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Abstract: In this paper we further study isolate domination in graphs. In particular we study the effect of removing an edge from

the graph on the isolate domination number of the graph. We prove a necessary and sufficient condition under which the
isolate domination number increases when an edge is removed from the graph. Further we also prove a necessary and

sufficient condition under which the isoinc number increases when an edge is removed from the graph. We also consider

the graphs for which isolate dominating number is equal to 1 or 2.
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1. Introduction

The concept of isolate dominating set was studied in [4]. We defined the concept of isolate inclusive set in [2]. We have

considered Isoinc sets from different viewpoints. In particular we have considered the operation of removing a vertex from

the graph and its effect on Isoinc number of the graph. In this paper, we consider the operation of removing an edge from the

graph and observe the effect on Isoinc number of the graph. First we consider the operation of removing an edge from the

graph and prove necessary and sufficient conditions under which the Isoinc number increases when this operation is perform.

Similarly, we consider the operation of removing an edge from the graph and prove necessary and sufficient conditions under

which the isolate domination number increases when this operation is perform. we also consider those graphs for which the

isolate domination number is 1 or 2.

2. Preliminaries and Notations

If G is a graph then V (G) denotes the vertex set of the graph G and E(G) denotes the edge set of the graph G. If e is an

edge of the graph G then G − e is the subgraph of G obtain by removing from the graph G. We will consider only simple

undirected graphs with finite vertex set.

3. Definitions and Examples

Definition 3.1 (Isolate Inclusive set [2]). Let G be a graph and S be a nonempty subset of V (G) then the S is said to be an

isolate inclusive set if the 〈S〉 has an isolated vertex. An isolate inclusive set will be also called isoinc set. An isoinc with
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maximum cardinality is called a maximum isoinc set and its cardinality is denoted as βis (G).

Definition 3.2 (Isolate Dominating Set [2]). Let G be a graph and S ⊂ V (G) then S is said to be an isolate dominating

set if

(1). S is a dominating set and

(2). 〈S〉 contains an isolated vertex.

An isolate dominating set with minimum cardinality is called a minimum isolate dominating set.

The cardinality of a minimum isolate dominating set is called the isolate domination number of the graph G and it is denoted

as γ0(G). Obviously for any graph G, γ (G) ≤ γ0(G), where γ(G) denotes the domination number of the graph G.

4. Main Result

Now we consider the operation of removing an edge of a graph and its effect on the Isoinc number of the graph. We begin

with the following proposition.

Proposition 4.1. Let G be a graph and e be an edge of G then βis (G− e) ≥ βis (G).

Proof. Let S be a maximum isoinc sets of G. Then S is also isoinc set of G − e. Therefore βis (G− e) ≥ |S| = βis (G).

Thus βis (G− e) ≥ βis (G).

Example 4.2. Consider the path graph P5 with 5 vertices {1, 2, 3, 4, 5}.

Here βis (G) = 4. Now consider the subgraph G− e where e = {45}.

Here βis (G− e) = 4. Therefore for this graph βis (G− e) = βis (G).

Example 4.3. Consider the cycle graph C5 with 5 vertices {1, 2, 3, 4, 5}

Here βis (G) = 3. Now consider the subgraph G− e where e = {15}.

Here βis (G− e) = 4. Therefore for this graph βis (G− e) > βis (G).
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Now we state and prove a necessary and sufficient condition under which Iosinc number of a graph increases when an edge

is remove from the graph.

Theorem 4.4. Let G be a graph and e = {uv} be an edge of G then βis (G− e) > βis (G) if and only if there is a subset S

of V (G) such that S has no isolated vertices, |S| > βis (G), u, v ∈ S and atleast one of u and v is a pendent vertex in the

〈S〉.

Proof. First suppose that βis (G− e) > βis (G). Let S be any maximum Isoinc set of G− e.

Claim: u ∈ S and v ∈ S. If u /∈ S or v /∈ S then S is a Isoinc set of G then βis (G) ≥ |S| = βis (G− e). Which contradict our

assumption that βis (G− e) > βis (G). Thus u ∈ S and v ∈ S. Now consider the set S in the graph G. Since |S| > βis (G)

is cannot be Isoinc set of G but S is an Isoinc set in G − e. Therefore u or v must be an isolated vertex in S when S is

regard as a vertex set of G− e. Therefore u or v must be a pendent vertex in the 〈S〉 when S is regard as a set of vertices

of G. Since S is not Isoinc set of G. The 〈S〉 does not have any isolated vertex.

