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Abstract: As a generalization of intuitionistic fuzzy sets, neutrosophic sets (NSs) can be better handle the incomplete, indeterminate

and inconsistent information, which have attracted the widespread concerns for researchers. In this paper, some new
correlation coefficient and ranking method are introduced using neutrosophic fuzzy operators and fuzzy average operator

in a single-valued neutrosophic environment. Firstly, the definition and operational laws of single-valued neutrosophic

numbers (SVNNs) are introduced. Then, the single-valued neutrosophic average operator and the single-valued ranking
techniques in neutrosophic are developed, and few properties of on these operators are also analyzed. Furthermore, a

method for solving multi-criteria decision-making (MCDM) problems is explored based on the correlation coefficient and
raking technique. Finally, an illustrative example is shown to verify the effectiveness and practicality of the proposed

method.
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1. Introduction

In the real world, the decision-making problems with incomplete or inaccurate information are difficult to be precisely

expressed by decision-makers. Under these circumstances, Zadeh [1] firstly proposed the theory of fuzzy sets (FSs), where

the membership degree is presented using a crisp value between zero and one, have been applied successfully in many different

fields. However, FSs only have a membership and lack non-membership degree. In order to solve the problem, Atanassov

[1] proposed the intuitionistic fuzzy sets (IFSs), which is an extension of Zadeh’s FSs. IFSs have been widely extended

and got more attention in solving MCDM problems [3]. Although the theories of FSs and IFSs have been generalized,

it can not handle all kinds of uncertainties in many cases. The indeterminate information and inconsistent information

existing commonly in the real world can not be deal with by FSs and IFSs. For example, during a voting process, forty

percent vote ”yes”, thirty percent vote ”no”, twenty percent are not sure, and ten percent give up. This issue is beyond

the scope of IFSs, which cannot distinguish the information between unsure and giving up. Therefore, on the basis of

IFSs, Smarandache introduced neutrosophic logic and neutrosophic sets (NSs) by adding an independent indeterminacy-

membership. Then, the aforementioned example can be expressed as x(0.4, 0.2, 0.3) with respect to NSs. Moreover, true-

membership, indeterminacy-membership and false-membership in NSs are completely independent, whereas the uncertainty
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is dependent on the true-membership and false-membership in IFSs. So the notion of NSs is more general and overcomes

the aforementioned issues.

From scientific or engineering point of view, the neutrosophic set and set-theoretic operators will be difficult to apply in the

real application without specific description. Therefore, a single-valued netrosophic set (SVNS) is proposed [8], which is an

extension of NSs, and some properties of SVNS are also provided. Ye [9] proposed the correlation coefficient and weighted

correlation coefficient of SVNSs, and proved that the cosine similarity degree is a special case of the correlation coefficient

in SVNS. Majumdar [11] defined similarity measures between two SVNSs and introduced a measure of entropy of SVNSs.

Ye [12] proposed the cross-entropy of SVNSs. Furthermore, Ye [13] introduced the concept of simplified neutrosophic sets

(SNSs), and proposed a MCDM method using a simplified neutrosophic weighted arithmetic average operator and a simplified

neutrosophic weighted geometric average operator. Liu [14] proposed a multiple attribute decision-making method based on

single-valued neutrosophic normalized weighted Bonferroni mean. Wang [15] proposed the concept of interval neutrosophic

set (INS) and gave the set-theoretic operators of INS. Zhang [16] defined the operations for INSs, and developed two interval

neutrosophic number aggregation operators. Ye [17] defined the Hamming and Euclidean distances between INSs, and

proposed the similarity measures between INSs based on the relationship between similarity measures and distances. Liu

[18] proposed some Hamacher aggregation operators for the interval-valued intuitionistic fuzzy numbers. Peng [19] defined

multi-valued NSs, and discussed operations based on Einstein. Liu [20] proposed the concept of the interval neutrosophic

hesitant fuzzy set, presented the operations and developed generalized hybrid weighted aggregation operators.

