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Abstract: A mixed quadrature rule of higher precision for approximate evaluation of real definite integrals has been constructed
using an anti Lobatto rule. The analytical convergence of the rule has been studied. The relative efficiencies of the

mixed quadrature rule has been shown with the help of suitable test integrals. The error bound has been determined

asymptotically.
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1. Introduction

The concept of mixed quadrature rule was first coined by R.N. Das and G. Pradhan [5]. The method of mixed quadrature rule

is based on forming a mixed quadrature rule of higher precision by taking a linear / convex combination of two quadrature

rule of lower precision. Though in literature we find precision enhancement through Richardson Extrapolation [3] and

Kronord extension [3, 10, 11] taking respectively trapezoidal rule and Gaussian quadrature as base rules, these methods are

quite cumbersome. On the other hand, the precision enhancement through mixed quadrature method is very simple and

easy to handle. Many authors [5, 12–16] have developed mixed quadrature rules for numerical evaluation of real definite

integrals. Authors [4, 6–9] have also developed mixed quadrature rules for approximate evaluation of the integrals of analytic

functions following F. Lether [2]. So far this is one of the few papers in which an anti-Lobatto quadrature has been used to

construct a mixed quadrature rule.

Dirk P. Laurie [1] is first to coin the idea of anti-Gaussian quadrature formula. An anti-Gaussian quadrature formula is an

(n + 1) point formula of degree (2n − 1) which integrates all polynominals of degree upto (2n + 1) with an error equal in

magnitude but opposite in sign to that of n-point Gaussian formula. If Hn+1 =
n+1∑
i=1

aif(xi) be (n+ 1) point anti-Gaussian

formula and Gn(p) be n point Gaussian formula, then by hypothesis I(p)−Hn+1(p) = Gn(p)− I(p), p ∈ P2n+1 where p is a

polynomial of degree less then or equal to 2n+ 1.

In this paper, we incorporate the idea of anti-Gaussian quadrature rule to design an anti-Lobatto quadrature rule following

LAURIE. We mix this anti-Lobatto rule with Fejers three point second rule to form a mixed quadrature rule. The relative

efficiencies of the mixed rule has been shown by numerically evaluating some test integrals.
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2. Construction of Anti-Lobatto Four Point Rule from Lobatto Three
Point Rule

We choose the Lobatto three point rule,

L3(f) =

∫ 1

−1

f(x)dx =
1

3
(f(−1) + 4f(0) + f(1)) (1)

and develop a four point anti-Lobatto rule L4(f) from three point Lobatto rule L3(f). Using the principle I(p)−Hn+1(p) =

Gn(p)− I(p), p ∈ P2n+1 as adopted in Dirk P. Laurie [1], we obtain

L4(f) = 2

∫ 1

−1

f(x)dx− L3(f) (2)

2

∫ 1

−1

f(x)dx = a1f(−1) + a2f(x1) + a3f(x2) + a4f(1) + L3(f) (3)

where L4(f) = a1f(−1) + a2f(x1) + a3f(x2) + a4f(1). In order to obtain the unknown weights and nodes, we assume that

(1). the rule is exact for all polynomials of degree 3.

(2). the rule integrates all polynomials of degree up to five with an error equal in magnitude and opposite in sign to that of

Lobatto rule.

Thus we obtain following system of six equations having six unknowns namely ai, and xi for f(x) = xi, i = 0, ..., 5.

a1 + a2 + a3 + a4 = 2 (4)

−a1 + a2x1 + a3x2 + a4 = 0 (5)

a1 + a2x
2
1 + a3x

2
2 + a4 = 0 (6)

−a1 + a2x
3
1 + a3x

3
2 + a4 =

2

3
(7)

a1 + a2x
4
1 + a3x

4
2 + a4 = 0 (8)

and − a1 + a2x
5
1 + a3x

5
2 + a4 =

2

5
(9)

Solving the above system of equation we get, a1 = a4 = −1/9, a2 = a3 = 10/9, x1 =
√

2/5 and x2 = −
√

2/5. Hence, the

anti-Lobatto four point rule becomes,

L4(f) =
10

9

(
f

(√
2

5

)
+ f

(
−
√

2

5

))
− 1

9
(f (1) + f (−1)) . (10)

The error associated with the rule is computed as

EL4(f) =

∫ 1

−1

f(x)− L4(f) =
4f (4)(0)

5!.3
+

8f (6)(0)

7!.3
+ ... (11)

3. Construction of Mixed Quadrature by Using Anti-Lobatto Four
Point Rule with Fejer Three Point Second Rule

We have the anti-Lobatto four point rule,

L4(f) =
10

9

(
f

(√
2

5

)
+ f

(
−
√

2

5

))
− 1

9
(f (1) + f (−1)) . (12)
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and Fejer three point second rule taken from [17]:

F3(f) =
2

3

(
f

(
1√
2

)
+ f

(
−1√

2

)
+ f(0)

)
. (13)

Each of the rules L4(f) and F3(f) is of precision three. Let EL4(f) and Ef4(f) denote the errors in approximating the

integrals I(f) by the rules L4(f) and F3(f) respectively. Now

I(f) = L4(f) + EL4(f) (14)

