * S_{5}$ is a prime graph.

Illustration 2.5.

Figure 2. Prime labeling of $W_{4} * S_{5}$

Theorem 2.6. The graph $W_{n} * S_{7}$ admits prime labeling where W_{n} is the wheel graph if $n \not \equiv 11(\bmod 39), n \not \equiv 27(\bmod 39)$ and $n \not \equiv 40(\bmod 39)$.

Proof. Let c_{0} be the centre of the wheel graph W_{n}. And let $c_{1}, c_{2}, \ldots, c_{n}$ be the rim vertices of the wheel graph W_{n} and let p_{i}^{j} be the pendant vertices adjacent to c_{i}, for $0 \leq i \leq n$ and $1 \leq j \leq 7$ respectively. The graph $W_{n} * S_{7}$ has $8 n+8$ vertices and $9 n+7$ edges. Define a labeling $f: V \rightarrow\{1,2,3, \ldots, 8 n+8\}$ as follows. Let $f\left(c_{0}\right)=1, f\left(p_{0}^{j}\right)=j+1$, for $1 \leq j \leq 7$. For $1 \leq i \leq n$

$$
\begin{array}{rlrl}
f\left(c_{i}\right) & =8 i+5, & & \text { for } i \not \equiv 2(\bmod 3) \\
f\left(c_{i}\right) & =8 i+3, & & \text { for } i \equiv 2(\bmod 3) \text { and } i+1 \not \equiv 0(\bmod 15) \\
f\left(c_{i}\right) & =8 i+1, & & \text { for } i+1 \equiv 0(\bmod 15) \\
f\left(p_{i}^{1}\right) & =8 i+1, & & \text { for } i+1 \not \equiv 0(\bmod 15) \\
f\left(p_{i}^{1}\right) & =8 i+3, & & \text { for } i+1 \equiv 0(\bmod 15) \\
f\left(p_{i}^{2}\right) & =8 i+2, & & \\
f\left(p_{i}^{3}\right) & =8 i+3, & & \text { for } i \not \equiv 2(\bmod 3) \\
f\left(p_{i}^{3}\right) & =8 i+5, & & \\
f\left(p_{i}^{4}\right) & =8 i+4, & & \text { for } 5 \leq j \leq 7 \\
f\left(p_{i}^{j}\right) & =8 i+(j+1), & \bmod 3) \\
\operatorname{gcd}\left(f\left(c_{0}\right), f\left(p_{0}^{j}\right)\right) & =g c d(1, j+1)=1, & & \text { for } 1 \leq j \leq 7
\end{array}
$$

For $1 \leq i \leq n$ and $i \not \equiv 2(\bmod 3)$

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(c_{0}\right), f\left(c_{i}\right)\right) & =\operatorname{gcd}(1,8 i+5)=1, \\
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(c_{i+1}\right)\right) & =\operatorname{gcd}(8 i+5,8(i+1)+5) \\
& =\operatorname{gcd}(8 i+5,(8 i+5)+8)=1 .
\end{aligned}
$$

as these two numbers are odd and their difference is 8 and both are not multiples of 3 or 5 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{2}\right)\right)=\operatorname{gcd}(8 i+5,8 i+2)=1
$$

among these two numbers one is odd and other is even and their difference is 3 and both are not multiples of 2 or 3 or 4 or 5 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{3}\right)\right)=\operatorname{gcd}(8 i+5,8 i+3)=1,
$$

as these two numbers are consecutive odd integers.

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{4}\right)\right)=\operatorname{gcd}(8 i+5,8 i+4)=1, \\
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{5}\right)\right)=\operatorname{gcd}(8 i+5,8 i+6)=1,
\end{aligned}
$$

as these two numbers are consecutive integers.

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{6}\right)\right)=\operatorname{gcd}(8 i+5,8 i+7)=1,
$$

as these two numbers are consecutive odd integers.

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{7}\right)\right)=\operatorname{gcd}(8 i+5,8 i+8)=1
$$

among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 2 or 3 or 5 . For $1 \leq i \leq n, i \equiv 2(\bmod 3)$ and $i+1 \not \equiv 0(\bmod 15)$

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(c_{0}\right), f\left(c_{i}\right)\right) & =\operatorname{gcd}(1,8 i+3)=1 \\
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(c_{i+1}\right)\right) & =\operatorname{gcd}(8 i+3,8(i+1)+5) \\
& =\operatorname{gcd}(8 i+3,(8 i+3)+10)=1
\end{aligned}
$$

as these two numbers are odd and their difference is 10 and both are not multiples of 3 or 5 .