Information aggregation is very important in MCDM and MCGDM problems, so various aggregation operators have been

proposed and developed in the past years. Yager [21] and Xu [22] proposed weighted arithmetic average operator and

weighted geometric average operator, which are two of the most common operators. Zhao [23] developed generalized

aggregation operators for intuitionistic fuzzy sets (IFSs). The NSs is an extension of IFSs, so it is significant meaningful

to research the aggregation operators for NSs. However, until to now, there are a few researches on aggregation operators

for SVNSs, and apply them to decision-making problems. Many traditional aggregation operators do not consider the

relationship of different input arguments in the decision process. Yager [18] firstly defined the power average operator

which makes the arguments support each other. Xu [25] introduced the power geometric operator. Zhou [26] developed a

generalized power average operator. Liu [27] defined intuitionistic trapezoidal fuzzy power generalized aggregation operator.

However, power average operators have not been applied to handle MCDM problems under single-valued neutrosophic

environment. Therefore, the aim of the paper is to develop single-valued neutrosophic power average aggregation operators.

Meanwhile, we will discuss its properties, such as idempotency, commutativity.

The rest of paper is organized as follows. In Section 2, we introduce some concepts and operations of SVNS. New power

aggregation operators for SVNN are defined, and some properties are discussed in Section 3. Section 4 establishes the detail

decision method for multi-criteria decision making based on the proposed operators under single-valued neutrosophic fuzzy

information environment. Section 5 presents an illustrative example according to our method. Finally, the main conclusions

of this paper are summarized in Section 6.

2. Preliminaries

In this Section, some concepts and definitions with respect to SVNs are introduced, which will be utilized in the remainder

of the paper.

Definition 2.1 ([8]). Let X be a universe set with generating element x. A neutrosophic set (NS) A in X is

{(x, TA(x), IA(x), FA(x)) : x ∈ X} where TA(x) is the truth-membership function, IA(x) is the indeterminacy-membership,
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& FA(x) is the falsity-membership function, and all are real standard or non-standard subsets of ]0−, 1+[. There is no

restriction on these three membership functions, but 0− ≤ sup(TA(x) + IA(x) + FA(x)) ≤ 3+.

Definition 2.2 ([9]). Let X be a universe set with generating element x. A single-valued neutrosophic set (SVNS) in X is

{(x, TA(x), IA(x), FA(x)) : x ∈ X}. Here 0 ≤ sup(TA(x) + IA(x) + FA(x)) ≤ 3, and each of memberships TA(x), IA(x),

FA(x) is in [0, 1] for all x in X. Note that A SVNS or simplified neutrosophic (SNS) is a subclass of NS, implies that SVNS

is also an special case of SNS.

Further a SVNS is an example of NS, and SNS is a subclass of NS, so that SVNS is also an special case of SNS. x =

(Tx, Ix, Fx) is used to represent an element in SVNSs, and called it as a single-valued neutrosophic number (SVNN). The

set of all single-valued neutrosophic numbers is noted as SVNNS.

Definition 2.3 ([13]). Let and be two SVNNs, then the operational relations are defined as follows:

(1). x⊕ y = (T1 + T2 − T1T2, I1 + I2 − I1I2, F1 + F2 − F1F2).

(2). x⊗ y = (T1T2, I1I2, F1F2).

(3). λx = (1− (1− T1)λ, 1− (1− I1)λ, 1− (1− F1)λ), λ > 0.

(4). xλ = (Tλ1 , I
λ
1 , F

λ
1 ), λ > 0.

There are some limitations related to definition 3[16], and some novel operations are defined.

Definition 2.4. Let x = (T1, I1, F1) and y = (T2, I2, F2) be two SVNNs, then operational relations are defined as follows:

(1). x⊕ y = (T1 + T2 − T1T2, I1I2, F1F2).

(2). x⊗ y = (T1T2, I1 + I2 − I1I2, F1 + F2 − F1F2).

(3). λx = (1− (1− T )λ1 , I
λ
1 , F

λ
1 ).

