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Abstract: The synthetic drugs that are making the rounds of drug-using markets are some of the most destructive drugs available
today, which have given rise to serious social issues in recent years. In this paper, a synthetic drugs transmission model

with psychological addicts and Holling Type II functional responses is proposed. The basic reproduction number R0 is

obtained by the method of next generation matrix. Then we have discussed the local and global stabilities analysis of the
model using the basic reproduction number R0. By analyzing the sensitivity of parameters, we obtain that controlling

psychological addiction is better than drugs treatment. Computer simulation are carried out to validate our analytical
findings. The biological implications of analytical and numerical findings are discussed critically.
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1. Introduction

Some drugs are natural, meaning that the plants from which they are derived exist in nature except any help from humankind:

opium poppies (heroin, morphine, codeine), coca leaves (cocaine), psilocybin mushrooms (shrooms), and marijuana. Another

drugs are synthetic, which means they are created using man-made chemicals, not natural ingredients. New synthetics appear

on the market constantly, therefore it is not possible to compile list. Chemists who choice to evade arrest can simply shift the

formula slightly and come up with something new that might not be listed in the text of laws that ban drugs. For illustration,

K2 also known as Spice, Ecstasy also known as Molly, and bath salts are all types of synthetic drugs. Whereas synthetic

drugs are created in illegal labs to bypass regulations prohibiting controlled substances, their strength, composition, and

ingredients are unknown to the consumer. Fun names and colorful appearances can sometimes mask their extreme potential

for harm, however make no mistake about it: synthetic drugs are extremely dangerous and can cause addiction, severe health

issues, and even death. Synthetic drugs began appearing in the United States around 2009, and their popularity has surged

in the eight years since then. They are especially popular amongst teenagers due to their high level of accessibility (source).

Actually, according to a study conducted in 2013 by the Center for Substance Abuse Research (CESAR) at the University

of Maryland at College Park, about 12 % of high school students said they used synthetic drugs regularly (source). Many

of these teen-ager arent aware of how dangerous these substances can be.
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In [18], drug-users are more infected with many infectious diseases such as hepatitis and AIDS. The data from South African

police statistics showed that only drug-related crimes increased from 621 to more than 3,000 between 2002 and 2006 in

Cape Town. In addition, the HIV infections increased from 13.1% in 2003 to 15.7% in 2005 in the Western Cape Province

of South Africa from the 2005 antenatal survey [17]. At recent, a survey reflects the number of the synthetic drug-users

appears an upward trend. For instance, by the end of 2015, there were 2.354 million drugusers in China, including 1.34

million synthetic drug abusers which accounted for 57.1% and increased by 7.7% over 2014 [33]. we know that, there is no

mature treatment of drugs addiction around the world. Like whole addiction diseases, the major treatment measures for

drug addicts are medications and psychotherapy.

The principal objective of modeling epidemics is to simulate and reveal the rule of epidemics and provide theoretical basis for

preventing and controlling diseases, see [6, 11, 12, 16, 21, 22, 26, 27, 29–34] and references cited therein. The papers [24, 31]

studied a general heroin model. In this paper, authors divided people into susceptible, heroin addicts not in treatment

and heroin addicts in treatment, and took into account repeated use. Also we have considered Holling type-II functional

response for the species susceptible (S), psychological addicts (P1) and susceptible (S), physiological addicts (P2). Mulone

et al. [26] also discussed a similar heroin model which has treated users and standard incidence rate, the result shows that

the steady states of their model are stable. In [30], Samanta et al. discussed a non-autonomous drugs model and obtained

the sufficient conditions of global asymptotic stability of the model. Fang et al. [11] established a model with two distribute

delays and proved the global asymptotic stabilities of steady states by Lyapunov function. In the above models, all authors

discussed traditional drugs. However, for the synthetic drugs, the relevant research is less [24, 27, 29]. Mushanyu et al.

