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1. Introduction

In this paper, we consider finite simple undirected graphs without loops and multiple edges. A molecular graph is a simple

graph such that its vertices correspond to the atoms and the edges to the bonds (hydrogen atoms are often omitted). A

numerical quantity which recognize the molecular graph in chemical graph theory. This is called a Topological Index. In

chemical science, the physico-chemical properties of chemical compounds are often modeled by means of a molecular graph

based structure descriptors, which are referred to as topological indices. A C4C8 net is a trivalent decoration made by

alternating rhombs C4 and octagons C8. It can cover either a cylinder or a torus. Such a covering can be derived from

a square net by the leapfrog operation. Let TUC4C8(R) denote the C4C8 rhomboidal nanotube. An example is shown in

Figure 1.

Figure 1. Three-dimensional perception of a TUC4C8(R) nanotube
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Multiplicative Connectivity Indices of TUC4C8(R) Nanotube

In this paper, we determine some topological indices for a family of linear [n] TUC4C8(R), lattice of TUC4C8(R) nanotube

and nanotori. Let G be a graph with a vertex set V (G) and an edge set E(G). The degree dG(v) of a vertex v is the number

of vertices adjacent to v. In [1] Todeshine et.al introduced the First and Second multiplicative Zagreb indices. These indices

are defined as

II1(G) =
∏

u∈V (G)

dG(u)2,

II2(G) =
∏

uv∈E(G)

dG(u)dG(v).

In [2], Eliasi et.al introduced a new multiplicative version of the first Zagreb index as

II∗1 (G) =
∏

uv∈E(G)

[dG(u) + dG(v)].

In [3], Kulli proposed the first and second multiplicative hyper-Zagreb indices as

HII1(G) =
∏

uv∈E(G)

[dG(u) + dG(v)]2,

HII2(G) =
∏

uv∈E(G)

[dG(u)dG(v)]2.

In [4], Kulli, Stone, Wang and Wei introduced the general first and second multiplicative Zagreb indices. These indices are

defined as

MZa
1 (G) =

∏
uv∈E(G)

[dG(u) + dG(v)]a,

MZa
2 (G) =

∏
uv∈E(G)

[dG(u)dG(v)]a.

In [6], one of the best known and widely used topological index is the product connectivity index or Randic index introduced

by Randic. These are defined as

χ(G) =
∑

uv∈E(G)

1√
dG(u) + dG(v)

.

From this randic index, In [6], Kulli introduced the multiplicative sum connectivity index, multiplicative product connectivity

index, multiplicative atom bond connectivity index and multiplicative geometric-arithmetic index. The multiplicative sum

connectivity index of a graph G is defined as

XII(G) =
∏

uv∈E(G)

1√
dG(u) + dG(v)

.

The multiplicative product connectivity index of a graph G is defined as

χII(G) =
∏

uv∈E(G)

1√
dG(u)dG(v)

.

The multiplicative atom bond connectivity index of a graph G is defined as

ABCII(G) =
∏

uv∈E(G)

√
dG(u) + dG(v)− 2

dG(u)dG(v)
.
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The multiplicative geometric-arithmetic index of a graph G is defined as follows:

GAII(G) =
∏

uv∈E(G)

2
√
dG(u)dG(v)

dG(u) + dG(v)
.

Recently many other multiplicative indices were studied in [7–13]. Also various topological indices like Wiener index,

eccentric connectivity index and Schultz molecular topological index for TUC4C8(R) nanotube in [14–16]. In this paper,

we compute the multiplicative Zagreb, multiplicative hyper-Zagreb, multiplicative sum connectivity, multiplicative product

connectivity, general multiplicative Zagreb, multiplicative ABC and multiplicative GA indices for linear [n] TUC4C8(R),

lattice of TUC4C8(R) nanotube and nanotori.

2. Results and Discussion

Throughout this paper, we using the following Notations.

Result 2.1.

|V | : Number of vertices in the Molecular graph.

|E| : Number of edges in the Molecular graph.

|E1| : Number of edges having endpoints (2,2).

|E2| : Number of edges having endpoints (2,3).

|E3| : Number of edges having endpoints (3,3).

C : Number of Columns.

R : Number of Rows.