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(c_{i-1}\right), f\left(c_{i}\right)\right) & =\operatorname{gcd}(8(i-1)+5,8 i+3) \\
& =\operatorname{gcd}(8 i+3)-6,8 i+3)=1
\end{aligned}
$$

as these two numbers are odd and their difference is 6 and both are not multiples of 3 or 5 .

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{2}\right)\right)=\operatorname{gcd}(8 i+3,8 i+2)=1 \\
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{4}\right)\right)=\operatorname{gcd}(8 i+3,8 i+4)=1
\end{aligned}
$$

these two numbers are consecutive integers.

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{5}\right)\right)=\operatorname{gcd}(8 i+3,(8 i+3)+3)=1
$$

among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 2 or 3 or 5 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{6}\right)\right)=\operatorname{gcd}(8 i+3,8 i+7)=1
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 or 5 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{7}\right)\right)=\operatorname{gcd}(8 i+3,8 i+8)=1
$$

among these two numbers one is odd and other is even and their difference is 5 and they are not multiples of 3 or 5 .

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{1}\right)\right)=\operatorname{gcd}(8 i+3,8 i+1)=1 \\
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{3}\right)\right)=\operatorname{gcd}(8 i+3,8 i+5)=1
\end{aligned}
$$

as these two numbers are consecutive odd integers.
For $1 \leq i \leq n$ and $i+1 \equiv 0(\bmod 15)$

$$
\begin{aligned}
g c d\left(f\left(c_{0}\right), f\left(c_{i}\right)\right) & =\operatorname{gcd}(1,8 i+1)=1 \\
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(c_{i+1}\right)\right) & =\operatorname{gcd}(8 i+1,8(i+1)+5)
\end{aligned}
$$

$$
=\operatorname{gcd}(8 i+1,(8 i+1)+12)=1
$$

as these two numbers are odd and their difference is 12 and both are not multiples of 3 or 5 .

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(c_{i-1}\right), f\left(c_{i}\right)\right) & =\operatorname{gcd}(8(i-1)+5,8 i+1) \\
& =\operatorname{gcd}(8 i+1)-4,8 i+1)=1
\end{aligned}
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 or 5 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{1}\right)\right)=\operatorname{gcd}(8 i+1,8 i+3)=1,
$$

as these two numbers are consecutive odd integers

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{2}\right)\right)=\operatorname{gcd}(8 i+1,8 i+2)=1,
$$

as these two numbers are consecutive integers

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{4}\right)\right)=\operatorname{gcd}(8 i+1,8 i+4)=1,
$$

among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 3 or 5 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{5}\right)\right)=\operatorname{gcd}(8 i+1,8 i+6)=1
$$

among these two numbers one is odd and other is even and their difference is 5 and they are not multiples of 3 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{6}\right)\right)=\operatorname{gcd}(8 i+1,8 i+7)=1
$$

as these two numbers are odd and their difference is 6 and both are not multiples of 3 or 5 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{7}\right)\right)=\operatorname{gcd}(8 i+1,8 i+8)=1,
$$

among these two numbers one is odd and other is even and their difference is 7 and they are not multiples of 7 .
For $1 \leq i \leq n, i \neq 2(\bmod 3)$ and $i+1 \not \equiv 0(\bmod 15)$

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{1}\right)\right)=\operatorname{gcd}(8 i+5,8 i+1)=1,
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 or 5 .
For $1 \leq i \leq n, i \equiv 2(\bmod 3)$ and $i+1 \equiv 0(\bmod 15)$

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{3}\right)\right)=\operatorname{gcd}(8 i+1,8 i+5)=1 .
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 or 5 . Thus f is a prime labeling. Hence $W_{n} * S_{7}$ is a prime graph.

Illustration 2.7.

Figure 3. Prime labeling of $W_{4} * S_{7}$

Theorem 2.8. The graph $C_{n}^{*} * S_{2}$ admits prime labeling where C_{n}^{*} is the crown graph.