[27] considered a mathematical model to explain the methamphetamine transmission of Western Cape province of South

Africa. Whereas of eating by mistake, fascinated by friends, the accidental drug-users may fill with guilt after first taking

little drug. By the psychological effect, many of them will avoid contacting with synthetic drugs consciously once again, and

usually cannot be addictive. So, it is essential to distinguish the effect of synthetic drugs transmission caused by psychology

and physiology. We have considered the factor, we attempt to imitate the transmission of synthetic drugs in this paper, and

study the dynamics of the model to seek some workable measures for controlling the drugs epidemic.

The rest of the paper is organized as follows. we first establish a synthetic drugs model with psychological and physiological

addicts. In section 2 and 3, the basic mathematical model is introduced together with basic considerations. Boundedness and

positivity of the solutions of the proposed model are established in section 4. In Section 5, the basic reproduction number

(R0) of the system is calculated using next generation matrix method. Then the deterministic dynamical behaviors of the

system are studied. Our study includes the existence and stability analysis of equilibrium points of the system. Section

7 contains the sensitivity analysis of our system which helps us to find out the parameters of greater interest. Computer

simulations are carried out to validate our analytical findings numerically in section 8. Section 9 contains the general

discussion and biological significance of our analytical findings. In the last section, we end our paper with some reference.

2. The Mathematical Model

Synthetic drugs, also referred to as designer or club drugs, are chemically-created in a lab to mimic another drug such

as marijuana, cocaine or morphine. The synthetic drugs show a stronger psychological dependence and spread mainly in

youths. In this section, we divide the human population (N) into four classes at time t: susceptible (S), psychological

addicts (P1), physiological addicts (P2) and addicts in treatment (T ). Also we have considered Holling type-II functional

response for the species (S, P1) and (S, P2). There are data to show that drug users age mainly focus on 15 − 64 years old

[19], therefore the rate of entering this age group every year is roughly equivalent to the recruitment rate of susceptible
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denoting Λ which is assumed a constant. After contacting with a drug addict, the susceptible one will first move into the

psychological addict class, while after taking plenty of drugs, the psychological ad- dict will become the physiological addict.

In generally, a susceptible one is more likely to initiate drug abuse when he contacts with a physiological addict compared to

a psychological addict. Here we denote the corresponding contact rates are β1(N) and β2(N). Obviously, the contact rate

β1(N) is greater than or equal to β(N). For simplification and analysis sakes, here we make an assumption that there are same

probabilities to make susceptible become drug-user when he contacts with psychological and physiological addict. We bring

β(N) = β(N) = β2(N) into our model as the effective contact rate, where β(N) is a function of total population N . Once

psychological and physiological addicts accept treatment and rehabilitation, they will enter into treatment compartment.

The treatment rates are denoted by γ and ρ respectively. Next we consider, some drug-users in treatment may escape and

reenter physiological with rate η. Then The model can be represented by the following set of ordinary differential equations:

dS

dt
= Λ− δS − β(N)S(P1 + bP2)

A+ S

dP1

dt
=
β(N)S(P1 + bP2)

A+ S
− αP1 − (δ + γ)P1

dP2

dt
= αP1 + ηT − ρP2 − δP2

dT

dt
= γP1 + ρP2 − ηT − δT

(1)

where the meanings of S, P1, P2, T and N are predented concisely in Table 1. Also A is the half saturation constant and all

other parameters α, δ, γ, η, ρ are positive constants, and their definitions are given in Table 2. In this paper, we enumerate

different contact rates related to the total population N in Table 3, which interpretations and meanings can be found in

relevant references. Here, we list them no longer.

Variable Description

S(t) Number of susceptible humans at time t.

P1(t) Number of psychological addicts at time t.

P2(t) Number of physiological addicts at time t.

T (t) Number of drug-users in treatment at time t.

N(t) Total human population at time t.