I(f) = F3(f) + EF3(f) (15)

Using Maclaurines expansion of function in equation (12) and (13). we have,

EL4(f) =

∫ 1

−1

f(x)− L4(f) =
4f (4)(0)

5!.3
+

8f (6)(0)

7!.3
+ ... (16)

Ef3(f) =

∫ 1

−1

f(x)− F3(f) =
4f(0)

360
+

8f (6)(0)

6048
+ ... (17)

Eliminating f (4)(0) from equation (16) and (17) we have

Im(f) =
1

3
(4F3(f)− L4(f) + 4Ef3(f)− EL4(f))

=
8

9

(
f

(
1√
2

)
+ f

(
−1√

2

)
+ f(0)

)
− 10

9

(
f

(√
2

5

)
+ f

(
−
√

2

5

))
+

1

9
(f (1) + f (−1)) . (18)

This is the desired mixed quadrature rule of precision five. The truncation error generated in this approximation is given by

E(f) =
1

3
(4Ef3(f)− EL4(f)) =

1

22680
f (6)(0) + .... (19)

or

|E(f)| = 1

22680
f (6)(ξ), ξ ∈ (−1, 1). (20)

4. Error Analysis

An asymptotic error estimate and an error bound of the rule (20) are as under.

Theorem 4.1. Let f(x) be sufficiently differentiable function in the closed interval [−1, 1]. Then the error E(f) associated

with the rule Im is given by

|E(f)| = 1

22680
f (6)(ξ), ξ ∈ (−1, 1). (21)

Proof. The theorem follows from (20) and (21) we have

Im(f) =
1

3
(4F3(f)− L4(f))

And the truncation error generated in this approximation is given by,

E(f) =
1

3
(4Ef3(f)− EL4(f))

Hence we have,

|E(f)| = 1

22680
f (6)(ξ), ξ ∈ (−1, 1).
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Theorem 4.2. The bound of the truncation error

L4(f) = 2

∫ 1

−1

f(x)dx− L3(f)

is given by

|E(f)| = M

270
|θ1 − θ2| , θ1, θ2 ∈ (−1, 1). (22)

where M = max
−1≤x≤1

∣∣∣f (5)(x)
∣∣∣.

Proof. We have

EL3(f) =
1

90
f (4)(θ1)

and

Ef4(f) =
1

360
f (4)(θ2)

Therefore

E(f) =
1

3
(4Ef3(f)− EL4(f))

=
1

3

(
4

360
f (4)(θ2 −

1

90
f (4)(θ1)

)
|E(f)| ≤ 1

270

∣∣∣f (4)(θ1)− f (4)(θ2)
∣∣∣

=
1

270

∫ θ1

θ2

f (4)(x)dx

=
M

270
|θ1 − θ2|

where M = max
−1≤x≤1

∣∣∣f (5)(x)
∣∣∣. Which gives a theoretical error bound as θ1, θ2 are unknown points in [−1, 1]. From this

theorem it is clear that the error in approximation will be less if points θ1, θ2 are closer to each other.

5. Numerical Verification Table and Graphs

We applied these methods (i.e L3(f), L4(f) , Im(f) and F3(f)) to the following problems then we get table 1

I1 =

∫ 1

−1

exdx

I2 =

∫ 1

0

e−x
2

dx

I3 =

∫ 1

0

ex
2

dx

I4 =

∫ 3

1

sin2x

x
dx

I1 =

∫ 1

0

√
xdx

I1 =

∫ 1

0

√
xsin(x)dx

I1 =

∫ 1

0

sin
√
πxdx

etc. respectively.
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Integral Exact value L3(f) L4(f) F3(f) Im(f)

I1 2.35040238 2.3620537 2.35811374 2.3474557 2.35034983

I2 0.746825 0.74718 0.747054 0.7467297 0.7468162

I3 1.4627 1.4757305 1.471156 1.459261 1.4624597

I4 0.794825 0.789451 0.7911007 0.7960751 0.7946843

I5 2/3 0.6380711 0.6598341 0.6712232 0.6667902

I6 0.364221 0.3662485 0.36523635 0.3637008 0.364116

I7 0.849726 0.6798206 0.674672 0.67728655 0.67635138

6. Conclusion

After observation one can smartly draw a conclusion over the efficiency of the rule formed in this paper as follows.

(1). Mixed rule Im(f) is more efficient than its constituent rules L3(f), L4(f) and F3(f).

(2). In I1, Rule L3(f) gives exact value up to one decimal places , L4(f) and F3(f) are gives exact value up to two decimal

places. But in our result Mixed rule Im(f) gives exact value up to four decimal places. Which means Mixed rule Im(f)

is more efficient than its constituent rules L3(f), L4(f) and F3(f).

(3). In I2, The constituent rules L3(f) and L4(f) gives the more than (negative values) to exact values and In I7,the

constituent rules L3(f), L4(f) and F3(f) gives less than (positive values ) to exact values.

(4). In the same manner In I2, I3, I4, I5, I6 and I7, The Mixed rule Im(f) gives the best exact value (more efficient) than its

constituent rules L3(f), L4(f) and F3(f).
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