
Int. J. Math. And Appl., 6(2–B)(2018), 431–441

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Similarity Reductions and Integrable Properties of Lax

Pair for Boiti–Leon–Manna–Pempinelli Equation

Manjit Singh1,∗

1 Yadavindra College of Engineering, Punjabi University Guru Kashi Campus, Talwandi Sabo, Punjab, India.

Abstract: Based on symbolic computational system Maple; classical Lie symmetry reductions of Lax pair for Boiti–Leon–Manna–
Pempinelli(BLMP) equation are presented. We have obtained three interesting reductions for Lax pair along with one

exact solution. Analysis of reductions have shown that, under similar symmetry group compatibility condition of reduced

Lax pair is same as of reduced equation. Moreover, one of the reduced equation is analyzed with Bell polynomials for
Bäcklund transformations and Lax pairs; several new traveling wave solutions are also constructed.
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1. Introduction

Most celebrated technique developed so far for solving nonlinear partial differential equations is Lie group analysis, where

identification of Lie symmetries for given equation is a primary task to solve such equation. Although the involved calculations

demands hard labour but with the availability of symbolic computational packages such as Maple, the calculations becomes

quite manageable. Once the symmetries for given equation are obtained, one may proceed in two different ways to find exact

solution: first; using finite transformation from known symmetry, general solution may be constructed starting with some

seed solution, second; one may go for reduction in number of independent variables leading to group invariant solutions

of equation. In the second case, the reductions are ordinary differential equations which may be integrated using Painlevé

singularity analysis [1, 2] and if reductions able to pass Painlevé property then exact solutions to given equation may be

obtained in term of Painlevé transcedents. In this paper, we would like to reduce for following (2+1)–dimensional Boiti–

Leon–Manna–Pempinelli equation via its Lax pair.

uyt − 3uxuxy − 3uyuxx + uxxxy = 0. (1)

The equation (1) which is also known as Asymmetric–Nizhnik–Novikov–Veselov equation and is (2+1)–dimensional extension

of KdV equation [3] which can be seen by putting y = x. Generalized symmetries for equation (1) are obtained by constructing

formal series symmetries [4], Painlevé analysis is performed on equation (1) and singular manifold method is used to construct

Lax pair for this equation [5], interaction of dromions and invisible excitation called ghoston is also discussed for this equation
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[6], quasi-periodic wave solutions to this equation are also obtained by using Hirota bilinear method [7]. Now the equation

(1) can also be re-written in the following system of equations:

ux + vy = 0, (2a)

ut − uxxx + 3(uv)x = 0. (2b)

The system (2) represents model for incompressible fluid having u and v as velocity components. Employing singular

manifold method, Estévez and Leble [5] able to construct following Lax pair for equation (1),

ψxy − uyψ − ψx = 0, ψt + ψxxx − 3uxψx = 0. (3)

In literature, one may find numerous examples of reductions of partial differential equations using symmetry transformations,

but reduction of associated linear problem or Lax pairs is not that frequent. For example, Legaré [8] has obtained symmetry

reduction of Lax pair for self-dual Yang-Mills(SDYM for abbreviation) equations in four–dimension and the author has proved

that compatibility of the reduced Lax pair is same as reduction of SDYM equation under same symmetry group, Estévez [9]

has obtained five interesting reduction for Lax pair of generalized Hirota-Satsuma system along with some exact solutions,

Mabrouk [10] have also obtained two parameter symmetry reduction of Lax pair of this generalized Hirota-Satsuma system,

Hong-Yan [11] compared the reduction of Swada–Kotera equation with compatibility condition of its reduced Lax pair under

same symmetry group and similar comparison is also carried out by the same author for Konopelchenko–Dubrovsky equation

[12]. Hong–Yan has found that the symmetry reduction of an equation is not same as that of compatibility condition of

reduced Lax pair under same symmetry group, Mabrouk and Kassem [13] has obtained two parameter symmetry reduction

for (3) along with some exact solutions.