Table 1. The state variables for this model (1)

3. Analysis

From the system (1), by adding all equations, we get dN
dt

= Λ− dN. Whereas N → Λ
δ

when t→ +∞. We assume that the

total number N = Λ
δ

. Let us non-dimensionalize the system (2.1) with the following scaling: s = S
N

, p1 = P1
N

, p2 = P2
N

and

t1 = T
N

. Then the system (1) takes the form (after some simplification):

ds

dt
= δ − δs− β(N)s(p1 + bp2)

a+ s

dp1

dt
=
β(N)s(p1 + bp2)

a+ s
− αp1 − (δ + γ)p1

dp2

dt
= αp1 + ηt1 − ρp2 − δp2

dt1
dt

= γp1 + ρp2 − ηt1 − δt1

(2)

with the initial conditions s(0) = s0 ≥ 0, p1(0) = p10 ≥ 0, p2(0) = p20 ≥ 0, t1(0) = t10 ≥ 0, where a = AN .
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Parameter Description and dimensions Range Reference

Λ Immigration rate of susceptible. Humans× year1 [1-1.2] [29]

β Probability of transmission from susceptible to drug addicts. Dimensionless [0-0.9399] [17]

δ Natural death rate of humans. year1 [0-0.025] [17]

α Escalation rate from psychological addicts to physiological addicts. year1 [0.0015-0.5] [17]

γ Per capita treatment rate for psychological addicts. year1 [0-0.3] [17]

ρ Per capita treatment rate for physiological addicts. year1 [0-0.99] [17]

η Relapse rate. year1 [0.00002-0.9] [17]

Table 2. Description of parameters and their dimensions.

In the remaining part, we will analysis model (2) with initial conditions to establish the necessary and sufficient conditions

of global asymptotic stabilities of synthetic drug-free and synthetic drug addiction equilibria. Before beginning, we must

give the following theorem about positivity and boundedness of solutions for the system (2).

4. Basic Properties

4.1. Non-negativity of solutions

Theorem 4.1. All solutions of the system (2) that start in R4
+ are positive forever.

Proof. From the first equation of system (2), we get

s(t) = s(0) exp

[∫ t

0

−{δ +
β(N)(p1(ω) + bp2(ω))

a+ s(ω)
}dω

]
+ δ

∫ t

0

exp

[∫ t

θ

−{δ +
β(N)(p1(ω) + bp2(ω))

a+ s(ω)
}dω

]
dθ ⇒ s(t) > 0.

From the second equation of system (2), we get

p1(t) = e−(α+δ+γ− β(N)s
a+s

)t

[
p1(0) +

∫ t

0

e(α+δ+γ− β(N)s
a+s

)ω β(N)s(ω)bp2(ω)

a+ s(ω)
dω

]
⇒ p1(t) > 0.

From the third equation of system (2), we get

p2(t) = e−(ρ+δ)t

[
p2(0) +

∫ t

0

e(ρ+δ)ω{αp1(ω) + ηt1(ω)}dω
]
⇒ p2(t) > 0.

From the fourth equation of system (2), we get

t1(t) = e−(η+δ)t

[
t1(0) +

∫ t

0

e(η+δ)ω{γp1(ω) + ρp2(ω)}dω
]
⇒ t1(t) > 0.

This proves the theorem.

4.2. Invariant region

Theorem 4.2. The feasible region Γ defined by

Γ = {(s(t), p1(t), p2(t), t1(t)) ∈ R4
+ : s(t) + p1(t) + p2(t) + t1(t) = 1}

with initial conditions s(0) ≥ 0, p1(0) ≥ 0, p2(0) ≥ 0, t1(0) ≥ 0 is positively invariant.

Proof. Adding all the equations of system (2) and denoting N̂ = s(t) + p1(t) + p2(t) + t1(t), then we obtain

dN̂

dt
= δ − δN̂1.

Since N̂1(0) = s(0) + p1(0) + p2(0) + t1(0) > 0. By after some calculation N̂(t) = 1(1 − N̂(0))e−δt is the solution of the

system. Obviously, lim
t→∞

N̂(t) = 1 which implies the result. This completes the proof.
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5. The Basic Reproduction Number

Basic reproduction number [1, 4, 5, 7, 10, 14, 15, 28] is defined as the number of new number of psychological addicts

individuals produced by a single psychological addicts individual during his or her effective psychological addicts period

when introduced into susceptible population. In the following the basic reproduction number R0 of system (2) will be

obtained by the next generation matrix method formulation [10]. Rewrite system (2), denote x = (p1, p2, t1, s), a0 =