(4). xλ = (Tλ1 , 1− (1− I)λ1 , 1− (1− F )λ1 ), λ > 0

Definition 2.5. Let x = (T1, I1, F1) and y = (T2, I2, F2) be any two SVNNs, then the Hamming distance between x and y

can be defined as follows:

d(x, y) = |T1 − T2|+ |I1 − I2|+ |F1 − F2| (1)

Definition 2.6. Let x(T, I, F ) be a SVNN, and the cosine similarity measure S(x) between SVNN x and the ideal alternative

(1, 0, 0) can be defined as follows:

S(x) =
T√

T 2 + I2 + F 2
(2)

3. Rank Techniques in Multi-Criteria Decision-Making Method

Definition 3.1. Let ãj = (tj , 1−fj), j = 1, 2, . . . , n be a collection of vague values, and let the vague fuzzy weighted averaging

operator VWA is defined as VWA : Qn → Q if VMAw(ã1, ã2, . . . , ãn) =
n∑
j=1

wj ãj = (1−
n∏
j=1

(1− tj)wj ,
n∏
j=1

(1− fj)wj where

the weight vector w = (w1, w2, . . . , wm)T of the attributes can be determined in advance. Note that wi > 0 for each i = 1 to

n, and
n∑
j=1

wj = 1.
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Definition 3.2. Let ãj = (tj , fj), j = 1, 2, ..., n be a collection of vague values, and let the vague fuzzy hybrid weighting

average operator VHA is defined as V HA : Qn → Q if V HAw(ã1, ã2, . . . , ãn) = (1−
n∏
j=1

(1− tj)wj , 1−
n∏
j=1

(1− fj)wj where

the weight vector w = (w1, w2, . . . , wm)T of the attributes can be determined in advance. Note that wi > 0 for each i = 1 to

n, and
n∑
j=1

wj = 1.

3.1. Model Assumptions and procedures

Let A = {A1, A2, ..., An} be a set of alternatives, G = {G1, G2, ..., Gn} be the set of alternatives, ω = (ω1, ω2, ..., ωn) is

the weighting vector of the attribute Gj , j = 1, 2, . . . , n, where ωj ∈ [0, 1],
n∑
j=1

ωj= 1. Let D = {D1, D2, ..., Dt} be the set

of decision makers, V = (V1, V2, ..., Vn) be the weighting vector of the decision makers, with Vk ∈ [0, 1],
t∑

k=1

Vk = 1. Let

R̃k =
(
r̃
(k)
ij

)
m×n

=
(
t
(k)
ij , f

(k)
ij

)
m×n

be the vague decision matrix, where t
(k)
ij is the degree of the truth membership value

that the alternative Ai satisfies the attribute Gj given by the decision maker Dk and f
(k)
ij is the degree of false membership

value that the alternative for the alternative Ai, where t
(k)
ij , f

(k)
ij ⊂ [0, 1] and, t

(k)
ij + f

(k)
ij ≤ 1, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

and k = 1, 2, . . . , t.

3.2. An algorithm for a developed model of MAGDM

Here the steps mentioned below are studied for a model of MAGDM.

Algorithm: The following steps are now given:

Step 1: Utilize the vague decision matrix Rk = (r̃ij)
(k)
m×n = ((tij)

k, 1 − (fij)
k)m×n, and the FWA operator which has

the associated weighting vector w = (w1, w2, . . . , wm)T generated from the Definition 3.3. Let (r̃ij)
k = (tkij , 1 − fkij),

i = 1, 2, . . . ,m; j = 1, 2, ..., n be a matrix of vague values for each k = 1 to t. Let Rk = ((r̃ij)
(k)) be the collection of t number

of m× n matrices of each the form Rk = ((r̃ij)
(k)) where k = 1, 2, . . ., t. Then the operator FWA : [(Mm×n)k → (Mm×n)],

R1, R2, . . . , Rk) → R(rij) is defined by VWA((r̃ij)
(1), (r̃ij)

(2), . . . , (r̃ij)
(k)) which is found due to the Definition 3.1. Here

V = (V1, V2, ..., Vt) be the weighting vector of the decision maker or generated from the Definition 3.3.