This paper is planned as follows. The Section 2 deal with symmetry determination of Lax pair (3) using Lie classical approach

and in Section 3 three interesting reductions for Lax pair are obtained along with exact solution for (1), in Section 4 several

traveling wave solutions are obtained for Section 1, one of the reduced equation is analyzed using Bell polynomials in

Section 5. Finally, conclusion is drawn in Section 6 .

2. Lie Symmetry Analysis of Lax Pair (3)

In order to obtain reductions for Lax pair we use Lie group method of infinitesimal transformations [14–16]. We consider

one parameter Lie group of infinitesimal transformations for (x, y, t, u, ψ), defined by:

x∗ = x+ εξ(x, y, t, u, ψ) +O(ε2), y∗ = y + ετ(x, y, t, u, ψ) +O(ε2),

t∗ = t+ εη(x, y, t, u, ψ) +O(ε2), u∗ = u+ εφ1(x, y, t, u, ψ) +O(ε2),

ψ∗ = ψ + εφ2(x, y, t, u, ψ) +O(ε2),

where ε being group parameter and ξ, τ, η, φ1, φ2 are infinitesimals of transformation having explicit dependence on x, y, t, u

and ψ. These infinitesimals can be determined from overdetermined system of partial differential equations which one obtain

when solution of (3) is invariant under infinitesimal transformation. The vector field associated with group of infinitesimal

transformation may be written as follows:

V = ξ
∂

∂x
+ τ

∂

∂y
+ η

∂

∂t
+ φ1

∂

∂u
+ φ2

∂

∂ψ
, (4)
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To apply Lie classical method [15, 17] we rewrite the system (3) as follow:

∆1 = ψxy − uyψ − ψx = 0,

∆2 = ψt + ψxxx − 3uxψx = 0,

the admitted Lie symmetries for (3) can be obtained, if and only if, following condition is satisfied:

V (3)(∆1,∆2)
∣∣
∆1,∆2=0

= 0. (5)

The condition (5) is nothing but invariance criteria for symmetry determination, and V (3) being third order prolongation of

vector field V . The invariance condition (5) simplifies to following overdetermined system of partial differential equations

for ξ, τ, η, φ1 and φ2:

ξψ = 0, ξu = 0, 3 ξx − ηt = 0, ξy = 0,

τt = 0, τψ = 0, τu = 0, τx = 0, ηψ = 0, ηu = 0,

ηx = 0, ηy = 0, φ2,t = 0, ψφ2,ψ − φ2 = 0,

φ2,u = 0, φ2,x = 0, φ2,y − τy ψ = 0, φ1,ψ = 0,

3φ1,u + ηt = 0, 3φ1,x + ξt = 0, φ1,y = 0.

(6)

The determining equations (6) are determined in algorithmic manner as described by various authors [14, 15, 18, 19] and

underlying procedure is efficiently implemented in symbolic language [20]. The solution of determining system (6) can be

obtained as follow:

ξ = −2
dF1(t)

dt
· x+ F2(t), τ = α(y) + λ, η = −6F1(t),

φ1 = α(y)ψ, φ2 =
1

3

d2F1(t)

dt2
· x2 − 1

3

dF2(t)

dt
· x+ F3(t) + 2

dF1(t)

dt
· u,

(7)

where F1(t), F2(t) and F3(t) are arbitrary functions of t and α(y) is arbitrary function of y such that the corresponding Lie

algebra is infinite dimensional. We shall see in the next section, that the constant λ that appears in (7) plays role of spectral

parameter for reduced Lax pair (3).

Once the infinitesimals are determined, one can go for reduction of Lax pair (3) by solving characteristics equations

dx

−2 dF1(t)
dt
· x+ F2(t)

=
dy

α(y) + λ
=

dt

−6F1(t)
=

du
1
3
d2F1(t)

dt2
· x2 − 1

3
dF2(t)
dt
· x+ F3(t) + 2 dF1(t)

dt
· u

=
dψ

α(y)ψ
, (8)

solution of these characteristics equation is nothing but solution of linear equations in Lagranges form:

ξ
∂u

∂x
+ τ

∂u

∂y
+ η

∂u

∂t
− φ1 = ξ

∂ψ

∂x
+ τ

∂ψ

∂y
+ η

∂ψ

∂t
− φ2 = 0. (9)

The equations (9) are also known as invariant surface conditions and from characteristics equations (8) we can obtain three

different types similarity variables hence three reductions of (3) by imposing conditions on arbitrary functions, that we shall

see in next section.
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3. Similarity Reduction of Lax Pair

In order to obtain reductions for Lax pair (3) we impose restrictions on arbitrary functions which we discuss in following

cases:

• For F1(t) 6= 0, α(y) 6= 0.