α+ δ + γ, a1 = ρ+ δ, a2 = η + δ, then

dx

dt
= F − V =



β(N)s(p1+bp2)
a+s

0

0

0


−



a0p1

−αp1 − ηt1 + a1p2

−γp1 − ρp2 + a2t1

−δ + δs+ β(N)s(p1+bp2)
a+s


where F is the new infection terms, V is the other terms. The corresponding linearized matrixes of F and V evaluated at

E0 are

F =



β(N)
a+1

β(N)b
a+1

0 0

0 0 0 0

0 0 0 0

0 0 0 0


, V =



a0 0 0 0

−α a1 −η 0

−γ −ρ a2 0

β1(N1)
a+1

β(N)b
a+1

0 δ


Now, FV −1 is the next generation matrix of system (2). It follows that the spectral radius of matrix FV −1 denoted and

defined by [10] which is the basic reproduction number of system (2) is given as follows:

R0 = r(FV −1) =
β(N){a1a2 − ηρ+ b(αa2 + ηγ)}

(a+ 1)a0(a1a2 − ηρ)
= β(N)R∗0,

where R∗0 = {a1a2−ηρ+b(αa2+ηγ)}
(a+1)a0(a1a2−ηρ)

. If taking several contact rates, we can get different basic reproduction numbers of model

(2). In Table 3, we list some basic reproduction numbers for several effective contact rates β(N) of synthetic drugs model

(2).

Effective contact rate Expression Reference Basic reproduction number

Bilinear β [2, 25] βNR∗0
Standard β

N
[2, 25] βR∗0

Michaelis-Menten (M-M) AN
1+βN

[8] AN2

1+βN
R∗0

Heesterbeek-Metz (H-M) AN
1+βN+

√
1+2βN

[13] AN2

1+βN+
√

1+2βN
R∗0

Mena-Lorca-Metz (M-L-M) λNA [23] λNA+1R∗0

Table 3. Basic reproduction numbers of several effective contact rates of synthetic drug-users model

By Theorem 4.2 in [10], the following result is obtained directly.

Theorem 5.1. The synthetic drug-free equilibrium E0 is locally asymptotically stable (unstable) if R0 < 1(R0 > 1).

6. Equilibrium Points: Their Existence and Stability

In this section, we will study the existence and stability behavior of the system (2) at several equilibrium points. The

equilibrium points of the system (1) are:

(1). Drug-free equilibrium (DFE): E0(1, 0, 0, 0).

(2). Drug addiction equilibrium: E1(s∗, p∗1, p
∗
2, t
∗
1).
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6.1. Existence of unique drug addiction equilibrium E1(s
∗, p∗1, p

∗
2, t

∗
1)

In this section, we will analyze the existence of non-trivial drug addiction equilibrium E1(s∗, p∗1, p
∗
2, t
∗
1) of the system (2).

To find the unique drug addiction equilibrium of system (1), we consider the following:

s > 0, p1 > 0, p2 > 0, t1 > 0 and
ds

dt
=
dp1

dt
=
dp2

dt
=
dt1
dt

= 0. (3)

Solving the equations of system (3), we get:

s∗ =
a0a(a1a2 − ηρ)

β(N){a1a2 − ηρ+ ba2α+ bηγ − a0(a1a2 − ηρ)} , p
∗
1 =

(a1a2 − ηρ)p∗2
a2α+ ηγ

,

p∗2 =
(δ − δs∗)(a+ s∗)(a2α+ ηγ)

β(N)s∗(a1a2 − ηρ+ ba2α+ bηγ)
and

t∗1 =
(a1γ + αρ)p∗2
ηγ + a2α

.

Next we will prove the local and global asymptotic stabilities of equilibria E0 and E∗.

6.2. Local stability analysis

In this section we will study the local stability of the system (2) at drug-free equilibrium E0(1, 0, 0, 0). The variational

matrix of system (2) at E0(1, 0, 0, 0) is given by

V (E0) =



−δ 0 0 0

0 −a0 0 0

0 α −a1 η

0 γ ρ −a2


Therefore, eigenvalues of the characteristic equation of V (E0) are

λ1 = −δ, λ2 = −(α+ δ + γ) and λ3,4 =
−(a1 + a2)±

√
(a1 + a2)2 − 4(a1a2 − ηρ)

2
.