Step 2: Utilizing the information from the collective decision matrix R = (Cij , Dij)m×n found in the Step 1. Then

NFHWA operator R = r̃i = (ti, 1 − fi) is defined by (1 − (
n∏
j=1

(1 − cij)wj ), 1 − (
n∏
j=1

(1 − cij)wj ), i = 1, 2, . . . ,m derive the

collective overall preference values of the alternative Ai, which have weight wi in such a way that the weighting vector as

w = (w1, w2, . . . , wm)T generated from the Definition 3.3.

Step 3: Calculate the distance between the collective overall preference values r̃i and the positive ideal vague value r̃+, or

the negative ideal vague value r̃−, where r̃+ = (1, 0) and r̃− = (0, 1). Using the Euclidean distance function we can find the

distances between the collective overall preference values r̃i and the positive ideal vague value r̃+ as follows:

d(r̃i, r̃
+) =

√√√√1

2

n∑
i=1

[(tr̃i(xi)− tr̃+(xi))2 + ((1− fr̃i(xi))− (1− fr̃+(xi)))2]

Step 4: Rank all the alternatives Ai, where i = 1, 2, . . . ,m and select the best one in accordance with the distance obtained

in Step 3.

3.3. Numerical illustration

Suppose an investment company, wanting to invest a sum of money in the best option, and there is a panel with five possible

alternatives to invest the money; A1 is an IT company; A2 is a multinational company; A3 is a tools company, A4 is an

airlines company and A5 is an automobile company. The investment company must take a decision according to the four
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following attributes; G1 is the risk analysis, G2 is the growth analysis, G3 is the socio-political impact analysis and G4 is

the environmental impact analysis. The five possible alternatives Ai, where i = 1, 2, . . . ,m, are to be evaluated by three

decision makers whose weighting vector is V = (0.12, 0.16, 0.20, 0.24, 0.28)T under the method in Definition 3.3 with r = 1,

α = 0.4, and n = 5, and above said four attributes whose weighting vector is w = (0.16, 0.22, 0.28, 0.34)T , which is generated

from the method in 3.3 with r = 1, α = 0.4, and n = 4:

R1 =



(0.4873, 0.7256) (0.5221, 0.7222) (0.6286, 0.8312) (0.4427, 0.9986)

(0.3271, 0.9001) (0.6676, 0.5413) (0.4261, 0.8126) (0.7710, 0.9442)

(0.5238, 0.8011) (0.4278, 0.5261) (0.5527, 0.6216) (0.5687, 0.7981)

(0.7218, 0.6283) (0.7213, 0.8912) (0.8311, 0.9219) (0.6626, 0.8215)

(0.6257, 0.7983) (0.8321, 0.9426) (0.6256, 0.7119) (0.4136, 0.6295)



R2 =



(0.4351, 0.7846) (0.5121, 0.7221) (0.1009, 0.6221) (0.2217, 0.7184)

(0.6321, 0.8221) (0.6226, 0.8108) (0.3009, 0.5129) (0.6225, 0.9105)

(0.5387, 0.9105) (0.4124, 0.7216) (0.5010, 0.7101) (0.4491, 0.5426)

(0.7317, 0.8119) (0.5221, 0.8001) (0.2091, 0.4104) (0.2101, 0.4110)

(0.5273, 0.6217) (0.3125, 0.7278) (0.4728, 0.7182) (0.6210, 0.8109)



R3 =



(0.3198, 0.8279) (0.4419, 0.9816) (0.2211, 0.5221) (0.6661, 0.7027)

(0.7726, 0.8901) (0.6245, 0.7815) (0.6216, 0.8225) (0.7101, 0.9005)

(0.5201, 0.7287) (0.5821, 0.6286) (0.7117, 0.9211) (0.6105, 0.9117)

