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Abstract: The paper mathematically establishes that the complex growth rate (pr, pi) of an arbitrary, neutral or unstable oscil-

latory perturbation of growing amplitude in triply diffusive convection analogous to stern type fluid layer heated from
below, must lie inside a semicircle in the right half of the (pr, pi)-plane whose centre is at the origin and radius equals
1
Eσ

(√
|R|Eσ − 27

4
p4
)

, where R is the thermal Rayleigh number, s is the Prandtl number,E is a constant. Further this

result is uniformly valid for quite general nature of bounding surfaces.
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1. Introduction

Research on Thermohaline instability in porous medium or more generally known as double diffusive convection in porous

medium has been an area of great activity due to its importance in the predication of ground water movement in aquifers, in

assessing the effectiveness of fibrous materials, in engineering geology and in nuclear engineering. Double diffusive convection

is now well known. For a broad view of the subject one may be referred to Nield and Bezan [12], Murray and Chen [10],

Nield [11], Taunton [32], Kuznetsov and Nield [8], Lombardo and Mulone [9], Basu and Layek [2].

All these researchers have considered two component systems. However, it has been recognized later that there are many

fluid systems, in which more than two components are present. For example, Degens [3] reported that the saline waters of

geothermally heated Lake kivu are strongly stratified by heat and a salinity which is the sum of comparable concentrations

of many salts. Similarly the oceans contain many salts having concentrations less than a few percent of the sodium chloride

concentration. Multi-component concentrations can also be found in magmas and substratum of water reservoirs. The

subject with more than two components (in porous and non porous medium) has attracted the attention of many researchers.

For the detailed study of multi-diffusive convection problem one may be referred to Grifiths [4, 5], Poulikakos [15], Pearlstein

[14], Terrones and Pearlstein [29], Rudraiah and Vortmeyer [23], Lopez [7], Tracey [30, 31], Rionero ([20,21,22]), Straughan

and Tracey [27], Terrones [28], Ryzhkov and Shevtsova [24]. The summary of the investigations of these researchers is that
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small salinity of a third component with a smaller mass diffusivity can have a significant effect upon the nature of convection;

and ‘oscillatory’ and direct ‘salt finger’ modes are simultaneous possible under a wide range of conditions, when the density

gradients due to components with greatest and smallest diffusivity are of same signs. Further, the problem of obtaining

the upper limits for the linear growth rate of an arbitrary oscillatory motion of growing amplitude in various hydrodynamic

stability problems is an important problem especially when atleast one boundary is rigid, so that exact solutions in the

closed form are not obtainable and one has to depend on numerical solutions which are rather laborious.

Banerjee [1] derived such bounds for double diffusive convection problems. Later Gupta [6] extended their results to rota-

tory/magnetorotatory hydrodynamic double diffusive convection problems. Recently, Prakash et al. [16, 17, 18, 19] further

extended these results to Triply diffusive, hydromagnetic, rotatory hydrodynamic and magneto rotatory hydrodynamic

Triply diffusive convection problems respectively. In the present paper, we use their technique to derive upper bounds for

the complex growth rate of an arbitrary, oscillatory perturbation of growing amplitude for Triply diffusive convection in

porous medium, analogous to Stern (1960) type, using Darcy-Brinkman model. Further, these results are uniformly valid

for any combination of rigid and free boundaries.

2. Mathematical Formulation and Analysis

A viscous finitely heat conducting Boussinesq fluid layer, saturating a porous medium, of infinite horizontal extension is

statically confined between two horizontal boundaries z = 0 and z = d which are respectively maintained at uniform

temperatures T0 and T1 (> T0) and uniform concentrations S10, S20 and S11 (> S10), S21 (> S20) (as shown in Figure 1).

It is assumed that the saturating fluid and the porous layer are incompressible and that the porous medium is a constant

porosity medium. It is further assumed that the cross-diffusion effects of the stratifying agencies can be neglected. The

Darcy- Brinkman model has been used to investigate the triple diffusive convection in porous medium.

Figure 1. Physical Configuration

Non-dimensional hydrodynamical equations that govern the problem are given by (Vafai [30], Prakash [16])

Λ
(
D2 − a2

)2
w −

(
p+D−1

a

) (
D2 − a2

)
w = − |R| a2θ + |R1| a2φ1 + |R2| a2φ2. (1)(

D2 − a2 − Eσp
)
θ = −w, (2)(

D2 − a2 − E1σp

τ1

)
φ1 = −w

τ1
, (3)(

D2 − a2 − E2σp

τ2

)
φ2 = −w

τ2
. (4)
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The equations (1)-(4) are to be solved by using the following boundary conditions:

w = θ = φ1 = φ2 = Dw = 0 at z = 0 and at z = 1, (when both the boundaries are rigid) (5)

or w = θ = φ1 = φ2 = D2w = 0 at z = 0 and at z = 1, (when both the boundaries are free) (6)

or w = θ = φ1 = φ2 = Dw = 0 at z = 0, (when lower boundary is rigid)

and w = θ = φ1 = φ2 = D2w = 0 at z = 1, (when upper boundary is free)