Conversely, suppose condition is satisfied. Let S be a set of vertices of G such that |S| > βis (G), 〈S〉 has no isolated vertex

and u, v ∈ S and atleast one of u and v is a pendent vertex in the 〈S〉. Suppose u is a pendent vertex in the 〈S〉. Now

consider S is in the graph G − e. Then obviously S is an Isoinc set in G − e. Then βis (G− e) ≥ |S| > βis (G). Thus

βis (G− e) > βis (G).

Theorem 4.5. Let G be a graph and v ∈ V (G) 3 d (v) = d (G) ≥ 1. Then for any edge e whose end vertex is v,

βis (G− e) > βis (G).

Proof. Let M = V (G) −N (v) then M is a maximum Isoinc set of G. Now consider the graph G∗ = G − e. Let N∗ we

denote the set of vertices adjacent to v in G∗. Let M∗ = V (G∗)−N∗ (v) then M∗ is a maximum Isoinc set of G∗. Obviously

|M∗| > |M | and Therefore βis (G∗) > βis (G).

Remark 4.6.

(1). Let G be a graph with an isolated vertex then βis (G) = |V (G)|. If we remove any edge from this graph there will be

isolated vertex in the new graph and therefore its Iosinc number will also be equal to |V (G)|. Thus removing any edge

such a graph does not increase the Isoinc number of the graph.

(2). Suppose G is a graph without isolated vertices. Let v be a vertex of G 3 d (v) = δ (G). As proved above removal of any

edge whose one end vertex is v increases the Isoinc number of the graph. Thus in a graph with δ (G) ≥ 1 there is always

an edge e 3 βis (G− e) > βis (G).

Thus we have following theorem.

Theorem 4.7. Let G be a regular graph and e be any edge of G then βis (G− e) > βis (G).

Proof. Suppose G is a k regular graph, k ≥ 1. Let e = {uv} is any edge of G. Now d (v) = k = δ (G). Therefore by the

above remark βis (G− e) > βis (G).

Now we consider the operation of removing an edge of a graph on the isolate domination number of a graph.

Remark 4.8. Let G be a graph and e = {uv} be any edge of G then any of the following three possibilities exists

(1). γ0 (G− e) = γ0 (G).

(2). γ0 (G− e) < γ0 (G).
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(3). γ0 (G− e) > γ0 (G).

Example 4.9. Let G be a graph with 4 vertices {1, 2, 3, 4}.

Here γ0 (G) = 1. Now consider the subgraph G− e where e = {12}.

Here γ0 (G− e) = 4. Therefore for this graph γ0 (G− e) > γ0 (G). In this graph consider the edge e = {34} then γ0 (G− e) =

1 = γ0 (G).

Example 4.10. Let G be a graph with 8 vertices {1, 2, 3, 4, 5, 6, 7, 8}.

Here γ0 (G) = 4. Now consider the subgraph G− e where e = {45}.

Here γ0 (G− e) = 2. Therefore for this graph γ0 (G− e) < γ0 (G).

Now we state and prove a necessary and sufficient condition under which the isolate domination number of a graph increases

when an edge is remove from the graph.

Theorem 4.11. Let G be a graph with γ0 (G) ≥ 2 and e = {uv} be an edge of G then the following statement are equivalent.

(1). γ0 (G− e) > γ0 (G).
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(2). There is a minimum isolate dominating set S of G− e 3 u, v ∈ S, v is an isolate in S, Pextn [v, S] is empty and as has

an isolate different from v.

(3). For every minimum isolate dominating set T of G, u ∈ T, v /∈ T and v ∈ Pextn [u, T ].

Proof. (1)⇒ (3) Let T be any minimum isolate dominating set of G. If u, v ∈ T or u, v /∈ T then obviously T is an isolate

dominating set in G − e. Therefore γ0 (G− e) ≤ |T | = γ0 (G). Which is a contradiction. Therefore u ∈ T and v /∈ T or

v ∈ T and u /∈ T . We may assume that u ∈ T and v /∈ T . Now |T | = γ0 (G) < γ0 (G− e). Therefore T cannot be an isolate

dominating set in G − e. Now e has isolated vertices then regarded as a set of vertices of G − e. Therefore T cannot be

dominating set of G − e. Therefore v is not adjacent to any vertex of T in G − v but v is adjacent to some vertex of T in

G. Therefore v ∈ Pn [u, T ]. Thus (1)⇒ (3) is proved.

(3) ⇒ (2) Let T be any minimum isolate dominating set of G then u ∈ T , v /∈ T and v ∈ Pn [u, T ] in G. Obviously T

cannot be an isolate dominating set in G− e. Let S = T ∪ {v}. Then v ∈ S and u ∈ S and v is an isolate in S. Obviously,

S is an isolate dominating set of G − e. If there is no vertex w outside of S which is adjacent to v then Pextn [v, S] = ∅.