Proof. Let $c_{1}, c_{2}, \ldots, c_{n}$ be the rim vertices of the crown graph C_{n}^{*} and let $p_{1}, p_{2}, \ldots p_{n}$ be the pendant vertices adjacent to $c_{1}, c_{2}, \ldots c_{n}$ respectively. Let p_{i}^{j} and l_{i}^{j} be the pendant vertices adjacent to c_{i} and p_{i} respectively for $1 \leq i \leq n$ and $1 \leq j \leq 2$. The graph $C_{n}^{*} * S_{2}$ has $6 n$ vertices and edges. Define a labeling $f: V \rightarrow\{1,2,3, \ldots, 6 n\}$ as follows. For $1 \leq i \leq n$,

$$
\begin{aligned}
& f\left(c_{i}\right)=6 i-5, \quad f\left(p_{i}\right)=6 i-1, \quad f\left(p_{i}^{1}\right)=6 i-4 \\
& f\left(p_{i}^{2}\right)=6 i-3, \quad f\left(l_{i}^{1}\right)=6 i-2, \quad f\left(l_{i}^{2}\right)=6 i
\end{aligned}
$$

For $1 \leq i \leq n$,

$$
\begin{aligned}
g c d\left(f\left(c_{i}\right), f\left(c_{i+1}\right)\right) & =\operatorname{gcd}(6 i-5,6(i+1)-5) \\
& =\operatorname{gcd}(6 i-5,(6 i-5)+6)=1
\end{aligned}
$$

as these two numbers are odd and their difference is 6 and both are not multiples of 3

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(c_{1}\right), f\left(c_{n}\right)\right)=\operatorname{gcd}(1,6 n-5)=1 \\
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}\right)\right)=\operatorname{gcd}(6 i-5,6 i-1)=1
\end{aligned}
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{1}\right)\right)=\operatorname{gcd}(6 i-5,6 i-4)=1 \\
& \operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{1}\right)\right)=\operatorname{gcd}(6 i-1,6 i-2)=1 \\
& \operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{2}\right)\right)=\operatorname{gcd}(6 i-1,6 i)=1
\end{aligned}
$$

as these two numbers are consecutive integers

$$
g c d\left(f\left(c_{i}\right), f\left(p_{i}^{2}\right)\right)=\operatorname{gcd}(6 i-5,6 i-3)=1
$$

as these two numbers are consecutive odd integers. Thus f is a prime labeling. Hence $C_{n}^{*} * S_{2}$ is a prime graph.

Theorem 2.9. The graph $C_{n}^{*} * S_{3}$ admits prime labeling where C_{n}^{*} is the crown graph.

Proof. Let $c_{1}, c_{2}, \ldots, c_{n}$ be the rim vertices of the crown graph C_{n}^{*} and let $p_{1}, p_{2}, \ldots, p_{n}$ be the pendant vertices attached at $c_{1}, c_{2}, \ldots, c_{n}$ respectively. Let p_{i}^{j} and l_{i}^{j} be the pendant vertices attached at c_{i} and p_{i} respectively for $1 \leq i \leq n$ and $1 \leq j \leq 3$ The graph $C_{n}^{*} * S_{3}$ has $8 n$ vertices and edges. Define a labeling $f: V \rightarrow\{1,2,3, \ldots, 8 n\}$ as follows.

$$
f\left(c_{1}\right)=1, \quad f\left(p_{1}^{1}\right)=2, \quad f\left(p_{1}^{2}\right)=3, \quad f\left(p_{1}^{3}\right)=4
$$

For $2 \leq i \leq n$,

$$
\begin{aligned}
& f\left(c_{i}\right)=8 i-5, \quad f\left(p_{i}\right)=8 i-1, \quad f\left(p_{i}^{1}\right)=8 i-7, \quad f\left(p_{i}^{2}\right)=8 i-6 \\
& f\left(p_{i}^{3}\right)=8 i-4, \quad f\left(l_{i}^{1}\right)=8 i-3, \quad f\left(l_{i}^{2}\right)=8 i-2, \quad f\left(l_{i}^{3}\right)=8 i
\end{aligned}
$$

For $1 \leq i \leq n$,

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(c_{i+1}\right)\right) & =\operatorname{gcd}(8 i-5,8(i+1)-5) \\
& =g c d(8 i-5,(8 i-5)+8)=1
\end{aligned}
$$

as these two numbers are odd and their difference is 8 and both are not multiples of 3 or 5 .

$$
\begin{aligned}
& g c d\left(f\left(c_{1}\right), f\left(c_{n}\right)\right)=g c d(1,8 n-5)=1 \\
& g c d\left(f\left(c_{1}\right), f\left(p_{1}\right)\right)=\operatorname{gcd}(1,7)=1 \\
& \operatorname{gcd}\left(f\left(c_{1}\right), f\left(p_{1}^{1}\right)\right)=\operatorname{gcd}(1,2)=1 \\
& \operatorname{gcd}\left(f\left(c_{1}\right), f\left(p_{1}^{2}\right)\right)=\operatorname{gcd}(1,3)=1 \\
& \operatorname{gcd}\left(f\left(c_{1}\right), f\left(p_{1}^{3}\right)\right)=\operatorname{gcd}(1,4)=1
\end{aligned}
$$

For $1 \leq i \leq n$,

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{1}\right)\right)=\operatorname{gcd}(8 i-5,8 i-7)=1
$$

as these two numbers are consecutive odd integers.