Solving characteristics equations (8) we find similarity variables as follow:

z1 =
x

F
1
3

1 (t)
+

1

6

∫
F2(t)

F
4
3

1 (t)
dt, z2 =

∫
1

α(y) + λ
dy +

1

6

∫
1

F1(t)
dt, (10)

and the reduction fields

ψ = Ψ(z1, z2) · exp

(∫
α(y)

α(y) + λ
dy

)
, u =

U(z1, z2)

F1(t)
1
3

− 1

6F1(t)

∫
F

1
3

1 (t) ·Q(z1, t)dt, (11)

where

Q(z1, t) =
1

3F
1
3

1 (t)

d2F1(t)

dt2
· z2

1 −
(

1

9

d2F1(t)

dt2

∫
F2(t)

F
4
3

1 (t)
dt+

1

3F
2
3

1 (t)

dF2(t)

dt

)
· z1 +

F
1
3

1 (t)

108

d2F1(t)

dt2

(∫
F2(t)

F
4
3

1 (t)
dt

)2

+
1

18F
1
3

1 (t)

dF2(t)

dt

∫
F2(t)

F
4
3

1 (t)
dt+

F3(t)

F1(t)
, (12)

by using ansatz (10) and (11) in (3) reduction of Lax pair is obtained follow

Ψz1z2 − Uz2Ψ− λΨz1 = 0, (13a)

Ψz1 +
1

6
Ψz2 + Ψz1z1z1 − 3Uz1Ψz1 = 0, (13b)

further simplification of (13) gives

6Ψz1z1z1z1 + 6Ψz1z1 − 18Uz1Ψz1z1 − 18Uz1z1Ψz1 + Uz2Ψ + λΨz1 = 0, (14a)

Ψz1 +
1

6
Ψz2 + Ψz1z1z1 − 3Uz1Ψz1 = 0, (14b)

which is fourth order spectral problem. In order to obtain compatibility condition for Lax pair (14), we use compatibil-

ity condition Ψz1z1z1z1z2 = Ψz2z1z1z1z1 and after one by one elimination of derivatives of Ψ we arrive at compatibility

condition

6Uz1z2 + Uz2z2 + 6Uz1z1z1z2 − 18Uz1Uz1z2 − 18Uz1z1Uz2 = 0. (15)

• F1(t) = 0, F2(t) 6= 0, α(y) 6= 0.

Solving characteristics equations (8) we find similarity variables as follow:

z1 =
x

F2(t)
−
∫

1

α(y) + λ
dy, z2 = t, (16)

and the reduction fields

ψ = Ψ(z1, z2) · exp

(∫
α(y)

α(y) + λ
dy

)
, u = U(z1, z2)− 1

6F2(t)

dF2(t)

dt
· x2 +

F3(t)

F2(t)
· x, (17)
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substituting ansatz (16) and (17) into (3), the reduction of Lax pair followed as

Ψz1z1 − F2(z2)Uz1Ψ + λΨz1 = 0, (18a)

Ψz1z1z1 + F 3
2 (z2)Ψz2 − 3F2(z2)Uz1Ψz1 − 3F2(z2)F3(z2)Ψz1 = 0, (18b)

using compatibility condition Ψz2z1z1 = Ψz1z1z2 for Lax pair (18) we arrive at(
3F3(z2)

F2(z2)
Uz1 − U

dF2(z2)

dz2
− F2(z2)Uz2 +

3

F2(z2)
U2
z1 −

1

F 2
2 (z2)

Uz1z1z1

)
z1

= 0. (19)

• F1(t) = 0, F2(t) = 0, α(y) 6= 0.