2.1. Results for linear [n] TUC4C8(R)

Figure 2. The molecular graph of a linear [n] TUC4C8(R)

Lemma 2.2. It holds that

Nanostructure |V | |E| |E1| |E2| |E3|

T 4C 5C − 1 4 4C − 4 C − 1

Table 1. Computing the number of vertices and edges for linear [n] TUC4C8(R)

Proof. In this case we take R = 1, C = 2. Here there exist three types of edges, namely [E1] = uv, [E2] = xy and

[E3] = ab. Also d(u) = d(v) = 2; d(a) = d(b) = 3; d(x) = 3, d(y) = 2. Therefore, Number of edges of type 1, type 2 and

type 3 are 4, 4, 1. Now, it is easy to see that T = T [n] has 4C vertices and 4C − 1 edges.
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Figure 3. Basic Structure of a TUC4C8(R)

R C |V | |E| |E1| = (2, 2) |E2| = (2, 3) |E3| = (3, 3)

1 1 4 4 4 0 0

1 2 8 9 4 4 1

1 3 12 14 4 8 2

Table 2. Computing numbers edges and vertices for linear [n] TUC4C8(R) from Figure 3.

From the table, by using an algebraic method we obtain |E1| = 4, |E2| = 4C − 4 and |E3| = C − 1, |V | = 4C and

|E| = 5C − 1.

Theorem 2.3. Let T be a linear [n] TUC4C8(R). Then

(1). II∗1 (T ) = 2C+7 × 3C−1 × 54C−4.

(2). II2(T ) = 24C+4 × 36C−6.

(3). HII1(T ) = 22C+14 × 32C−2 × 58C−8.

(4). HII2(T ) = 28C+8 × 312C−12.

(5). XII(T ) = 2
−(7+C)

2 × 3
(1−C)

2 × 5
(4−4C)

2 .

(6). χII(T ) = 2−2(C+1) × 33−3C .

(7). MZa
1 (T ) = 2aC+7a × 3aC−a × 54aC−4a.

(8). MZa
2 (T ) = 2a(4C+4) × 3a(6C−6).

(9). ABCII(T ) = 2−C × 31−C .

(10). GAII(T ) =
(

2
√

6
5

)4C−4

.

Proof. From the definitions of multiplicative indices and partition of edges described in Table 1 of Lemma 2.2, we can see

that

(1). II∗1 (T ) =
∏

uv∈E(T )

[dT (u) + dT (v)]

=
∏

uv∈E1

4×
∏

uv∈E2

5×
∏

uv∈E3

6

= 44 × 54C−4 × 6C−1

= 2C+7 × 3C−1 × 54C−4.
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(2). II2(T ) =
∏

uv∈E(T )

dT (u)dT (v)

=
∏

uv∈E1

4×
∏

uv∈E2

6×
∏

uv∈E3

9

= 44 × 64C−4 × 9C−1

= 24C+4 × 36C−6.

(3). HII1(T ) =
∏

uv∈E(T )

[dT (u) + dT (v)]2

=
∏

uv∈E1

42 ×
∏

uv∈E2

52 ×
∏

uv∈E3

62

= 48 × 52(4C−4) × 62(C−1)

= 22C+14 × 32C−2 × 58C−8.

(4). HII2(T ) =
∏

uv∈E(T )

[dT (u)dT (v)]2

=
∏

uv∈E1

42 ×
∏

uv∈E2

62 ×
∏

uv∈E3

9
2

= 48 × 62(4C−4) × 92(C−1)

= 28C+8 × 312C−12.

(5). XII(T ) =
∏

uv∈E(T )

1√
dT (u) + dT (v)

=
∏

uv∈E1

1√
4
×

∏
uv∈E2

1√
5
×

∏
uv∈E3

1√
6

=

(
1

2

)4

×
(

1√
5

)4C−4

×
(

1√
6

)C−1

= 2
−(7+C)

2 × 3
(1−C)

2 × 5
(4−4C)

2 .

(6). χII(T ) =
∏

uv∈E(T )

1√
dT (u)dT (v)

=
∏

uv∈E1

1√
4
×

∏
uv∈E2

1√
6
×

∏
uv∈E3

1√
9

=

(
1

2

)4

×
(

1√
6

)4C−4

×
(

1√
9

)C−1

= 2−2(C+1) × 33−3C .

(7). MZa
1 (T ) =

∏
uv∈E(T )

[dT (u) + dT (v)]a

=
∏

uv∈E1

4a ×
∏

uv∈E2

5a ×
∏

uv∈E3

6a

= 44a × 5a(4C−4) × 6a(C−1)

= 2aC+7a × 3aC−a × 54aC−4a.
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(8). MZa
2 (T ) =

∏
uv∈E(T )

[dT (u)dT (v)]a

=
∏

uv∈E1

4a ×
∏

uv∈E2

6a ×
∏

uv∈E3

9a

= 44a × 6a(4C−4) × 9a(C−1)

= 2a(4C+4) × 3a(6C−6).