Suppose there is a vertex w 3 w not in S, w is adjacent to v in G− e. Now w /∈ T and T is a dominating set of G. Therefore

w is adjacent to some vertex z of T . Thus w is adjacent to two distinct vertices of S in G− e. Thus Pextn [v, S] = ∅. Note

that an isolate of T in G is also an isolate of S in G− e and it is different from v. Thus (3)⇒ (2) is proved.

(1)⇒ (2) Let S be minimum isolate dominating set of G−e such that u ∈ S and v ∈ S and v is an isolate of S, Pextn [v, S] = ∅

and suppose S has an isolate different from v. Let T = S − {v}. Let z be any vertex of G which is not in T . If z = v then

z is adjacent to u in G. If z 6= v then z /∈ S. Suppose z is adjacent to v in G − e then z must be adjacent to some other

vertex v′ of S because z /∈ P extn [v, S]. Then v′ ∈ T and z is adjacent to v′ in G. Therefore T is a dominating set in G.

Note that T has an isolate because S has an isolate different from v. Thus T is an isolate dominating set of G. Therefore

γ0 (G) ≤ |T | < |S| = γ0 (G− e). Thus γ0 (G− e) > γ0 (G).

Theorem 4.12. Let G be a graph with γ0 (G) = 1. Let e = {uv} be any edge of G. Then γ0 (G− e) > γ0 (G) if and only if

the following condition is satisfy

C: If {z} is an isolate dominating set of G then z ∈ {u, v}.

Proof. Suppose condition is satisfy. If γ0 (G− e) = γ0 (G) then γ0 (G− e) = 1. Suppose {z} is a minimum isolate

dominating set of G− e. Then z 6= u because v is not adjacent to u in G− e. Similarly, if z 6= v. This contradicts condition

C. Therefore γ0 (G− e) > γ0 (G) (γ0 (G− e) < γ0 (G) is not possible because γ0 (G) = 1).

Conversely, suppose γ0 (G− e) > γ0 (G). Let z be a vertex of G 3 z /∈ {u, v}. If {z} is a minimum isolate dominating set of

G then {z} is also an isolate dominating set of G−e. This would implize that γ0 (G− e) = γ0 (G). Which is a contradiction.

Therefore z ∈ {u, v}.

Theorem 4.13. Let G be a graph with γ0 (G) = 1 and e = {uv} be any edge of G. Suppose γ0 (G− e) > γ0 (G) then

(1). {u, v} is a minimum isolate dominating set of G− e.

(2). γ0 (G− e) = 2.

Proof. By the above Theorem 4.6. Suppose {u} is a minimum isolate dominating set of G. Now {u} dominates all the

vertices of G− e except v. Let S = {u, v} then obviously S is a minimum isolate dominating set of G− e and |S| = 2. Thus

(1) and (2) are proved.
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Corollary 4.14. Let G be a graph with γ0 (G) = 1 and e = uv be any edge of G then γ0 (G− e) = γ0 (G) if and only if

there is a vertex z 3 z /∈ {u, v} and {z} is a minimum isolate dominating set of G.

Remark 4.15. If G is a graph with γ0 (G) = 2 then every minimum isolate dominating set is either an independent

dominating set or a total dominating set and also γ (G) = γ0 (G) = γt (G). Also note that if γ (G) = 2 because γ0 (G) = 2.

Also note that if γ0 (G) = 2 then every minimum dominating set is either an independent dominating set or a total dominating

set.

Now we state and prove a necessary and sufficient condition under which isolate domination number of a graph G (with

γ0 (G) = 2) increases when an edge is remove from the graph.

Theorem 4.16. Let G be a graph with γ0 (G) = 2 and e = uv be an edge of G. Then γ0 (G− e) > γ0 (G) if and only if for

every minimum dominating set S of G. The following condition holds:

(1). If S is an independent dominating set then u ∈ S and v /∈ S and v ∈ Pextn [u, S] or v ∈ S and u /∈ S and u ∈ Pextn [v, S].

(2). If S is a total dominating set of G then u /∈ S or v /∈ S.