Solving characteristics equations (8) we find similarity variables as follow:

z1 = x, z2 = t, (20)

and reduction fields are found as

ψ = Ψ(z1, z2) · exp

(∫
α(y)

α(y) + λ
dy

)
, u = U(z1, z2) + F3(z2) ·

∫
1

α(y) + λ
dy, (21)

substituting ansatz (20) and (21) into (3), the reduction of Lax pair is found as

F3(z2)Ψ + λΨz1 = 0, (22a)

Ψz2 + Ψz1z1z1 − 3Uz1Ψz1 = 0, (22b)

compatibility condition for reduced Lax pair (22) is found as under:

3F3(z2)Uz1z1 −
dF1(z2)

dz2
= 0, (23)

equation (23) easily integrated to

U(z1, z2) =
1

6F3(z2)

dF3(z2)

dz2
· z2

1 +
1

3F3(z2)
f1(z2) · z1 +

1

3F3(z2)
f2(z2), (24)

where f1(z2) and f2(z2) are arbitrary function, using (24) equations (22) and (23) can be easily integrated to

Ψ(z1, z2) = c · exp

(
− F3(z2)

λ
z1 −

1

λ

∫
f1(z2)dz2 +

1

λ3

∫
F 3

3 (z2)dz2

)
, (25)

from (24) and (25) exact solution to Lax pair (3) may be written as

ψ(x, y, t) = c · exp

(
− F3(t)

λ
x− 1

λ

∫
f1(t)dt+

1

λ3

∫
F 3

3 (t)dt

)
· exp

(
α(y)

α(y) + λ
dy

)
, (26)

u(x, y, t) =
1

6F3(t)

dF3(t)

dt
· x2 +

1

3F3(t)
f1(t) · x+

1

3F3(t)
f2(t) + F3(t)

∫
1

α(y) + λ
dy, (27)

where (27) serve as solution to equation (1) and f1(t), f2(t), F3(t) and α(y) are all arbitrary functions.

Remark 3.1. Here we want to add remark related to comments in paper [8] that symmetry reduction of SDYM equation is

same as that of compatibility condition of its reduced Lax pair under similar symmetry group. On substitution ansätz (10)

along with reduction field u from (11) in equation (1), the reduction is found as under:

6Uz1z2 + Uz2z2 + 6Uz1z1z1z2 − 18Uz1Uz1z2 − 18Uz1z1Uz2 = 0, (28)

which is same as compatibility condition (15) of reduced Lax pair (14) and this agrees with the comments of Legaré [? ]

related to reduction of Lax pairs for SDYM equations. It is straight forward procedure to verify that similar equivalence also

holds for other reductions as well. The equivalence that we have observed is perhaps due to isomorphism between Lie algebra

of BLMP equation and its zero-curvature(Lax pair) representation.
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4. Traveling Wave Solutions for (28)

Based on tanh-function method as described in [21–24] and symbolic manipulation program Maple to carry out tedious

calculations, we have constructed following traveling wave solutions for reduced equation (28); hence for main equation (1)

using invariant transformations (10) and (11)

U1 (z1, z2) =
a−1

csc (λ1z1 + δ)
+ a0 + a1 csc (λ1z1 + δ) ,

u1(x, y, t) =
1

F1(t)
1
3

(
a−1

csc (λ1z1 + δ)
+ a0 + a1 csc (λ1z1 + δ)

)
− Γ(x, t),

U2 (z1, z2) =
a−1

csch (λ1z1 + δ)
+ a0 + a1csch (λ1z1 + δ) ,

u2(x, y, t) =
1

F1(t)
1
3

(
a−1

csch (λ1z1 + δ)
+ a0 + a1csch (λ1z1 + δ)

)
− Γ(x, t),

U3 (z1, z2) =
a−1

sec (λ1z1 + δ)
+ a0 + a1 sec (λ1z1 + δ) ,

u3(x, y, t) =
1

F1(t)
1
3

(
a−1

sec (λ1z1 + δ)
+ a0 + a1 sec (λ1z1 + δ)