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{2}\right)\right)=\operatorname{gcd}(8 i-5,8 i-6)=1 \\
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{3}\right)\right)=\operatorname{gcd}(8 i-5,8 i-4)=1 \\
& \operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{2}\right)\right)=\operatorname{gcd}(8 i-1,8 i-2)=1 \\
& \operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{3}\right)\right)=\operatorname{gcd}(8 i-1,8 i)=1
\end{aligned}
$$

as these two numbers are consecutive integers

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{1}\right)\right)=\operatorname{gcd}(8 i-1,8 i-3)=1
$$

as these two numbers are consecutive odd integers

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}\right)\right)=\operatorname{gcd}(8 i-5,8 i-1)=1
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 or 5 . Thus f is a prime labeling. Hence $C_{n}^{*} * S_{3}$ is a prime graph.

Theorem 2.10. The graph $C_{n}^{*} * S_{5}$ admits prime labeling where C_{n}^{*} is the crown graph.
Proof. Let $c_{1}, c_{2}, \ldots c_{n}$ be the rim vertices of the crown graph C_{n}^{*} and let $p_{1}, p_{2}, \ldots, p_{n}$ be the pendant vertices attached at $c_{1}, c_{2}, \ldots, c_{n}$ respectively. Let p_{i}^{j} and l_{i}^{j} be the pendant vertices attached at c_{i} and p_{i} respectively for $1 \leq i \leq n$ and $1 \leq j \leq 5$. The graph $C_{n}^{*} * S_{5}$ has $12 n$ vertices and edges. Define a labeling $f: V \rightarrow\{1,2,3, \ldots, 12 n\}$ as follows.

$$
f\left(c_{1}\right)=1, \quad f\left(p_{1}^{j}\right)=j+1, \quad \text { for } \quad 1 \leq j \leq 5
$$

For $2 \leq i \leq n$,

$$
\begin{array}{rlrl}
f\left(c_{i}\right) & =12 i-7, \quad f\left(p_{i}\right)=12 i-5, & \text { for } i \not \equiv 0(\bmod 5) \\
f\left(p_{i}^{j}\right) & =12 i-(12-j), & & \text { for } 1 \leq j \leq 4 \\
f\left(l_{i}^{j}\right) & =12 i-(5-j), & & \text { for } 1 \leq j \leq 4 \\
f\left(l_{i}^{5}\right) & =12 i, & & \text { for } i \not \equiv 0(\bmod 5) \\
f\left(l_{i}^{4}\right) & =12 i-5, & & \text { for } i \equiv 0(\bmod 5) \\
f\left(p_{i}\right) & =12 i-1, & & \text { for } i \equiv 0(\bmod 5) \\
\operatorname{gcd}\left(f\left(c_{1}\right), f\left(p_{1}\right)\right) & =\operatorname{gcd}(1,7)=1, & & \\
\operatorname{gcd}\left(f\left(c_{1}\right), f\left(p_{1}^{j}\right)\right) & =\operatorname{gcd}(1, j+1)=1, & & \text { for } 1 \leq j \leq 5 . \\
\operatorname{gcd}\left(f\left(c_{1}\right), f\left(c_{n}\right)\right) & =\operatorname{gcd}(1,12 n-7)=1, & &
\end{array}
$$

For $2 \leq i \leq n$,

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(c_{i+1}\right)\right) & =\operatorname{gcd}(12 i-7,12(i+1)-7) \\
& =\operatorname{gcd}(12 i-7,(12 i-7)+12)=1,
\end{aligned}
$$

as these two numbers are odd and their difference is 12 and both are not multiples of 3 .

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}\right)\right) & =\operatorname{gcd}(12 i-7,12 i-5)=1, \quad \text { for } i \not \equiv 0(\bmod 5) \\
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{1}\right)\right) & =\operatorname{gcd}(12 i-7,12 i-11)=1
\end{aligned}
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 4 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{2}\right)\right)=\operatorname{gcd}(12 i-7,12 i-10)=1
$$

as among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 3 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{3}\right)\right)=\operatorname{gcd}(12 i-7,12 i-9)=1
$$

as these two numbers are consecutive odd integers.