(9). ABCII(T ) =
∏

uv∈E(T )

√
dT (u) + dT (v)− 2

dT (u)dT (v)

=
∏

uv∈E1

√
2 + 2− 2

2× 2
×

∏
uv∈E2

√
3 + 2− 2

3× 2
×

∏
uv∈E3

√
3 + 3− 2

3× 3

= 2−C × 31−C

(10). GAII(T ) =
∏

uv∈E(T )

2
√
dT (u)dT (v)

dT (u) + dT (v)

=
∏

uv∈E1

2
√

2× 2

2 + 2
×

∏
uv∈E2

2
√

3× 2

3 + 2
×

∏
uv∈E3

2
√

3× 3

3 + 3
=

(
2
√

6

5

)4C−4

.

2.2. Results for TUC4C8(R) Nanotube

Figure 4. 2-dimensional lattice of TUC4C8(R) nanotube

Lemma 2.4. It holds that

Nanostructure |V | |E| |E1| |E2| |E3|

G 4RC 6RC − C −R 4 4C + 4R− 8 6RC− 5C− 5R+ 4

Table 3. Computing the number of vertices and edges for TUC4C8(R) nanotube

Proof.

R C |V | |E| |E1| = (2, 2) |E2| = (2, 3) |E3| = (3, 3) No. of Square No. of Octagon

Case 1: R = C

2 2 16 20 4 8 8 4 1

3 3 36 48 4 16 28 9 4

4 4 64 88 4 24 60 16 9

Case 2: R < C

2 3 24 31 4 12 15 6 2

3 4 48 65 4 20 41 12 6

4 5 80 111 4 28 79 20 12
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R C |V | |E| |E1| = (2, 2) |E2| = (2, 3) |E3| = (3, 3) No. of Square No. of Octagon

Case 3: R > C

3 24 31 4 12 15 6 2

4 3 48 65 4 20 41 12 6

5 4 80 111 4 28 79 20 12

Table 4. Computing numbers edges and vertices for TUC4C8(R) nanotube from Figure 4

From the table, by using an algebraic method we obtain |E1| = 4, |E2| = 4C+4R−8, |E3| = 6RC−5C−5R+4, |V | = 4RC

and |E| = 6RC − C −R. Also we find Number of Square= RC and Number of Octagon= (R− 1)(C − 1).

Theorem 2.5. Let G be a 2-dimensional lattice of TUC4C8(R) nanotube. Then

(1). II∗1 (G) = 212−5C−5R+6RC × 34−5C−5R+6RC × 5−8+4C+4R.

(2). II2(G) = 24C+4R × 312RC−6C−6R.

(3). HII1(G) = 212RC−10C−10R+24 × 312RC−10C−10R+8 × 58C+8R−16.

(4). HII2(G) = 28C+8R × 324RC−12C−12R.

(5). XII(G) = 2
−6RC+5C+5R−12

2 × 3
(−6RC+5C+5R−4)

2 × 5
(−4C−4R+8)

2 .

(6). χII(G) = 2−2(R+C) × 33(−2RC+R+C).

(7). MZa
1 (G) = 2C(6R−5)a+(12−5r)a × 3C(6R−5)a+(4−5R)a × 5a(4C+4R−8).

(8). MZa
2 (G) = 24a(R+C) × 36a(2RC−C−R).

(9). ABCII(G) = 26RC−7C−7R+6 × 3−6RC+5C+5R−4.

(10). GAII(G) =
(

2
√

6
5

)4C+4R−8

.

Proof. From the definitions of multiplicative indices and partition of edges described in Table 3 of Lemma 2.3, we can see

that

(1). II∗1 (G) =
∏

uv∈E(G)

[dG(u) + dG(v)]

=
∏

uv∈E1

4×
∏

uv∈E2

5×
∏

uv∈E3

6

= 44 × 54C+4R−8 × 66RC−5C−5R+4

= 212−5C−5R+6RC × 34−5C−5R+6RC × 5−8+4C+4R.