Here, λ1 and λ2 are clearly real and negative. Now, E0 is stable if λ3 and λ4 < 0 i.e. a1a2−ηρ > 0 when, R0 < 1. Therefore

the system (2) is local asymptotically stability at E0(1, 0, 0, 0) if R0 < 1. So, we arrive to the following result:

Theorem 6.1. The synthetic drug-free equilibrium E0 of system (2) is locally asymptotically stable if R0 < 1 and a1a2−ηρ >

0 are satisfied.

Now, the variational matrix of system (2) at E1(s∗, p∗1, p
∗
2, t
∗
1) is given by

V (E1) =



−δ − β(N)a(p1+bp2)

(a+s)2
−β(N)s

a+s
−β(N)sb

a+s
0

β(N)a(p1+bp2)

(a+s)2
β(N)s
a+s

− a0
β(N)sb
a+s

0

0 α −a1 η

0 γ ρ −a2


.

Therefore, the characteristic equation of V (E1) is given by

λ4 +B1λ
3 +B2λ

2 +B3λ+B4 = 0 (4)
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where

u =
β(N)a(p1 + bp2)

(a+ s)2
, v =

β(N)s

a+ s
, w = a1a2 − ηγ, B1 = a0 + a1 + a2 − v − u− δ,

B2 = (δ − u)(v − a0 − a1 − a2) + a0(a1 + a2) + w − bαv + uv,

B3 = (δ − u)(a1y + a2y − a0a1 − a0a2 − w + bαv)− vw + a0w − a2bαv − bηγv + a1uv + a2uv + buvα and

B4 = (δ − u)(wv + a2bαv + bηγv) + wuv + buva2α+ buvηγ.

By the Routh-Hurwitz criterion [20] it follows that all eigenvalues of the characteristic equation (4) have negative real part

if and only if:

(i) B1 > 0

(ii) B3 > 0

(iii) B4 > 0 and

(iv) B1B2B3 > B2
3 +B2

1B4.

(5)

Therefore the system (2) shows local asymptotic stability at E1 when R0 > 1 which guarantees the existence of E1 and

conditions (5) are satisfied. So, we arrive to the following result.

Theorem 6.2. The synthetic drug addiction equilibrium E1 of system (2) is locally asymptotically stable if R0 > 1 and

conditions (5) are satisfied.

6.3. Global stability analysis

Theorem 6.3. The synthetic drug-free equilibrium E0 of system (5) is globally asymptotically stable if R0 ≤ 1.

Proof. Let (s, p1, p2, t1) be a positive solution of the system (2) and let us consider the following positive definite function

about E0 :

L =
1

a+ 1
p1 +

β(N)a2b

(a+ 1)(a1a2 − ηρ)
p2 +

β(N)ηb

(a+ 1)(a1a2 − ηρ)
t1.

Obviously, L(E0) = 0 and L(s, p1, p2, t1) > 0 in Γ. Because of 0 < s < 1 in Γ and R0 ≤ 1, by simplifying the time derivative

of L along the solutions of the system (2), we obtain

dL

dt
=

1

a+ 1

dp1

dt
+

β(N)a2b

(a+ 1)(a1a2 − ηρ)

dp2

dt
+

β(N)ηb

(a+ 1)(a1a2 − ηρ)

dt1
dt

=
β(N)s(p1 + bp2)

(a+ s)(a+ 1)
− a0p1

a+ 1
+

β(N)a2b

(a+ 1)(a1a2 − ηρ)
(αp1 + ηt1 − a1p2) +

β(N)ηb

(a+ 1)(a1a2 − ηρ)
(γp1 + ρp2 − a2t1)

≤ β(N)(p1 + bp2)

(a+ 1)
− a0p1

a+ 1
+

β1(N1)a2b

(a+ 1)(a1a2 − ηρ)
(αp1 + ηt1 − a1p2)

+
β(N)ηb

(a+ 1)(a1a2 − ηρ)
(γp1 + ρp2 − a2t1)

= a0{
β(N)

a+ 1
− 1

a+ 1
+

β(N)b(a2α+ ηγ)

(a+ 1)(a1a2 − ηρ)
}p1

= a0(R0 − 1)p1

≤ 0,

and dL
dt

if and only if R0 = 1. Consequently, by the Lyapunov Theorem [9], the drug-free equilibrium E0 is globally

asymptotically stable if R0 ≤ 1.

