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Abstract: This paper deals with fuzzy Laplace transform to obtain the solution of fuzzy fractional differential equation (FFDEs)

under Caputo’s H-differentiability. In order to solve FFDEs, first we have to understand about fuzzy Laplace transform

of Caputo’s H-differentiability with fractional order (0 < β < 1). An analytical solution is presented to confirm the
capability of proposed method.
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1. Introduction

Fractional calculus is a mathematical branch investigating the properties of derivatives and integrals of non-integer orders.

It has been applied in modelling physical and chemical processes and in engineering [4, 6, 18] Podlubny and kilbas[10,12,]

gave the idea of fractional calculus and consider Caputo’s differentiability to solve FFDEs. Agarwal [2] proposed the concept

of solutions for fractional differential equations with uncertainty. Laplace transform is used for solving differential equations.

To solve fuzzy fractional differential equation, fuzzy initial and boundary value problems, we use fuzzy Laplace transform.

The advantage of fuzzy Laplace transform is that it solves the problem directly without determining a general solution.

Here we have seen some basic definitions section 2. In section 3, Caputo H-differentiability is introduced and some of the

properties are considered. Fuzzy Laplace transforms are introduced and we discuss the properties in section4. The solutions

of FFDEs are determined by fuzzy Laplace transform under Caputo H-differentiability and solve the example in section 5.

In section 6, a conclusion is drawn.

2. Preliminaries

Definition 2.1 ([8]). Fuzzy number is a mapping u : R→ [0, 1] with the following properties:

(1). u is upper semi continuous.

(2). u is fuzzy convex. i.e., u (λx+ (1− λ) y) ≥ min{u (x) , u (y)} for all x, y ∈ R, λ ∈ [0, 1].
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(3). u is normal. i.e., ∃ x0 ∈ R for which u (x0) = 1.

(4). Supp u = {x ∈ R/u(x) > 0} is the support of the u, and its closure cl (supp u) is compact.

Definition 2.2 ([13, 14]). A fuzzy number u in parametric form is a pair (u, u) of functions u (r) , u (r), 0 ≤ r ≤ 1, which

satisfy the following requirements:

(1). u (r) is a bounded non-decreasing left continuous function in (0,1], and right continuous at 0,

(2). u (r) is a bounded non-increasing left continuous function in (0,1], and right continuous at 0,

(3). u (r) ≤ u (r), 0 ≤ r ≤ 1.

Theorem 2.3 ([15]). Let f be fuzzy valued function on [a,∞) represented by
(
f (x; r) , f (x; r)

)
. For any fixed r ∈ [0, 1],

assume f (x; r) and f (x; r) are Riemann-integrable on [a, b] for every b ≥ a, and assume there are two positive functions

M(r), M(r) such that
∫ b
a

∣∣f (x; r)
∣∣ dx ≤ M(r) and

∫ b
a

∣∣ f (x; r)
∣∣ dx ≤ M(r) for every b ≥ a. Then f(x) is improper

fuzzy Riemann integrable on [a,∞) and the improper fuzzy Riemann integral is a fuzzy number. Furthermore, we have∫∞
a
f (x; r)dx =

[∫∞
a
f (x; r) dx,

∫∞
a
f (x; r) dx)

]
.

Definition 2.4. Let x, y ∈ E. If there exists z ∈ E such that x = y + z, then z is called the H-difference of x and y and it

is denoted by x	 y.

3. Caputo’s H-differentiability [7]

CF [a, b] is the space of all continuous fuzzy valued functions on [a, b]. Also we denote the space of all Lebesgue integrable

fuzzy valued functions on [a, b] by LF [a, b]. In this section, concept of the fuzzy Caputo derivatives as in [7] is revisited using

hukuhara difference (CDβ

a+
f) (x) are as defined as:

Let f ∈ CF [a, b] ∩ LF [a, b] be a fuzzy set value fnction; then f is Caputo fuzzy H-differentiable at x when

(CDβ

a+
f) (x) =

[
1

G(1− β)

∫ x

a

f ′ (t) dt

(x− t)β

]
.