(2). II2(G) =
∏

uv∈E(G)

dG(u)dG(v)

=
∏

uv∈E1

4×
∏

uv∈E2

6×
∏

uv∈E3

9

= 44 × 64C+4R−8 × 96RC−5C−5R+4

= 24C+4R × 312RC−6C−6R
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(3). HII1(G) =
∏

uv∈E(G)

[dG(u) + dG(v)]2

=
∏

uv∈E1

42 ×
∏

uv∈E2

52 ×
∏

uv∈E3

62

= 48 × 52(4C+4R−8) × 62(6RC−5C−5R+4)

= 212RC−10C−10R+24 × 312RC−10C−10R+8 × 58C+8R−16

(4). HII2(G) =
∏

uv∈E(G)

[dG(u)dG(v)]2

=
∏

uv∈E1

42 ×
∏

uv∈E2

62 ×
∏

uv∈E3

9
2

= 48 × 62(4C+4R−8) × 92(6RC−5C−5R+4)

= 28C+8R × 324RC−12C−12R

(5). XII(G) =
∏

uv∈E(G)

1√
dG(u) + dG(v)

=
∏

uv∈E1

1√
4
×

∏
uv∈E2

1√
5
×

∏
uv∈E3

1√
6

=

(
1

2

)4

×
(

1√
5

)4C+4R−8

×
(

1√
6

)6RC−5C−5R+4

= 2
−6RC+5C+5R−12

2 × 3
(−6RC+5C+5R−4)

2 × 5
(−4C−4R+8)

2

(6). χII(G) =
∏

uv∈E(G)

1√
dG(u)dG(v)

=
∏

uv∈E1

1√
4
×

∏
uv∈E2

1√
6
×

∏
uv∈E3

1√
9

=

(
1

2

)4

×
(

1√
6

)4C+4R−8

×
(

1√
9

)6RC−5C−5R+4

= 2−2(R+C) × 33(−2RC+R+C)

(7). MZa
1 (G) =

∏
uv∈E(G)

[dG(u) + dG(v)]a

=
∏

uv∈E1

4a ×
∏

uv∈E2

5a ×
∏

uv∈E3

6a

= 44a × 5a(4C+4R−8) × 6a(6RC−5C−5R+4)

= 2C(6R−5)a+(12−5r)a × 3C(6R−5)a+(4−5R)a × 5a(4C+4R−8).

(8). MZa
2 (G) =

∏
uv∈E(G)

[dG(u)dG(v)]a

=
∏

uv∈E1

4a ×
∏

uv∈E2

6a ×
∏

uv∈E3

9a

= 44a × 6a(4C+4R−8) × 9a(6RC−5C−5R+4)

= 24a(R+C) × 36a(2RC−C−R)
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(9). ABCII(G) =
∏

uv∈E(G)

√
dG(u) + dG(v)− 2

dG(u)dG(v)

=
∏

uv∈E1

√
2 + 2− 2

2× 2
×

∏
uv∈E2

√
3 + 2− 2

3× 2
×

∏
uv∈E3

√
3 + 3− 2

3× 3

=

(
1√
2

)4

×
(

1√
2

)4C+4R−8

×
(

2

3

)6RC−5C−5R+4

= 26RC−7C−7R+6 × 3−6RC+5C+5R−4

(10). GAII(G) =
∏

uv∈E(G)

2
√
dG(u)dG(v)

dG(u) + dG(v)

=
∏

uv∈E1

2
√

2× 2

2 + 2
×

∏
uv∈E2

2
√

3× 2

3 + 2
×

∏
uv∈E3

2
√

3× 3

3 + 3

= (1)4 ×
(

2
√

6

5

)4C+4R−8

× (1)6RC−5C−5R+4

=

(
2
√

6

5

)4C+4R−8

2.3. Results for TUC4C8(R) nanotori

Figure 5. 2-dimensional lattices of TUC4C8(R) nanotori

Lemma 2.6. It holds that

Nanostructure |V | |E| |E2| |E3|

K 4RC 6RC − C 4C 6RC − 5C

Table 5. Computing the number of vertices and edges for TUC4C8(R) nanotori

Proof.

R C |V | |E| |E2| = (2, 3) |E3| = (3, 3) No. of Square No. of Octagon

Case 1: R = C

2 2 16 22 8 14 4 1

3 3 36 51 12 39 9 4

4 4 64 92 16 76 16 9

Case 2: R < C

2 3 24 33 12 21 6 2

3 4 48 68 16 52 12 6

4 5 80 115 20 95 20 12
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R C |V | |E| |E2| = (2, 3) |E3| = (3, 3) No. of Square No. of Octagon

Case 3: R > C

3 2 24 34 8 26 6 2

4 3 48 69 12 57 12 6

5 4 80 116 16 100 20 12

Table 6. Computing numbers edges and vertices for TUC4C8(R) nanotori from Figure 5.