Theorem 6.4. The synthetic drug addiction equilibrium E1(s∗, p∗1, p
∗
2, t
∗
1) of system (2) is globally asymptotically stable if

R0 > 1.
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Proof. Let us consider the positive solution of the system (2) about E1(s∗, p∗1, p
∗
2, t
∗
1) and construct the following Lyapunov

function:

L = (s− s∗ − s∗ln s
s∗

) + (p1 − p∗1 − p∗1ln
p1

p∗1
) +

β(N)a2s
∗

a1a2 − ηρ

(
p2 − p∗2 − p∗2ln

p2

p∗2

)
+

β(N)ηs∗

a1a2 − ηρ
(t1 − t∗1 − t∗1ln

t1
t∗1

).

Differentiating L with respect to t along the solution of (2), a little algebraic manipulation yields

dL

dt
= (1− s∗

s
)
ds

dt
+ (1− p∗1

p1
)
dp1

dt
+
β(N)a2s

∗

a1a2 − ηρ
(1− p∗2

p2
)
dp2

dt
+

β(N)ηs∗

a1a2 − ηρ
(1− t∗1

t1
)

= (1− s∗

s
)(δ − δs− β(N)s(p1 + bp2)

a+ s
) + (1− p∗1

p1
)(
β(N)s(p1 + bp2)

a+ s
− a0p1)

+
β(N)a2s

∗

a1a2 − ηρ
(αp1 + ηt1 − a1p2) +

β(N)ηs∗

a1a2 − ηρ
(γp1 + ρp2 − a2t1).

Here,

δ = δs∗ +
β(N)s∗(p∗1 + bp∗2)

a+ s∗
, a0 =

β(N)s∗(p∗1 + bp∗2)

a+ s∗
1

p∗1
,

a1 =
αp∗1 + ηt∗1

p∗2
and a2 =

γp∗1 + ρp∗2
t∗1

.

and we assume

m1 =
s

s∗
, m2 =

p1

p∗1
, m3 =

p2

p∗2
and m4 =

t1
t∗1
.

Substituting these values, we get

= − δ
s
(s− s∗)2 + β(N)(1− 1

m1
)
[
s∗(p∗1+bp∗2)

a+s∗ − s(p1+bp2)
a+s

]
+ β(N)(1− 1

m1
)
[
s(p1+bp2)

a+s
− p1

s∗(p∗1+bp∗2)

a+s∗

]
+ β(N)a2s

∗

a1a2−ηρ
(1− 1

m3
) [αp∗1(m2 −m3) + ηt∗1(m4 −m3)]

+ β(N)ηs∗

a1a2−ηρ
(1− 1

m4
) [γp∗1(m2 −m4) + ρp∗2(m3 −m4)]

= − δ
s
(s− s∗)2 + β(N)(1− 1

m1
)
[
{ s

∗p∗1
a+s∗ −

sp1
a+s
}+ b{ p

∗
2s

∗

a+s∗ −
sp2
a+s
}
]

+ β(N)(1− 1
m2

)
[
{ sp1
a+s
− s∗p∗1

a+s∗ p1}+ b{ sp2
a+s
− p∗2s

∗

a+s∗ p1}
]

+ β(N)a2s
∗

a1a2−ηρ
(1− 1

m3
)[αp∗1(m2 −m3)

+ ηt∗1(m4 −m3)] + β(N)ηs∗

a1a2−ηρ
(1− 1

m4
) [γp∗1(m2 −m4) + ρp∗2(m3 −m4)]

= − δ
s
(s− s∗)2 + β(N)

(a+s)(a+s∗)
(1− 1

m1
)[s∗p∗1{a(1−m1m2) + s(1−m2)}+ s∗p∗2{a(1−m1m3)

+ s(1−m3)}] + β(N)
(a+s)(a+s∗)