Definition 3.1. Let f ∈ CF [a, b] ∩ LF [a, b], x0 in (a, b) and F (x) = 1
G(1−β)

∫ x
a

f(t)dt

(x−t)β . We say that f is Caputo’s H-

differentiable about order 0 < β < 1 at x0, if there exists an element (CDβ

a+
f)(x0) ∈ E such that for h > 0 sufficiently small

(1). (CDβ

a+
f)(x0) = lim

h→0+

F (x0+h)	F (x0)
h

= lim
h→0+

F (x0)	F (x0−h)
h

(or)

(2). (CDβ

a+
f)(x0) = lim

h→0+

F (x0)	F (x0+h)
−h = lim

h→0+

F (x0−h)	F (x0)
−h (or)

(3). (CDβ

a+
f)(x0) = lim

h→0+

F (x0+h)	F (x0)
h

= lim
h→0+

F (x0−h)	F (x0)
−h (or)

(4). (CDβ

a+
f) (x0) = lim

h→0+

F (x0)	F (x0+h)
−h = lim

h→0+

F (x0)	F (x0−h)
h

.

We say that the fuzzy valued function f is (C(i) − β) differentiable if it is differentiable as in the Definition 2.5 Case (i),

and f is (C(ii)− β) differentiable if it is differentiable as in the Definition 2.5 of Case (2) and so on for other cases.

Theorem 3.2 ([17]). Let f ∈ CF [a, b] ∩ LF [a, b], x0 in (a, b) and 0 < β <1. Then

(1). Let us consider f is (C(i)− β) differentiable fuzzy valued function, then

(CDβ

a+
f) (x0; r) =

[
(CDβ

a+
f) (x0; r) , (CDβ

a+
f)(x0; r)

]
, 0 ≤ r ≤ 1
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(2). Let us consider f is (C(ii)− β) differentiable fuzzy valued function, then

(CDβ

a+
f) (x0; r) =

[
(CDβ

a+
f) (x0; r) , (CDβ

a+
f)(x0; r)

]
, 0 ≤ r ≤ 1

Where

(CDβ

a+
f) (x0; r) =

[
1

G (1− β)

d

dx

∫ x

a

f (t; r) dt

(x− t)β

]
x=x0

(1)

(CDβ

a+
f) (x0; r) =

[
1

G(1− β)

d

dx

∫ x

a

f (t; r) dt

(x− t)β

]
x=x0

(2)

4. Fuzzy Laplace Transforms

Definition 4.1 ([16]). Let f be continuous fuzzy valued function. Suppose that f(x)?e−px is improper fuzzy Riemann

integrable on [0,∞), then
∫∞
0
f(x)� e−pxdx is called fuzzy Laplace transforms and denoted by

L [f(x)] =

∫ ∞
0

f(x)� e−pxdx (p > 0 and integer) (3)

Using Theorem 2.1 we have 0 ≤ r ≤ 1;

∫ ∞
0

f(x; r)� e−pxdx =

[∫ ∞
0

f(x; r)� e−pxdx,
∫ ∞
0

f(x; r)� e−pxdx
]

Using the classical Laplace transforms,

l
[
f (x; r)

]
=

∫ ∞
0

f(x; r)e−pxdx and l
[
f (x; r)

]
=

∫ ∞
0

f(x; r)e−pxdx

Then we get

L [f(x; r)] =
[
l
[
f (x; r)

]
, l
[
f (x; r)

]]
Definition 4.2. Hypergeom (n, d, z) is the generalized hyper geometric function F (n, d, z), also known as Barnes extended

hyper geometric function. For scalars a, b and c, hypergeom([a,b], c ,z) is a Gauss hyper geometric function 2F1 (a, b; c; z).

The Gauss hypergeometric function 2F1 (a, b; c; z) is defined in the unit disc as the sum of the hypergeometric series

2F1 (a, b; c; z) =

∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, |z| < 1

Definition 4.3. The pochhammer symbol (a)k is defined by

(a)0 = 1,

(a)n = a (a+ 1) . . . (a+ n− 1), n ∈ N

Definition 4.4. A two parameters function of Mittag -Leffler type is defined by the series expansion

Eα,β(z) =

∞∑
r=0

zr

G(αr + β)
; (α, β > 0)

An error function is defined by er fc (x) = 2√
π

∫∞
x
e−t

2

dt.
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Theorem 4.5 ([16]). Let f and g are continuous fuzzy valued functions. Suppose that c1 and c2 are constants.

L [(c1 � f(x))⊕ (c2 � g(x))] = (c1 � L [f (x)])⊕ (c2 � L [g (x)])

Lemma 4.6 ([16]). Let f be continuous fuzzy valued function on [0,∞) and λ ∈ R then L [λ� f(x)] = λ� L [f(x)].

Theorem 4.7. Suppose that f ∈ CF [0,∞) ∩ LF [0,∞). Then

L
[
(CDβ

a+
f)(x)

]
= sβL [f(x)]	 sβ−1f(0), (4)

if f is (C(i)− β) differentiable, and

L
[
(CDβ

a+
f)(x)

]
= −sβ−1f(0)	−

(
sβL [f (x)]

)
(5)

if f is (C(ii)− β) differentiable.