)
− Γ(x, t),

U4 (z1, z2) =
a−1

sech (λ1z1 + δ)
+ a0 + a1sech (λ1z1 + δ) ,

u4(x, y, t) =
1

F1(t)
1
3

(
a−1

sech (λ1z1 + δ)
+ a0 + a1sech (λ1z1 + δ)

)
− Γ(x, t),

U5 (z1, z2) =a0 + 2λ1 tan
[(

24λ1
3 − 6λ1

)
z2 + λ1z1 + δ

]
,

u5(x, y, t) =
1

F1(t)
1
3

(
a0 + 2λ1 tan

[(
24λ1

3 − 6λ1

)
z2 + λ1z1 + δ

])
− Γ(x, t),

U6 (z1, z2) =− 2λ1

tan
[(

24λ1
3 − 6λ1

)
z2 + λ1z1 + δ

] + a0,

u6(x, y, t) =
1

F1(t)
1
3

(
− 2λ1

tan
[(

24λ1
3 − 6λ1

)
z2 + λ1z1 + δ

] + a0

)
− Γ(x, t),

U7 (z1, z2) =a0 − 2λ1 tanh
((
−24λ1

3 − 6λ1

)
z2 + λ1z1 + δ

)
,

u7(x, y, t) =
1

F1(t)
1
3

(
a0 − 2λ1 tanh

((
−24λ1

3 − 6λ1

)
z2 + λ1z1 + δ

))
− Γ(x, t),

U8 (z1, z2) =− 2λ1

tanh
[(
−24λ1

3 − 6λ1

)
z2 + λ1z1 + δ

] + a0,

u8(x, y, t) =
1

F1(t)
1
3

(
− 2λ1

tanh
[(
−24λ1

3 − 6λ1

)
z2 + λ1z1 + δ

] + a0

)
− Γ(x, t),

U9 (z1, z2) =
a−1

cn (λ1z1 + δ, ω)
+ a0 + a1cn (λ1z1 + δ, ω) ,

u9(x, y, t) =
1

F1(t)
1
3

(
a−1

cn (λ1z1 + δ, ω)
+ a0 + a1cn (λ1z1 + δ, ω)

)
− Γ(x, t),

U10 (z1, z2) =
a−1

sn (λ1z1 + δ, ω)
+ a0 + a1sn (λ1z1 + δ, ω)

u10(x, y, t) =
1

F1(t)
1
3

(
a−1

sn (λ1z1 + δ, ω)
+ a0 + a1sn (λ1z1 + δ, ω)

)
− Γ(x, t),

where F1(t), F2(t), F3(t) are arbitrary functions; Γ(x, t) = 1
6F1(t)

∫
F

1
3

1 (t) · Q(z1, t)dt and Q(z1, t) is given by (12). The

traveling solutions presented above for equation (1) are new and to best of our knowledge, these solutions have never been

reported before.
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5. Further Analysis of Reduced Equation(28)

In order to explore the integrable aspect of reduced equation (28) we shall analyze equation (28) from slightly different

perspective. Based on Bell polynomial approach(for details see [25, 26] and “Appendix” as well), it possible to bilinearize

equation (28) by introducing transformation

u = c (q)z1 , for q = q(z1, z2), (29)

where c being arbitrary constant to be determined later. Substituting (29) into (28) and integrating once wrt to z1, we get

E(q) = −18 c qz1,z2qz1z1 + qz2,z2 + 6 qz1,z1,z1,z2 + 6 qz1,z2 = 0, (30)

where constant of integration is taken as zero. In order to connect (30) with P-polynomials(also known as even order Bell

polynomials), we must choose c = −1, so that using formulae for even order Bell polynomials as given in [25] (see also (48)

in “Appendix”), we have

E(q) = 6 Pz2,z1(q) + 6 Pz2,3z1(q) + P2z2(q) = 0, (31)

through transformation q = 2 log f and on account of relation between Hirota’s D-operator and even order Bell polynomial

(see formula (47) in “Appendix”). The equation (31) reduce to bilinear equation as follow:

(
6Dz2D

3
z1 +D2

z2 + 6Dz2Dz1
)
f · f = 0. (32)

The bilinear equation (32) will play vital role in construction of Bäcklund transformations and Lax pairs for reduced

Equation(28).