(0.3247, 0.4821) (0.7139, 0.8148) (0.4212, 0.5334) (0.5529, 0.7217)

(0.7351, 0.9113) (0.8001, 0.9112) (0.2221, 0.6121) (0.4214, 0.5005)



R4 =



(0.3269, 0.9111) (0.4575, 0.8222) (0.5527, 0.8686) (0.8421, 0.9526)

(0.6321, 0.8108) (0.5010, 0.8126) (0.7317, 0.9191) (0.7351, 0.9005)

(0.3247, 0.4821) (0.7227, 0.9444) (0.5529, 0.8287) (0.1553, 0.9891)

(0.8112, 0.9238) (0.2091, 0.9545) (0.4494, 0.8898) (0.6522, 0.7377)

(0.1983, 0.9916) (0.3125, 0.8278) (0.7428, 0.8482) (0.6217, 0.9197)



R5 =



(0.2686, 0.8812) (0.4427, 0.8986) (0.6676, 0.8126) (0.7717, 0.9552)

(0.5218, 0.7918) (0.4278, 0.7176) (0.8311, 0.9519) (0.4163, 0.7295)

(0.5122, 0.9100) (0.2091, 0.5515) (0.2101, 0.8126) (0.3125, 0.8287)

(0.3198, 0.9728) (0.4491, 0.9861) (0.6261, 0.8522) (0.7101, 0.9552)

(0.5210, 0.6268) (0.7711, 0.9211) (0.6195, 0.7119) (0.7513, 0.9311)


3.4. Explanation: The steps for the given algorithm are as follows

Step 1: Utilizing the decision information given in the matrix R̃k =
(
r̃
(k)
ij

)
5×4

, k = 1, 2, 3, 4, 5 and the VWA operator which

has the associated weighting vector w = (0.28, 0.24, 0.2, 0.16, 0.12)T a collective decision matrix R̃k =
(
r̃
(k)
ij

)
5×4

is obtained

as follows:

R =



(0.3948, 0.8059) (0.4850, 0, 8048) (0.4587, 0.7095) (0.5999, 0.8490)

(0.5917, 0.8510) (0.6001, 0.7085) (0.5777, 0.7582) (0.6901, 0.8921)

(0.4980, 0.7588) (0.4994, 0.6887) (0.5497, 0.7507) (0.4723, 0.7767)

(0.6554, 0.7103) (0.5392, 0.8729) (0.5841, 0.6702) (0.5680, 0.6785)

(0.5702, 0.7763) (0.6829, 0.8594) (0.5562, 0.7118) (0.5570, 0.7115)


421
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Step 2: Utilizing the VFHWA operator, the collective overall preference values of the alternatives Ai, j = 1, 2, . . . , 5 are

found mentioned below. Using the weighting vector w = (0.34, 0.28, 0.22, 0.16),

r̃1 = (0.4718, 0.7960);

r̃2 = (0.6087, 0.8101);

r̃3 = (0.5064, 0.7423);

r̃4 = (0.5961, 0.7594);

r̃5 = (0.6006, 0.7837);

Step 3: Calculating the distances between the collective overall preference values r̃i and the positive ideal vague value

r̃ = (1, 0, 0). The distances calculated from the following distance function:

d(r̃i, r̃) =

√√√√1

2

n∑
i=1

[
(tr̃i − tr̃)

2 + ((1− f r̃i)− (1− f r̃))
2
]

Thus

d(r̃1, r̃) = 0.6755;

d(r̃2, r̃) = 0.6361;

d(r̃3, r̃) = 0.3937;

d(r̃4, r̃) = 0.3324;

d(r̃5, r̃) = 0.6219;

Step 4: Rank the alternatives based on the shortest distance: A1 > A2 > A5 > A3 > A4. Thus A1 is the best alternative.

Let us consider the replacing of Step 3 with the correlation coefficient proposed Robinson & Amirtharaj [?]. Then the

ranking order of the alternatives is obtained as follows. Thus A1 > A2 > A5 > A3 > A4. Thus A1 is the best alternative.