 (7)

or w = θ = φ1 = φ2 = D2w = 0 at z = 0, (when lower boundary is free)

and w = θ = φ1 = φ2 = Dw = 0 at z = 1, (when upper boundary is rigid)

 (8)

where z is the real independent such that 0 ≤ z ≤ 1, D is the differentiation w.r.t. z, a2 is square of the wave number,

σ = νε
κ

is the Prandtl number, τ1 = κ1
κ

and τ2 = κ2
κ

are the Lewis numbers, R = gαβd4

κν
is the thermal Rayleigh number,

R1 = gα1β1d
4

κν
and R2 = gα2β2d

4

κν
are the two concentration Rayleigh numbers, p = pr + ipi is the complex growth rate where

pr and pi are the real constants, w is the vertical velocity, θ, is the temperature, φ1 and φ2 are the two concentrations. It

may further be noted that in Equations (1)-(4) together with the boundary conditions (5)-(8) describe an eigenvalue problem

for p and govern triply diffusive convection in porous medium for any combination of dynamically free and rigid boundaries.

3. Main Result

Theorem 3.1. If (w, θ, φ1, φ2, p), p = pr + ipi, pr ≥ 0 is a solution of Equations (1)-(8) with R < 0, R1 < 0, R2 < 0 and

|R|Eσ
2p4

= 1 then pi = 0. In particular pr = 0 implies pi = 0, if |R|Eσ
2p4

= 1.

Proof. Multiplying equation (1) by w∗ (the superscript * henceforth denotes complex conjugation) on both sides and

integrating over vertical range of z, we obtain

Λ

∫ 1

0

w∗
(
D2 − a2

)2
w dz−

(
p+D−1

a

) ∫ 1

0

w∗
(
D2 − a2

)
wdz = − |R| a2

∫ 1

0

w∗θdz+ |R1| a2
∫ 1

0

w∗φ1dz+ |R2| a2
∫ 1

0

w∗φ2dz.

(9)

Making use of Equations (2)-(4) and the fact that w(0) = 0 = w(1), we can write

|R| a2
∫ 1

0

w∗θdz = |R| a2
∫ 1

0

θ
(
D2 − a2 − Eσp∗

)
θ∗dz, (10)

|R1| a2
∫ 1

0

w∗φ1dz = − |R1| a2τ1
∫ 1

0

φ1

(
D2 − a2 − E1σp

∗

τ1

)
φ∗1dz, (11)

|R2| a2
∫ 1

0

w∗φ2dz = − |R2| a2τ2
∫ 1

0

φ2

(
D2 − a2 − E2σp

∗

τ2

)
φ∗2dz. (12)

Combining Equations (9)-(12), we obtain

Λ

∫ 1

0

w∗
(
D2 − a2

)2
wdz −

(
p+D−1

a

) ∫ 1

0

w∗
(
D2 − a2

)
wdz = |R| a2

∫ 1

0

θ
(
D2 − a2 − Eσp∗

)
θ∗dz

− |R1| a2τ1
∫ 1

0

φ1

(
D2 − a2 − E1σp

∗

τ1

)
φ∗1dz |R21| a2τ2

∫ 1

0

φ2

(
D2 − a2 − E2σp

∗

τ2

)
φ∗2dz. (13)

Integrating various terms of equation (13), by parts, for an appropriate number of times and making use of either of the

boundary conditions (5)-(8), it follows that

Λ

∫ 1

0

(∣∣D2w
∣∣2 + 2a2 |Dw|2 + a4 |w|2

)
dz +

(
p+D−1

a

) ∫ 1

0

(
|Dw|2 + a2 |w|2

)
dz

= − |R| a2
∫ 1

0

(
|Dθ|2 + a2 |θ|2 + Eσp∗ |θ|2

)
dz + |R1| a2τ1

∫ 1

0

(
|Dφ1|2 + a2 |φ1|2 +

E1σp
∗

τ1
|φ1|2

)
dz

+ |R2| a2τ2
∫ 1

0

(
|Dφ2|2 + a2 |φ2|2 +

E2σp
∗

τ2
|φ2|2

)
dz

(14)
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Equating imaginary parts of both sides of equation (14) and cancelling pi( 6= 0) throughout, we have

∫ 1

0

(
|Dw|2 + a2 |w|2

)
dz = |R| a2Eσ

∫ 1

0

|θ|2 dz − |R1| a2E1σ

∫ 1

0

|φ1|2 dz − |R2| a2E2σ

∫ 1

0

|φ2|2 dz. (15)

We first note that since w, θ, φ1 and φ2 satisfy w (0) = 0 = w (1), θ (0) = 0 = θ (1), φ1 (0) = 0 = φ1 (1), φ2 (0) = 0 = φ2 (1),

we have by the Rayleigh-Ritz inequality [22].