(1− 1
m2

)[s∗p∗1{a(m1m2 − p1) + s(m2 − p1)}+ s∗p∗2{a(m1m3 − p1)

+ β(N)a2s
∗

a1a2−ηρ
[αp∗1(1− m2

m3
+m2 −m3) + ηt∗1(m4 −m3 + 1− m4

m3
)]

+ s(m3 − p1)}] + β(N)ηs∗

a1a2−ηρ
[γp∗1(1− m2

m4
+m2 −m4) + ρp∗2(m3 −m4 + 1− m3

m4
)]

=
β(N)s∗p∗1
a+s∗ [1− p1 − 1

m1
− a(m1 −m2 − p1)− s(1− m2

m1
− p1

m2
)] +

β(N)s∗p∗2
a+s∗ [1− p1 − 1

m1

− a(m1m3
m2

−m3 − p1
m2

)− s(m3
m2
− p1

m2
)− m3

m1
] + β(N)a2s

∗

a1a2−ηρ
[αp∗1(1− m2

m3
+m2 −m3)

+ ηt∗1(m4 −m3 + 1− m4
m3

)] + β(N)ηs∗

a1a2−ηρ
[γp∗1(1− m2

m4
+m2 −m4) + ρp∗2(m3 −m4 + 1− m3

m4
)].

Since R0 > 1, then s∗, p∗1, p
∗
2, t
∗
1 > 0. Let us choose 1 + m2 < m4 < m3 − 1, p1

m2
< Min{(m1

m2
− 1), (1 − m2

m1
)} and

m1(1 + m2
2) > m1m3 > m2m3 + p1. Then using the condition, we see that dL

dt
is negative definite. Consequently, L is a

Lyapunov function and the theorem is established.

7. Sensitivity Analysis

In this section, we shall discuss the sensitivity analysis of the system with respect to some important parameters, especially

the treatment rates γ, ρ and the effective contact rate β(N), taking β(N) = β1 for example, we calculate the following
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partial derivatives.

∂R0

∂γ
= − β1bδ(α+ ρ+ δ)

(a+ 1)(a1a2 − ηρ)a2
0

< 0,

∂R0

∂ρ
= − β1bδ(αa2 + ηγ)

a0(a+ 1)(a1a2 − ηρ)2
< 0,

∂R0

∂β
= R∗0 > 0.

From the above discussion it is clear that increasing the treatment rates γ and ρ can decrease the basic reproduction number

R0, and decreasing or increasing the contact rate also can obtain the basic reproduction number R0 are same effect. It

is concluded that reducing contact with drug-users and improving the treatment effect can serve as control strategies. In

addition, from the method of Arriola and Hyman [3], we also examine the sensitivity of R0 to the parameters γ, ρ and β,

normalized forward sensitivity index with respect to each of those parameters are computed as follows:

Aγ = |
∂R0
R0

∂γ
γ

| = | γ
R0

∂R0

∂γ
| < δ(α+ ρ+ δ)

δ(α+ ρ+ δ) + η(α+ γ + δ)
< 1

Aρ = |
∂R0
R0

∂ρ
ρ

| = | ρ
R0

∂R0

∂ρ
| < b(αa2 + ηγ)

δ(αa2 + ηγ) + δ(ρ+ η + δ)
< 1

Aβ = |
∂R0
R0

∂β
β

| = | β
R0

∂R0

∂β
| = 1.

From the above discussion it is clear that the basic reproduction number (R0) is more sensitive to changes in γ,ρ and β. If

β will increase R0 will increase in same proportion and if β will decrease R0 will also decrease in same proportion. On the

other hand, the size of the increase in γ or ρ will lead to a smaller size of the increase in R0. This sensitivity analysis tells

us that the controlling psychological addiction is better than drugs treatment.

8. Numerical Simulations

Numerical simulations are equally important beside the analytical findings to verify them. In this section, we present

computer simulations of different solutions of the system (2) using MATLAB.
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 time 
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Figure 1. Here δ = 0.02, β = 0.08, b = 0.5, a = 1.0, α = 0.03, γ = 0.0008, η = 0.005, ρ = 0.1, R0 = 0.7986 < 1. So E0 is locally asymptotically
stable.
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Figure 2. Here δ = 0.02, β = 0.16, b = 0.5, a = 1.0, α = 0.03, γ = 0.0008, η = 0.005, ρ = 0.1, R0 = 1.5972 > 1. So E∗ is locally asymptotically
stable.