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{4}\right)\right)=\operatorname{gcd}(12 i-7,12 i-8)=1 \\
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{5}\right)\right)=\operatorname{gcd}(12 i-7,12 i-6)=1
\end{aligned}
$$

as these two numbers are consecutive integers.
For $1 \leq i \leq n$ and $i \not \equiv 0(\bmod 5)$,

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{1}\right)\right)=\operatorname{gcd}(12 i-5,12 i-4)=1, \quad \text { for } \quad i \not \equiv 0(\bmod 5)
$$

as these two numbers are consecutive integers

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{2}\right)\right)=\operatorname{gcd}(12 i-5,12 i-3)=1
$$

as these two numbers are consecutive odd integers.

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{3}\right)\right)=\operatorname{gcd}(12 i-5,12 i-2)=1
$$

among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 3

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{4}\right)\right)=\operatorname{gcd}(12 i-5,12 i-1)=1
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 or 5 .

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{5}\right)\right)=\operatorname{gcd}(12 i-5,12 i)=1
$$

as among these two numbers one is odd and other is even and their difference is 5 and they are not multiples of 5 . For $1 \leq i \leq n$ and $i \equiv 0(\bmod 5)$,

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{4}\right)\right)=\operatorname{gcd}(12 i-1,12 i-5)=1
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 or 5 .

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{5}\right)\right)=\operatorname{gcd}(12 i-1,12 i)=1
$$

as these two numbers are consecutive integers. Thus f is a prime labeling. Hence $C_{n}^{*} * S_{5}$ is a prime graph.

Illustration 2.11 .

Figure 4. Prime labeling of $C_{4}^{*} * S_{5}$

Theorem 2.12. The graph $C_{n}^{*} * S_{7}$ admits prime labeling where C_{n}^{*} is the crown graph.

Proof. Let $c_{1}, c_{2}, \ldots, c_{n}$ be the rim vertices of the crown graph C_{n}^{*} and let $p_{1}, p_{2}, \ldots, p_{n}$ be the pendant vertices attached at $c_{1}, c_{2}, \ldots, c_{n}$ respectively. Let p_{i}^{j} and l_{i}^{j} be the pendant vertices attached at c_{i} and p_{i} respectively for $1 \leq i \leq n$ and $1 \leq j \leq 7$. The graph $C_{n}^{*} * S_{7}$ has $16 n$ vertices and edges. Define a labeling $f: V \rightarrow\{1,2,3, \ldots, 16 n\}$ as follows.

$$
f\left(c_{1}\right)=1, \quad f\left(p_{1}^{j}\right)=j+1, \quad \text { for } \quad 1 \leq j \leq 7
$$

For $2 \leq i \leq n$,

$$
\begin{aligned}
& f\left(c_{i}\right)=16 i-11, \text { for } i \not \equiv 2(\bmod 3) \\
& f\left(c_{i}\right)=16 i-9, \quad \text { for } i \equiv 2(\bmod 3), i \not \equiv 8(\bmod 63) \text { and } i \not \equiv 14(\bmod 15) \\
& f\left(c_{i}\right)=16 i-15, \text { for } i \equiv 8(\bmod 63),(\text { or }) i \equiv 14(\bmod 15), i \equiv 2(\bmod 3) \\
& f\left(p_{i}\right)=16 i-3, \quad \text { for } i \not \equiv 0(\bmod 3) \\
& f\left(p_{i}\right)=16 i-5, \quad \text { for } i \equiv 0(\bmod 3), i \not \equiv 0(\bmod 15) \\
& f\left(p_{i}\right)=16 i-7, \quad \text { for } i \equiv 0(\bmod 15), i \equiv 0(\bmod 3)
\end{aligned}
$$

For $2 \leq i \leq n$,

$$
\begin{aligned}
& f\left(p_{i}^{1}\right)=16 i-15, \text { for } i \not \equiv 8(\bmod 63), i \not \equiv 14(\bmod 15) \\
& f\left(p_{i}^{1}\right)=16 i-9, \quad \text { for } i \equiv 8(\bmod 63), i \equiv 14(\bmod 15) \\
& f\left(p_{i}^{2}\right)=16 i-14, \quad f\left(p_{i}^{3}\right)=16 i-13, \quad f\left(p_{i}^{4}\right)=16 i-12, \quad f\left(p_{i}^{5}\right)=16 i-10 \\
& f\left(p_{i}^{6}\right)=16 i-9, \quad \text { for } i \not \equiv 2(\bmod 3) \\
& f\left(p_{i}^{6}\right)=16 i-11, \text { for } i \equiv 2(\bmod 3) \\
& f\left(p_{i}^{7}\right)=16 i-8
\end{aligned}
$$