Proof. Suppose γ0 (G− e) > γ0 (G). Suppose S is a minimum dominating set.

(1). Suppose S is an independent set. If u ∈ S and v ∈ S then we have an obvious contradiction because S is an independent

set. If u /∈ S and v /∈ S then S is an isolate dominating set in G−e. Then γ0 (G− e) ≤ |S| = γ0 (G). Which contradicts

the hypothesis. Therefore u ∈ S and v /∈ S or v ∈ S and u /∈ S. Suppose u ∈ S and v /∈ S. Now suppose v /∈ Pextn [u, S]

then S is an isolate dominating set in G−e, which implies that γ0 (G− e) ≤ γ0 (G). Which is a contradiction. Therefore

v ∈ Pextn [u, S]. Similarly, if v ∈ S and u /∈ S then u ∈ Pextn [v, S].

(2). Suppose S is a total dominating set. If u ∈ S and v ∈ S then S is an isolate dominating set in G − e. Therefore

γ0 (G− e) ≤ |S| ≤ γ0 (G). Which is a contradiction. Therefore u /∈ S or v /∈ S.

Conversely, suppose γ0 (G− e) > γ0 (G). Let T ⊂ V (G) be such that T 6= ∅ and |T | ≤ γ0 (G). Suppose |T | = 1. Let

T = {z}. Suppose T is an isolate dominating set in G − e then z 6= u and z 6= v. Then {z} is an isolate dominating

set in G which implies that γ0 (G) = 1. Which is not true. Therefore any set T with |T | = 1 can not be an isolate

dominating set of G − e. Suppose T ⊂ V (G) be such that |T | = 2 and T is an isolate dominating set of G − e. Let

u ∈ T and v ∈ T . Then T is a minimum dominating set of G. Which is a total dominating set and u, v ∈ T . This

contradict (2).

Suppose u ∈ T and v /∈ T . Now v is an adjacent to some vertex x of T and of course x 6= u because u and v are not

adjacent in G − e. Now v is an adjacent two distinct vertex u and x of T in the graph G. Therefore v /∈ Pextn [u, S]

in G. Similarly, If v ∈ T and u /∈ T then u /∈ Pextn [v, T ] in G. Thus, If u ∈ T and v /∈ T or v ∈ T and u /∈ T gives

rise to a contradiction. Therefore u /∈ T and v /∈ T . Therefore T is a minimum isolate dominating set of G such that

u /∈ T and v /∈ T . Which is contradict (1). Therefore any set T with |T | = 2 can not be an isolate dominating set of

G− e. Thus we conclude that any set T of vertices of G− e with |T | ≤ 2 can not be an isolate dominating set of G− e.

Therefore γ0 (G− e) > 2 = γ0 (G).

Corollary 4.17. Let G be a graph with γ0 (G) = 2 and e = {uv} be an edge of G. If γ0 (G− e) > γ0 (G) then

(1). γ0 (G− e) = γ0 (G) + 1.

(2). There is a minimum isolate dominating set T of G− e 3 u, v ∈ T .
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Proof. LetS be a minimum isolate dominating set of G. Since γ0 (G− e) > γ0 (G), u ∈ S and v /∈ S and v ∈ Pextn [u, S]

or v ∈ S and u /∈ S and u ∈ Pextn [v, S]. Let T = S ∪ {v} if v /∈ S and T = S ∪ {u} if u /∈ S. Then T is a minimum isolate

dominating set of G− e and |T | = |S|+ 1 = γ0 (G) + 1.

Proposition 4.18. Let G be a graph with γ0 (G) = 2 and e = {uv} be any edge of G. Then γ0 (G− e) ≥ γ0 (G).

Proof. Suppose γ0 (G− e) < γ0 (G). Then γ0 (G− e) = 1. LetT = {z} be a minimum isolate dominating set of G − e

then {z} is also an isolate dominating set of G. This implies that γ0 (G) = 1. Which is a contradiction. Therefore

γ0 (G− e) ≥ γ0 (G).

Theorem 4.19. Let G be a graph with γ0 (G) = 2 and e = {uv} be any edge of G. Then γ0 (G− e) = γ0 (G) if there is a

minimum dominating set T of G 3 u, v ∈ T .

Proof. Suppose the condition is satisfy. Let T be a minimum isolate dominating set of G 3 u, v ∈ T . Then T is an isolate

dominating set of G− e. Therefore γ0 (G− e) ≤ |T | = γ0 (G) ≤ γ0 (G− e). Therefore γ0 (G− e) = γ0 (G).
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