From the comparison, it can be observed that there is a change in the ranking of the best alternatives. In the proposed

method with a distance function, A1 is the best alternative, and with the replacement of Step 3 in the algorithm with

methods as proposed by Robinson & Amirtharaj [?], it can be seen that A1 is the best alternative.

4. Second Model-Correlation Between Neotrosopic Fuzzy Set

4.1. Introduction and formulae

Robinson & Amirtharaj [?] proposed a correlation coefficient for vague sets which took into account the truth mem-

bership degree, false membership degree and the hesitation or vague degree and derived it in the interval [0, 1]. Let

X = {x1, x2, ..., xn} be the finite universal set and A,B ∈ NFS(X) be given by A = {〈x, [tA (x) , 1− fA (x)]〉/x ∈ X},

B = {〈x, [tB (x) , 1− fB (x)]〉/x ∈ X}.

4.2. Formulae

The length of the vague values are given by πA(x) = 1− tA(x)− fA(x), and πB(x) = 1− tB(x)− fB(x).

(a). Now for each A ∈ V S(X), the informational vague energy of A is defined as follows

EV S (A) =
1

n

n∑
i=1

[
t2A (xi) + (1− fA (xi))

2 + π2
A (xi)

]
. (3)
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(b). And for each B ∈ V S(X), the informational vague energy of B is defined as follows

EV S (B) =
1

n

n∑
i=1

[
t2B (xi) + (1− fB (xi))

2 + π2
B (xi)

]
. (4)

(c). The correlation of A and B is given by the formula

CV S (A,B) =
1

n

n∑
i=1

[tA (xi) tB (xi) + (1− fA (xi)) (1− fB (xi)) + πA (xi)πB (xi)] . (5)

(d). Furthermore, the correlation coefficient of A and B is defined by the formula:

KV S(A,B) =
CV S(A,B)√

EV S(A).EV S(B)
, where 0 ≤ KV S(A,B) ≤ 1. (6)

MODEL II: Consider A = {(TA(x), IA(x), FA(x)) : x ∈ X}, and B = {(TB(x), IB(x), FB(x)) : x ∈ X} be two given

neutrosophic fuzzy sets as follows.

A =



〈0.5, 0.6, 0.3〉 〈0.25, 0.3, 0.4〉 〈0.17, 0.8, 0.1〉 〈0.8, 0.6, 0.1〉

〈0.6, 0.2, 0.3〉 〈0.1, 0.4, 0.8〉 〈0.3, 0.5, 0.2〉 〈0.6, 0.25, 0.3〉

〈0.25, 0.45, 0.5〉 〈0.4, 0.75, 0.1〉 〈0.35, 0.75, 0.15〉 〈0.37, 0.68, 0.16〉

〈0.45, 0.38, 0.27〉 〈0.07, 0.8, 0.6〉 〈0.36, 0.74, 0.18〉 〈0.64, 0.24, 0.28〉



B =



〈0.28, 0.7, 0.6〉 〈0.16, 0.3, 0.6〉 〈0.37, 0.5, 0.3〉 〈0.17, 0.6, 0.65〉

〈0.3, 0.1, 0.5〉 〈0.2, 0.6, 0.7〉 〈0.4, 0.4, 0.3〉 〈0.7, 0.35, 0.2〉

〈0.35, 0.55, 0.6〉 〈0.23, 0.1, 0.6〉 〈0.45, 0.65, 0.25〉 〈0.47, 0.89, 0.27〉

〈0.6, 0.2, 0.2〉 〈0.27, 0.6, 0.10〉 〈0.63, 0.47, 0.21〉 〈0.41, 03, 0.28〉


By the formulae, it obtains that EA = 0.9871 by using calculations in (3). EB = 0.9073 by using calculations in (4).

CA,B = 0.8614 by using calculations in (5). Correlation = 0.9102 by using calculations in (6).
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