5. Fuzzy Fractional Differential Equations Under Caputo’s H-
differentiability

Let f ∈ CF [a, b]∩LF [a, b] and consider the fuzzy fractional differential equation of order 0 < β < 1 with the initial condition

and x ∈ (a, b).  (CDβ

a+
y) (x) = f [x, y (x)] ,

y(0) ∈ E
(6)

Determining the solutions:

Here we use fuzzy Laplace transform and its inverse to derive the solution. By taking Laplace transform on both sides, we

get

L[(CDβ

a+
y) (x)] = L[f(x, y (x))], (7)

Based on the caputo’s H-differentiability, we have the following cases:

Case (1): Let us consider y(x) is a (C(i) − β) differentiable function then the equation (7) is extended based on the it’s

lower and upper functions as follows

sβl
[
y (x; r)

]
− sβ−1y(0; r) = l

[
f(x, y (x) ; r)

]
; 0 ≤ r ≤ 1 (8)

sβl [y (x; r)]− sβ−1y (0; r) = l
[
f(x, y (x) ; r)

]
; 0 ≤ r ≤ 1

Where

f (x, y (x) ; r) = min{f(x, u)/u ∈
[
y (x; r) , y(x; r)

]
}

f(x, y (x) ; r) = max{f(x, u)/u ∈
[
y (x; r) , y(x; r)

]
}

To solve the linear system (8), we assume that H1 (p; r), k1(p; r) are the solutions

l
[
y(x; r)

]
= H1(p; r)

l [y(x; r)] = k1(p; r)
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By using inverse Laplace transform y (x; r) and y (x; r) are computed as follows,

y (x; r) = l−1 [H1 (p; r)]

y (x; r) = l−1 [k1(p; r)] (9)

Case (2): Let us consider y(x) is a (C(ii)− β) differentiable function then the equation (7) can be written as follows

 −s
β−1y(0; r)	 (−sβl[y(x; r)]) = l

[
f(x, y (x) ; r)

]
−sβ−1y(0; r)	 (−sβl[y(x; r)]) = l

[
f(x, y (x) ; r)

] 0 ≤ r ≤ 1 (10)

Where

f (x, y (x) ; r) = min{f(x, u)/u ∈
[
y (x; r) , y(x; r)

]
}

f(x, y (x) ; r) = max{f(x, u)/u ∈
[
y (x; r) , y(x; r)

]
}

To solve the linear system (10), we assume that H2 (p; r), k2(p; r) are the solutions

l
[
y(x; r)

]
= H2(p; r)

l [y(x; r)] = k2(p; r)

By using inverse Laplace transform y (x; r) and y (x; r) are computed as follows,

y (x; r) = l−1 [ H2 (p; r)]

y (x; r) = l−1 [ k2(p; r)] (11)

Example 5.1. Let us consider the following fuzzy fractional differential equation

 (CDβ

0+
y) (x) = λ� y (x) + cosx, 0 < β, x < 1

(CDβ−1

0+
y) (0) = (Cy0

(β−1)) ∈ E
(12)

Solution.

Case (1): Suppose λ ∈ R+ = (0,+∞), then applying Laplace transform on both sides

L[(CDβ

0+
y) (x)] = L[λ� y (x) + cosx],

L[(CDβ

0+
y) (x)] = L[λ� y (x)] + L[cosx], (13)

Using (C(i)− β) differentiability, we get

 sβl
[
y (x; r)

]
− sβ−1y(0; r) = λl

[
y (x; r)

]
+ S

s2+1

sβl [y (x; r)]− sβ−1y(0; r) = λl [y (x; r)] + S
s2+1

(14)

⇒ (sβ − λ)l
[
y (x; r)

]
= sβ−1y(0; r) +

s

s2 + 1
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(sβ − λ)l [y (x; r)] = sβ−1y(0; r) +
s

s2 + 1

l
[
y (x; r)

]
= sβ−1y(0; r)

1

(sβ − λ)
+

s

(s2 + 1)(sβ − λ)

l [y (x; r)] = sβ−1y(0; r)
1

(sβ − λ)
+

s

(s2 + 1)(sβ − λ)
(15)

Applying inverse transform on both sides,

y (x; r) = y (0; r) l−1

[
sβ−1

(sβ − λ)

]
+ l−1

[
s

(s2 + 1)(sβ − λ)

]
y (x; r) = y (0; r) l−1

[
sβ−1

(sβ − λ)