For $1 \leq i \leq n$,

$$
\begin{aligned}
& f\left(l_{i}^{1}\right)=16 i-7, \text { for } i \not \equiv 0(\bmod 15), f\left(l_{i}^{1}\right)=16 i-5, \text { for } i \equiv 0(\bmod 15) \\
& f\left(l_{i}^{2}\right)=16 i-6, \\
& f\left(l_{i}^{3}\right)=16 i-5, \text { for } i \not \equiv 0(\bmod 3), f\left(l_{i}^{3}\right)=16 i-3, \text { for } i \equiv 0(\bmod 3) \\
& f\left(l_{i}^{4}\right)=16 i-4, \quad f\left(l_{i}^{5}\right)=16 i-2, \quad f\left(l_{i}^{6}\right)=16 i-1, \quad f\left(l_{i}^{7}\right)=16 i .
\end{aligned}
$$

For $2 \leq i \leq n$,

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(c_{i+1}\right)\right) & =\operatorname{gcd}(16 i-11,16(i+1)-11) \\
& =\operatorname{gcd}(16 i-11,(16 i-11)+16)=1, \text { for } i \not \equiv 2(\bmod 3)
\end{aligned}
$$

as these two numbers are odd and their difference is 16 and both are not multiples of $3,5,7,11$ or 13 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(c_{i+1}\right)\right)=\operatorname{gcd}(16 i-9,16(i+1)-11)
$$

$$
=\operatorname{gcd}(16 i-9,(16 i-9)+14)=1,
$$

Since $i \equiv 2(\bmod 3), i \not \equiv 8(\bmod 63), i \not \equiv 14(\bmod 15)$ as these two numbers are odd and their difference is 14 and both are not multiples of $3,5,7,11$ or 13 .

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(c_{i+1}\right)\right) & =\operatorname{gcd}(16 i-15,16(i+1)-11) \\
& =g c d(16 i-15,(16 i-15)+20)=1,
\end{aligned}
$$

Since $i \equiv 8(\bmod 63), i \equiv 14(\bmod 15)$ as these two numbers are odd and their difference is 20 and both are not multiples of $3,5,7,11,13$ or 17 .

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(c_{1}\right), f\left(p_{1}^{j}\right)\right)=\operatorname{gcd}(1, j+1)=1, \quad \text { for } 1 \leq j \leq 7, \\
& \operatorname{gcd}\left(f\left(c_{1}\right), f\left(c_{2}\right)\right)=\operatorname{gcd}(1,23)=1, \\
& \operatorname{gcd}\left(f\left(c_{1}\right), f\left(p_{1}\right)\right)=\operatorname{gcd}(1,13)=1, \\
& \operatorname{gcd}\left(f\left(c_{1}\right), f\left(c_{n}\right)\right)=\operatorname{gcd}(1,16 n-11)=1, \quad \text { for } n \not \equiv 2(\bmod 3) . \\
& \operatorname{gcd}\left(f\left(c_{1}\right), f\left(c_{n}\right)\right)=\operatorname{gcd}(1,16 n-9)=1,
\end{aligned}
$$

Since $n \equiv 2(\bmod 3), n \not \equiv 8(\bmod 63), n \not \equiv 14(\bmod 15)$.

$$
\operatorname{gcd}\left(f\left(c_{1}\right), f\left(c_{n}\right)\right)=\operatorname{gcd}(1,16 n-15)=1,
$$

Since $n \equiv 8(\bmod 63), n \equiv 14(\bmod 15)$.
For $2 \leq i \leq n$,

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}\right)\right)=\operatorname{gcd}(16 i-11,16 i-3)=1,
$$

Since $i \not \equiv 2(\bmod 3), i \not \equiv 0(\bmod 3)$ as these two numbers are odd and their difference is 8 and both are not multiples of 3 or 5 or 7 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}\right)\right)=\operatorname{gcd}(16 i-9,16 i-3)=1,
$$

Since $i \equiv 2(\bmod 3), i \not \equiv 8(\bmod 63), i \not \equiv 14(\bmod 15)$.

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}\right)\right)=\operatorname{gcd}(16 i-11,16 i-5)=1,
$$

Since $i \equiv 0(\bmod 3), i \not \equiv 0(\bmod 15)$ as these two numbers are odd and their difference is 6 and both are not multiples of 3 or 5 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}\right)\right)=\operatorname{gcd}(16 i-11,16 i-7)=1, \quad \text { for } i \equiv 0(\bmod 15)
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 .