From the table, by using an algebraic method we obtain, |E2| = 4C, |E3| = 6RC − 5C, |V | = 4RC and |E| = 6RC − C.

Also we find Number of Square= RC and Number of Octagon= (R− 1)(C − 1).

Theorem 2.7. Let K be a 2-dimensional lattice of TUC4C8(R) nanotori. Then

(1). II∗1 (K) = 54C × 66RC−5C .

(2). II2(K) = 24C × 3C(12R−6).

(3). HII1(K) = 58C × 612RC−10C .

(4). HII2(K) = 28C × 3C(24R−12).

(5). XII(K) =
(
1
5

)2C × ( 1√
6

)6RC−5C

.

(6). χII(K) = 2−2C × 3C(3−6R).

(7). MZa
1 (K) = 54Ca × 6a(6RC−5C).

(8). MZa
2 (K) = 24Ca × 3C(12R−6)a.

(9). ABCII(K) = 2C(6R−7) × 3C(5−6R).

(10). GAII(K) =
(

2
√
6

5

)4C
.

Proof. From the definitions of multiplicative indices and partition of edges described in Table 5 of Lemma 2.6, we can see

that

(1). II∗1 (K) =
∏

uv∈E(K)

[dK(u) + dK(v)]

=
∏

uv∈E2

5×
∏

uv∈E3

6

= 54C × 66RC−5C

(2). II2(K) =
∏

uv∈E(K)

dK(u)dK(v)

=
∏

uv∈E2

6×
∏

uv∈E3

9

= 64C × 96RC−5C

= 24C × 3C(12R−6)

(3). HII1(K) =
∏

uv∈E(K)

[dK(u) + dK(v)]2

=
∏

uv∈E2

52 ×
∏

uv∈E3

62

= 52(4C) × 62(6RC−5C)

= 58C × 612RC−10C
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(4). HII2(K) =
∏

uv∈E(K)

[dK(u)dK(v)]2

=
∏

uv∈E2

62 ×
∏

uv∈E3

9
2

= 62(4C) × 92(6RC−5C)

= 28C × 3C(24R−12)

(5). XII(K) =
∏

uv∈E(K)

1√
dK(u) + dK(v)

=
∏

uv∈E1

1√
4
×

∏
uv∈E2

1√
5
×

∏
uv∈E3

1√
6

=

(
1√
5

)4C

×
(

1√
6

)6RC−5C

=

(
1

5

)2C

×
(

1√
6

)6RC−5C

(6). χII(K) =
∏

uv∈E(K)

1√
dK(u)dK(v)

=
∏

uv∈E2

1√
6
×

∏
uv∈E3

1√
9

=

(
1√
6

)4C

×
(

1√
9

)6RC−5C

= 2−2C × 3C(3−6R)

(7). MZa
1 (K) =

∏
uv∈E(K)

[dK(u) + dK(v)]a

=
∏

uv∈E2

5a ×
∏

uv∈E3

6a

= 5a(4C) × 6a(6RC−5C)

(8). MZa
2 (K) =

∏
uv∈E(K)

[dK(u)dK(v)]a

=
∏

uv∈E2

6a ×
∏

uv∈E3

9a

= 6a(4C) × 9a(6RC−5C)

= 24Ca × 3C(12R−6)a

(9). ABCII(K) =
∏

uv∈E(K)

√
dK(u) + dK(v)− 2

dK(u)dK(v)

=
∏

uv∈E2

√
3 + 2− 2

3× 2
×

∏
uv∈E3

√
3 + 3− 2

3× 3

=

(
1√
2

)4C

×
(

2

3

)6RC−5C

= 2C(6R−7) × 3C(5−6R)
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(10). GAII(K) =
∏

uv∈E(K)

2
√
dK(u)dK(v)

dK(u) + dK(v)

=
∏

uv∈E2

2
√

3× 2

3 + 2
×

∏
uv∈E3

2
√

3× 3

3 + 3

=

(
2
√

6

5

)4C

× (1)6RC−5C

=

(
2
√

6

5

)4C

3. Conclusion

Chemical graph theory is an important tool for studying molecular structures and has an important effect on the development

of chemical sciences. The study of topological indices is currently one of the most active research fields in chemical graph

theory. We have presented here some multiplicative connectivity indices of TUC4C8(R) Rhomboidal nanotube.
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