]
+ l−1

[
s

(s2 + 1)(sβ − λ)

]
(16)

1st term in equation (16), consider,

l−1

[
sβ−1

(sβ − λ)

]
=

∞∑
r=0

(λxβ)r

Γ (βr + 1)
= Eβ,1(λxβ)

Convolution theorem in Laplace transform we have 2nd term in equation (16)

l−1

[
s

(s2 + 1)(sβ − λ)

]
=

∫ x

0

(x− t)(β−1)Eβ,β(λ(x− t)β) cos t dt

(16) ⇒

y (x; r) = y (0; r)Eβ,1(λxβ) +

∫ x

0

(x− t)(β−1)Eβ,β(λ(x− t)β) cos t dt

y (x; r) = y (0; r)Eβ,1(λxβ) +

∫ x

0

(x− t)(β−1)Eβ,β(λ(x− t)β) cos t dt (17)

Case (2): Suppose λ ∈ R− = (−∞, 0), then using (C(ii) − β) differentiability the solution will obtain similar to equation

(17). For the special case, let us consider β = 0.5, λ = 1 and y (0; r) = [1 + r, 3− r] in Case (1)

y (x; r) = [1 + r, 3− r]� E 1
2
,1(x

1
2 ) +

∫ x

0

(x− t)(−
1
2
)E 1

2
, 1
2
(x− t)

1
2 cos t dt

y (x; r) = [1 + r, 3− r]� E 1
2
,1(x

1
2 ) +

∫ x

0

(x− t)(−
1
2
)E 1

2
, 1
2
(x− t)

1
2 cos t dt (18)

Now consider 1st term in equation (18)

E 1
2
,1(x

1
2 ) = e(x

1
2 )2erfc(−x

1
2 )

= ex erfc(−
√
x) {E 1

2
,1(z) = ez

2

erfc(−z)}

2nd term in equation (18)

∫ x

0

(x− t)(−
1
2 )E 1

2
, 1
2
(x− t)

1
2 ) cos t dt =

∫ x

0

(x− t)(−
1
2
)
∞∑
k=0

(x− t)
k
2

Γ( k+1
2

)
cos t dt

=

∫ x

0

∞∑
k=0

(x− t)
k−1
2

Γ( k+1
2

)
cos t dt

=

∫ x

0

(x− t)−
1
2

Γ( 1
2
)

cos t dt+

∫ x

0

(x− t)0

Γ(1)
cos tdt+

∫ x

0

(x− t)
1
2

Γ( 3
2
)

cos t dt

382



S. Rubanraj and J. Sangeetha

+

∫ x

0

(x− t)1

Γ(2)
cos t dt+

∫ x

0

(x− t)
3
2

Γ( 5
2
)

cos t dt+

∫ x

0

(x− t)2

Γ(3)
cos t dt+ . . .

Rearrange the terms split series

=
x

1
2

( 1
2
)!

[
hypergeom
even

(
1,

3

2
, ix

)]
+

x
3
2

( 3
2
)!

[
hypergeom
even

(
1,

5

2
, ix

)]
+

x
5
2

( 5
2
)!

[
hypergeom
even

(
1,

7

2
, ix

)]
+ . . .

+
x

1!
+
x2

2!
+
x5

5!
+
x6

6!
+
x9

9!
+
x10

10!
+ . . .

=

∞∑
n=0

xn+
1
2(

n+ 1
2

)
!

{
hypergeom
even

(
1, n+

3

2
, ix

)}
+

∞∑
n=0

x4n+1

(4n+ 1)!
+

∞∑
n=0

x4n+2

(4n+ 2)!

(18) ⇒

y (x; r) = [1 + r] exerfc(−
√
x) +

∞∑
n=0

xn+
1
2(

n+ 1
2

)
!

{
hypergeom
even

(
1, n+

3

2
, ix

)}
+

∞∑
n=0

x4n+1

(4n+ 1)!
+

∞∑
n=0

x4n+2

(4n+ 2)!

y (x; r) = [3− r] exerfc(−
√
x) +

∞∑
n=0

xn+
1
2(

n+ 1
2

)
!

{
hypergeom
even

(
1, n+

3

2
, ix

)}
+

∞∑
n=0

x4n+1

(4n+ 1)!
+

∞∑
n=0

x4n+2

(4n+ 2)!

6. Conclusion

In this paper, solving FFDEs of order 0 < β < 1 using fuzzy Laplace transforms under Caputo’s-H differentiability was

discussed. As an example, we solved a problem involving cosine term.
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