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}\right)\right) & =\operatorname{gcd}(16 i-15,16 i-3), \\
& =1, \quad \text { for } i \equiv 8(\bmod 63), \quad i \equiv 14(\bmod 15)
\end{aligned}
$$

as these two numbers are odd and their difference is 12 and both are not multiples of 3 or 5 or 7 or 11 .

For $2 \leq i \leq n$ and $i \not \equiv 2(\bmod 3)$,

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{1}\right)\right)=\operatorname{gcd}(16 i-11,16 i-15)=1
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{2}\right)\right)=\operatorname{gcd}(16 i-11,16 i-14)=1
$$

among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 3 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{3}\right)\right)=\operatorname{gcd}(16 i-11,16 i-13)=1
$$

as these two numbers are consecutive odd integers.

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{4}\right)\right)=\operatorname{gcd}(16 i-11,16 i-12)=1 \\
& \operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{5}\right)\right)=\operatorname{gcd}(16 i-11,16 i-10)=1
\end{aligned}
$$

as these two numbers are consecutive integers

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{6}\right)\right)=\operatorname{gcd}(16 i-11,16 i-9)=1
$$

as these two numbers are consecutive odd integers.

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{7}\right)\right)=\operatorname{gcd}(16 i-11,16 i-8)=1
$$

among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 3 . For $1 \leq i \leq n$ and $i \not \equiv 0(\bmod 3)$,

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{1}\right)\right)=\operatorname{gcd}(16 i-3,16 i-7)=1
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 .

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{2}\right)\right)=\operatorname{gcd}(16 i-3,16 i-6)=1
$$

among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 3

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{3}\right)\right)=\operatorname{gcd}(16 i-3,16 i-5)=1
$$

as these two numbers are consecutive odd integers

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{4}\right)\right)=\operatorname{gcd}(16 i-3,16 i-4)=1 \\
& \operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{5}\right)\right)=\operatorname{gcd}(16 i-3,16 i-2)=1
\end{aligned}
$$

as these two numbers are consecutive integers

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{6}\right)\right)=\operatorname{gcd}(16 i-3,16 i-1)=1
$$

as these two numbers are consecutive odd integers

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{7}\right)\right)=\operatorname{gcd}(16 i-3,16 i)=1
$$

among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 3 .
For $2 \leq i \leq n$ and $i \equiv 2(\bmod 3), i \not \equiv 8(\bmod 63), i \not \equiv 14(\bmod 15)$,

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{1}\right)\right)=\operatorname{gcd}(16 i-9,16 i-15)=1
$$

as these two numbers are odd and their difference is 6 and both are not multiples of 3 or 5 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{2}\right)\right)=\operatorname{gcd}(16 i-9,16 i-14)=1
$$

among these two numbers one is odd and other is even and their difference is 5 and they are not multiples of 5 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{3}\right)\right)=\operatorname{gcd}(16 i-9,16 i-13)=1
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{4}\right)\right)=\operatorname{gcd}(16 i-9,16 i-12)=1
$$

among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 3 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{5}\right)\right)=\operatorname{gcd}(16 i-9,16 i-10)=1
$$

as these two numbers are consecutive integers.

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{6}\right)\right)=\operatorname{gcd}(16 i-9,16 i-11)=1
$$

as these two numbers are consecutive odd integers.

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{7}\right)\right)=\operatorname{gcd}(16 i-9,16 i-8)=1
$$

as these two numbers are consecutive integers.
For $2 \leq i \leq n$ and $i \equiv 8(\bmod 63), i \equiv 14(\bmod 15)$,

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{1}\right)\right)=\operatorname{gcd}(16 i-15,16 i-9)=1
$$

as these two numbers are odd and their difference is 6 and both are not multiples of 3or 5 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{2}\right)\right)=\operatorname{gcd}(16 i-15,16 i-14)=1
$$

as these two numbers are consecutive integers

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{3}\right)\right)=\operatorname{gcd}(16 i-15,16 i-13)=1
$$

as these two numbers are consecutive odd integers.

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{4}\right)\right)=\operatorname{gcd}(16 i-15,16 i-12)=1
$$

among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 3 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{5}\right)\right)=\operatorname{gcd}(16 i-15,16 i-10)=1
$$

among these two numbers one is odd and other is even and their difference is 5 and they are not multiples of 5 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{6}\right)\right)=\operatorname{gcd}(16 i-15,16 i-11)=1, \quad \text { for } i \equiv 2(\bmod 3)
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 .

$$
\operatorname{gcd}\left(f\left(c_{i}\right), f\left(p_{i}^{7}\right)\right)=\operatorname{gcd}(16 i-15,16 i-8)=1
$$

among these two numbers one is odd and other is even and their difference is 7 and they are not multiples of 7 . For $1 \leq i \leq n$ and $i \equiv 0(\bmod 3), i \not \equiv 0(\bmod 15)$,

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{1}\right)\right)=\operatorname{gcd}(16 i-5,16 i-7)=1
$$

as these two numbers are consecutive odd integers

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{2}\right)\right)=\operatorname{gcd}(16 i-5,16 i-6)=1
$$

as these two numbers are consecutive integers.