∫ 1

0

|Dw|2 dz = π2

∫ 1

0

|w|2 dz (16)∫ 1

0

|Dθ|2 dz = π2

∫ 1

0

|θ|2 dz (17)∫ 1

0

|Dφ1|2 dz = π2

∫ 1

0

|φ1|2 dz (18)∫ 1

0

|Dφ2|2 dz = π2

∫ 1

0

|φ2|2 dz (19)

Using inequality (16), we have ∫ 1

0

(
|Dw|2 + a2 |w|2

)
dz ≥

(
π2 + a2

) ∫ 1

0

|w|2 dz. (20)

Combining Equation (15) and inequality (20), we get

|R| a2Es
∫ 1

0

|θ|2 dz ≥
(
π2 + a2

) ∫ 1

0

|w|2 dz. (21)

Now, multiplying equation (2) by its complex conjugate and integrating the resulting equation for a suitable number of

times and use the boundary condition on θ namely, θ (0) = 0 = θ (1), we obtain

∫ 1

0

(∣∣D2θ
∣∣2 + 2a2 |Dθ|2 + a4 |θ|2

)
dz + 2EσpR

∫ 1

0

(
|Dθ|2 + a2 |θ|2

)
dz + E2σ2 |p|2

∫ 1

0

|θ|2 dz =

∫ 1

0

|w|2 dz. (22)

Now,

∫ 1

0

|Dθ|2 dz = −
∫ 1

0

θ∗D2θdz (∵ θ (0) = 0 = θ (1))

≤
∣∣∣∣− ∫ 1

0

θ∗D2θdz

∣∣∣∣ ,
≤
∫ 1

0

∣∣θ∗D2θ
∣∣ dz,

≤
[∫ 1

0

|θ|2 dz

] 1
2
[∫ 1

0

∣∣D2θ
∣∣2 dz] 1

2

, (using Schwartz inequality)

≤ 1

π

[∫ 1

0

|Dθ|2 dz

] 1
2
[∫ 1

0

∣∣D2θ
∣∣2 dz

] 1
2

, (using inequality (17))

so that we have, ∫ 1

0

∣∣D2θ
∣∣2 dz ≥ π2

∫ 1

0

|Dθ|2 dz. (23)

Combining inequalities (17) and (23), we get

∫ 1

0

∣∣D2θ
∣∣2 dz ≥ π4

∫ 1

0

|θ|2 dz. (24)

From inequalities (17) and (24) it follows that

∫ 1

0

(∣∣D2θ
∣∣2 + 2a2 |Dθ|2 + a4 |θ|2

)
dz ≥

(
π2 + a2

)2 ∫ 1

0

|θ|2 dz. (25)
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Since pr = 0, we get from Equation (22) and inequality (25), that

(
π2 + a2

)2 ∫ 1

0

|θ|2 dz + E2σ2 |p|2
∫ 1

0

|θ|2 dz <
∫ 1

0

|w|2 dz, (26)

which can be rearranged as ∫ 1

0

|θ|2 dz < 1

E2σ2 |p|2
∫ 1

0

|w|2 dz −
(
p2 + a2

)2
E2σ2 |p|2

∫ 1

0

|θ|2 dz. (27)

Combining inequalities (21) and (27), we obtain

|R| a2
∫ 1

0

|θ|2 dz < a2

E3σ3 |p|2

[
|R|Eσ −

(
p2 + a2

)3
a2

]∫ 1

0

|w|2 dz (28)

Use inequality (28) in Equation (15), we get

∫ 1

0

|Dw|2 dz+a2
[
1− 1

E2σ2 |p|2

{
|R|Eσ − 27

4
π4

}]∫ 1

0

|w|2 dz+ |R1| a2E1σ

∫ 1

0

|φ1|2 dz+ |R2| a2E2σ

∫ 1

0

|φ2|2 dz < 0, (29)

since the minimum value of
(π2+a2)3

a2
is 27

4
π4
(
for a2 = π2

2

)
. Inequality (29) clearly implies that

|p|2 < 1

E2σ2

(
|R|Eσ − 27

4
π4

)
.

This establishes the desired result.

The above theorem may be stated in an equivalent form as: the complex growth rate of an arbitrary, neutral or unstable

oscillatory perturbation of growing amplitude in triply diffusive convection in porous medium analogous to Stern (1960)

type, must lie inside a semicircle in the right half of the (pr, pi)-plane whose centre is at the origin and radius equals

1
Eσ

(√
|R|Eσ − 27

4
π4
)

. Further this result is uniformly valid for quite general nature of bounding surfaces.

4. Conclusion

Linear stability theory is used to derive the upper limits for complex growth rate in triply diffusive convection problem in

porous medium analogous to Stern (1960) type using Darcy-Brinkman model. These limits are important especially when

both the boundaries are not dynamically free so that exact solutions in the closed form are not obtainable. Further, the

results so obtained are uniformly for all the combinations of rigid and free boundaries.
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