5.1. Bilinear Bäcklund transformations

In order to find bilinear BT for equation (28), suppose q̃ = 2 log f̃ be another solution of (31), then corresponding two field

condition can be written as follows:

E(q̃)− E(q) = [6 Pz2,z1(q) + 6 Pz2,3z1(q) + P2z2(q)]− [6 Pz2,z1(q̃) + 6 Pz2,3 z1(q̃) + P2z2(q̃)] (33)

To proceed further, we introduce new variables

W = log ff̃ , V = log
f̃

f
, q̃ = 2 log f̃ = W + V, q = log f = W − V, (34)

so that equation (33) is written as

E(q̃)− E(q) = [6 Pz2,z1(W − V )− 6 Pz2,z1(W + V )] + [6 Pz2,3z1(W − V )− 6 Pz2,3z1(W + V )] + [P2z2(W − V )−P2z2(W + V )] = 0

= 36Vz1,z2W2 z1 + 36Wz1,z2V2 z1 + 2V2 z2 + 12Vz1,z2 + 12V3 z1,z2 = 0. (35)

Next thing that we have to do is to express (35) in linear combination of binary Bell polynomials Y -polynomials(see [25]

for detailed discussion), for this purpose we choose additional constraint of lowest possible weight

C[V 2
z1 +Wz1,z2 ] + Vz2 = 0. (36)
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On account of constraint (36), the two field equation (35) decouples into

C Y2 z1(V,W ) + Yz2(V,W ) = 0, (37a)

6 Yz2(V,W )− C Yz1,z2(V,W ) + 6 Y2 z1,z2(V,W ) = 0. (37b)

It is straightforward to write (37) in bilinear Bäcklund transformations

(C D2
z1 +Dz2)f · f̃ = 0, (38a)

(−C Dz1Dz2 + 6D2
z1Dz2 + 6Dz2)f · f̃ = 0. (38b)

It is quite interesting to note that the Bell system (37) can be linearize using Cole-Hopf transformation V = logψ which

result in Lax pairs for (28) as follow

C ψ2 z1 − C ψUz1 + ψz2 − λψ = 0, (39a)

CψUz2 − ψz1z2 − 12Uz2 ψz1 − 6Uz1 ψz2 + 6ψ2 z1,z2 + 6ψz2 = 0, (39b)

here λ plays role of spectral parameter.

6. Conclusion

To conclude, starting with symmetry reduction of Lax pair of equation (1) we have obtained three reductions along with one

exact solution which contains several arbitrary functions. It is quite remarkable to note that the process of reducing Lax pair

from (2+1)–dimension to (1+1)–dimensional spectral problem is useful since there are some methods which works better

in lower dimension and sometime as in third case it is possible to directly integrate the reduced spectral problem for exact

solution. During investigation of reductions, we came to realise that, under similar symmetry group the reduced equation

(1) is same as compatibility condition of its reduced Lax pair which is ofcourse a trivial conclusion. It would be a matter of

great importance if there exist symmetry for Lax pair (3) such that symmetry reduction of equation (1) and compatibility

of reduced Lax pair under the symmetry are inequivalent. Moreover, by symmetry reduction of Lax for equation (1) we

have obtained its exact solution (27) which may be useful to analyze dynamics of incompressible fluids by appropriately

choosing arbitrary functions. Nevertheless, the reduced equation (28) is thoroughly investigated for traveling wave solutions

and integrable properties such as Bäcklund transformations and Lax pairs.
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Appendix

For multi-variable C∞ function f = f(x1, x2, ..., xn), the multi-dimensional Bell polynomial is defined as follow:

Yn1x1,...,nlxl(f) = Yn1,...,nl(fr1x1,...,rlxl) = e−f∂n1
x1 ...∂

nl
xl e

f (40)
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where we have considered fr1x1,...,rlxl = ∂r1x1 ...∂
rl
xlf , ri = 0, 1, ..., ni and i = 1, 2, ..., l. These polynomials admits generalised

Faà di Bruno formula

Yn1x1,...,nlxl(f) =
∑ n1!n2! · · · nl!

b1!b2! · · · bk!

k∏
j=1

(
fr1j ,...,rlj
r1j !, ..., rlj !