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{3}\right)\right)=\operatorname{gcd}(16 i-5,16 i-3)=1
$$

as these two numbers are consecutive odd integers

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{4}\right)\right)=\operatorname{gcd}(16 i-5,16 i-4)=1
$$

as these two numbers are consecutive integers.

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{5}\right)\right)=\operatorname{gcd}(16 i-5,16 i-2)=1
$$

among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of 3 .

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{6}\right)\right)=\operatorname{gcd}(16 i-5,16 i-1)=1
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 .

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{7}\right)\right)=\operatorname{gcd}(16 i-5,16 i)=1
$$

among these two numbers one is odd and other is even and their difference is 6 and both are not multiples of 6 .
For $1 \leq i \leq n$ and $i \equiv 0(\bmod 15)$,

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{1}\right)\right)=\operatorname{gcd}(16 i-7,16 i-5)=1
$$

as these two numbers are consecutive odd integers

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{2}\right)\right)=\operatorname{gcd}(16 i-7,16 i-6)=1
$$

as these two numbers are consecutive integers.

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{3}\right)\right)=\operatorname{gcd}(16 i-7,16 i-3)=1
$$

as these two numbers are odd and their difference is 4 and both are not multiples of 3 .

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{4}\right)\right)=\operatorname{gcd}(16 i-7,16 i-4)=1
$$

among these two numbers one is odd and other is even and their difference is 3 and both are not multiples of 3

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{5}\right)\right)=\operatorname{gcd}(16 i-7,16 i-2)=1
$$

among these two numbers one is odd and other is even and their difference is 5 and they are not multiples of 5

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{6}\right)\right)=\operatorname{gcd}(16 i-7,16 i-1)=1
$$

as these two numbers are odd and their difference is 6 and both are not multiples of 3 or 5 .

$$
\operatorname{gcd}\left(f\left(p_{i}\right), f\left(l_{i}^{7}\right)\right)=\operatorname{gcd}(16 i-7,16 i)=1
$$

among these two numbers one is odd and other is even and their difference is 7 and they are not multiples of 7 . Thus f is a prime labeling. Hence $C_{n}^{*} * S_{7}$ is a prime graph.

Illustration 2.13.

Figure 5. Prime labeling of $C_{4}^{*} * S_{7}$

3. Conclusion

Labeled graph is the topic of current due to its diversified application. We investigate eight new results on prime labeling of graphs. It is an effort to relate the prime labeling and some graph operations. This approach is novel as it provides prime labeling for the larger graph resulted due to certain graph operations on a given graph.. Analogous work can be carried out for other families and in the context of different types of graph labeling techniques.

Acknowledgement

The authors are thankful to the Principal, Government Arts College, Chidambaram, Tamil Nadu, India for providing facility and support for carryout the work.

References

[1] J. A. Bondy and U. S. R. Murthy, Graph Theory and its Application, North-Holland, Newyork, (1976).
[2] J. Gallian, A dynamic survey of graph labeling, Elactron. J. Comb., 17(2014).
[3] M. Tavakoli, F. Rahbarnia and A. R. Ashrafi, Studying The Corona Product Of Graphs Under Some Graph Invariants, Transactions on Combinatorics, 3(3)(2014), 43-49.
[4] Rose-Hulman, Prime Vertex Labelings Of Unicyclic Graphs, Undergraduate Mathematical Journal, 16(1)(2015).
[5] S. K. Vaidya and K. K. Kanani, Prime Labeling for Some Cycle Related Graphs, Journal of Mathematics Research, $2(2)(2010)$.
[6] S. K. Vaidya and U. M. Prajapati, Some Results On Prime and k-Prime Labeling, Journal of Mathematics Research, 3(1)(2011).
[7] S. K. Vaidya and U. M. Prajapati, Prime Labeling in the context of duplication of graph elements, International Journal of Mathematics and Soft Computing, 3(1)(2013), 13-20.
[8] A. Tout, A. N. Dabboucy and K. Howalla, Prime Labeling of Graphs, Nat. Acad. Sci. Letters, 11(1982), 365-368.

[^0]: * E-mail: naveenj.maths@ gmail.com