From Table 2, we fix δ = 0.02, β = 0.0007, b = 0.01, a = 1.0, α = 0.03, γ = 0.0008, η = 0.005, ρ = 0.1 in their ranges and

take the total population N = 54 million in South African. If β(N) = β, let β = 0.0007, then R0 = 0.0061 < 1, the E0 is

globally asymptotically stable (see figure 3).
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Figure 3. Here δ = 0.02, β = 0.0007, b = 0.01, a = 1.0, α = 0.03, γ = 0.0008, η = 0.005, ρ = 0.1, R0 = 0.0061. So E0 is globally asymptotically
stable.

If β(N) = β, let β = 0.7, then R0 = 6.0536 > 1, the E∗ is globally asymptotically stable (see figure 4).
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Figure 4. Here δ = 0.02, β = 0.7, b = 0.01, a = 1.0, α = 0.03, γ = 0.0008, η = 0.005, ρ = 0.1, R0 = 6.0536. So E∗ is globally asymptotically
stable.

If β(N) = β
N
, let β = 0.0007, then R0 = 0.00086 < 1, the E0 is globally asymptotically stable (see figure 5).
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Figure 5. Here δ = 0.02, β = 0.0007, b = 0.01, a = 1.0, α = 0.03, γ = 0.0008, η = 0.005, ρ = 0.1, R0 = 0.00086. So E0 is globally asymptotically
stable.

If β(N) = β
N
, let β = 0.9, then R0 = 2.0331 > 1, the E∗ is globally asymptotically stable (see figure 6).
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Figure 6. Here δ = 0.02, β = 0.9, b = 1.5, a = 1.0, α = 0.03, γ = 0.0008, η = 0.005, ρ = 0.1, R0 = 2.0331. So E∗ is globally asymptotically
stable.

9. Conclusion

Synthetic drugs are created using man-made chemicals, not natural ingredients. For instance, K2 (also known as Spice),

Ecstasy (also known as Molly), and bath salts are all types of synthetic drugs. Compared with the traditional ones, the

spread of synthetic drugs has its common characteristics. For instance, it is widely believed that the synthetic drugs toxicity

is not greater than the traditional ones, so if someone sucks it only a little, he will not become addict. Depend on this wrong

psychology, many people neglect precautions and be captured by synthetic drugs.

In this paper, we have considered a model with psychological and physiological addicts. The basic reproduction number

R0 is obtained by the method of next generation matrix. Then we have discussed the local and global stabilities analysis

of the model using the basic reproduction number. The system (2) is locally as well as globally asymptotically stable at

drug-free equilibrium E0 when R0 < 1 under some conditions. when R0 > 1, the drug addiction equilibrium is locally as

well as globally asymptotically stable. It is understood that if changing the value of basic reproduction number R0 from

more than 1 to less than 1, the drug addiction could be eliminated. The next focus of this paper, we analyze the sensitivity

of parameters γ, ρ and β about R0. If β will increase R0 will increase in same proportion and if β will decrease R0 will

also decrease in same proportion. On the other hand, the size of the increase in γ or ρ will lead to a smaller size of the
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increase in R0. This sensitivity analysis tells us that the controlling psychological addiction is better than drugs treatment.

Consequently, how to design the rational measures to control the drugs transmission is urgent. By the meanings of the

parameters, we point out the following model. For example, the government departments could introduce the severe harm

to the public. Schools and families should reinforce the health awareness for youths, et al. According to a series of measures,

people will realize the danger of synthetic drugs and decrease the interest, which could lead to a lower contact rate. Already,

medical staffs and medical researchers also try their best to help addicts keeping away from drugs.

The next study of this paper is to set up an optimal control problem relative to the drug abuse epidemic model so as to

minimize the drug addiction as well as to minimize the cost of treatment. Also we can study this model by using distributed

time delays. Then the model will be more realistic and significant biologically. We leave this for future investigation.
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