)bj
(41)

Using partitional formula (41), first few Bell polynomials can be written as follows:

Yx1(f) = fx1 , Y2x1(f) = f2x1+f2
x1 , Yx1,x2(f) = fx1,x2 + fx1fx2

Y3x1(f) = f3x1 + 3fx1f2x1 + f3
x1 , Y2x1,x2 = f2x1,x2 + f2x1fx2 + 2fx1,x2fx1 + f2

x1fx2 , ..... (42)

The multi-dimensional binary Bell polynomials can be defined as follows:

Yn1x1,...,nlxl(V,W ) = Yn1x1,...,nlxl(f)
∣∣
fr1x1,...,rlxl

=


Vr1x1,...,rlxl ,

l∑
i=1

ri is odd

Wr1x1,...,rlxl ,
l∑
i=1

ri is even

(43)

Based on the above definition, the first few lowest order binary Bell polynomials are

Yx(V ) = Vx, Y2x(V,W ) = W2x+V 2
x , Yx,t(V,W ) = Wx,t + VxVt

Y3x(V,W ) = V3x + 3VxW2x + V 3
x , Y2x,t(V,W ) = V2x,t + VtW2x + 2VxWx,t + V 2

x Vt

Y4x(V,W ) = W4x + 4VxV3x + 3W 2
2x + 6V 2

xW2x + V 4
x , ..... (44)

The direct link between binary Bell polynomials and standard Hirota D-operator is given by

Yn1x1,...,nlxl(V,W )

∣∣∣∣
V=log f

g
,W=log fg

= (fg)−1Dn1
x1 · · ·D

nl
xl f · g (45)

where the D-operator is defined by

Dn1
x1 · · ·D

nl
xl f · g = (∂x1 − ∂x′1)n1 · · · (∂xl − ∂x′l)

nlf(x1, ..., xl) · g(x′1, ..., x
′
l)
∣∣
x′1=x1,...,x

′
l
=xl

(46)

For f = g, the identity (45) reduces to particular case

(f)−2Dn1
x1 · · ·D

nl
xl f · f = Yn1x1,...,nlxl(0, q = 2 log f) =


0,

l∑
i=1

ni is odd

Pn1x1,...,nlxl(q),
l∑
i=1

ni is even

(47)

where these even ordered Y -polynomials are called P-polynomials and first few of them are given by following formulas

P2x(q) = q2x, Px,t(q) = qx,t, P3x,t(q) = q3x,t + 3qx,tq2x, ...... (48)

The binary Bell polynomials Yn1x1,...,nlxl(V,W ) can be separated into generalised Bell polynomials Yn1x1,...,nlxl(V ) and

P-polynomials

(fg)−1Dn1
x1 · · ·D

nl
xl f · g =Yn1x1,...,nlxl(V,W )

∣∣∣∣
V=log f

g
,W=log fg
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=Yn1x1,...,nlxl(V, V + q)

∣∣∣∣
V=log f

g
,q=2 log g

=

n1∑
r1=0

· · ·
nl∑
rl=0

l∏
i=1

(
ni

ri

)
Pr1x1,...,rlxl(q)Y(n1−r1)x1,...,(nl−rl)xl(V ) (49)

The key observation here is that, the generalised Bell polynomial can be linearised by Cole-Hopf transformation V = logψ

i.e.

Yn1x1,...,nlxl(V = logψ) =
ψn1x1,...,nlxl

ψ
(50)

such that (49)

(fg)−1Dn1
x1 · · ·D

nl
xl f · g

∣∣
g=exp( q

2
), f

g
=ψ

= ψ−1
n1∑
r1=0

· · ·
nl∑
rl=0

l∏
i=1

(
ni

ri

)
Pr1x1,...,rlxl(q)ψ(n1−r1)x1,...,(nl−rl)xl .

The formula (51) helps to construct associated Lax system for non-linear equations in shortest possible way.
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