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Abstract: The Kundu-Eckhaus equation is a nonlinear partial differential equation which seems in the quantum field theory, weakly
nonlinear dispersive water waves and nonlinear optics. In spite of its importance, exact solution to this nonlinear equation

are rarely found in literature. In this work, we solve this equation and present a new approach to obtain the solution
by means of the combined use of the Adomian Decomposition Method and the Laplace Transform (LADM). Besides, we

compare the behaviour of the solutions obtained with the only exact solutions given in the literature through fractional

calculus. Moreover, it is shown that the proposed method is direct, effective and can be used for many other nonlinear
evolution equations in mathematical physics.
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1. Introduction

Most of the phenomena that arise in the real world can be described by means of nonlinear partial and ordinary differential

equations and, in some cases, by integral or integro-differential equations. However, most of the mathematical methods de-

veloped so far, are only capable to solve linear differential equations. In the 1980’s, George Adomian (1923-1996) introduced

a powerful method to solve nonlinear differential equations. Since then, this method is known as the Adomian decomposition

method (ADM) [3, 4]. The technique is based on a decomposition of a solution of a nonlinear differential equation in a

series of functions. Each term of the series is obtained from a polynomial generated by a power series expansion of an

analytic function. The Adomian method is very simple in an abstract formulation but the difficulty arises in calculating the

polynomials that becomes a non-trivial task. This method has widely been used to solve equations that come from nonlinear

models as well as to solve fractional differential equations [13, 14, 25].

The Kundu-Eckhaus equation has been studied by many researchers and those studies done through varied and differ-

ent methods have yielded much information related to the behavior of their solutions. The mathematical structure of

Kundu-Eckhaus equation was studied for the first time in [18] and [22]. For example, in [27] the authors applied Bäcklund

transformation for obtaining bright and dark soliton solutions to the Eckhaus-Kundu equation with the cubic-quintic non-

linearity. After much research have been related to the equation by various methods, many of them can be found in [9] and

[26] and some applications of the equation nonlinear optics can be found in [21] and [12]. Recently, in [19] the authors obtain
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obtain some new complex analytical solutions to the Kundu-Eckhaus equation which seems in the quantum field theory,

weakly nonlinear dispersive water waves and nonlinear optics using improved Bernoulli sub-equation function method.

In the presente work we will utilize the Adomian decomposition method in combination with the Laplace transform (LADM)

[30] to solve the Kundu-Eckhaus equation. This equation is a nonlinear partial differential equation that, in nonlinear optics,

is used to model some dispersion phenomena. We will decomposed the nonlinear terms of this equation using the Adomian

polynomials and then, in combination with the use of the Laplace transform, we will obtain an algorithm to solve the

problem subject to initial conditions. Finally, we will illustrate our procedure and the quality of the obtained algorithm by

means of the solution of an example in which the Kundu-Eckhaus equation is solved for some initial condition and we will

compare the results with previous results reported in the literature.

Our work is divided in several sections. In “The Adomian Decomposition Method Combined With Laplace Transform”

section, we present, in a brief and self-contained manner, the LADM. Several references are given to delve deeper into

the subject and to study its mathematical foundation that is beyond the scope of the present work. In “The nonlinear

Kundu-Eckhaus Equation” section, we give a brief introduction to the model described by the Kundu-Eckhaus equation and

we will establish that LADM can be use to solve this equation in its nonlinear version. In “The General Solution of the

Nonlinear Kundu-Eckhaus Equation Through LADM” and the “Numerical Example”, we will show by means of numerical

examples, the quality and precision of our method, comparing the obtained results with the only exact solutions available

in the literature [34]. Finally, in the “Conclusion” section, we summarise our findings and present our final conclusions.

2. The Adomian Decomposition Method Combined With Laplace
Transform

The ADM is a method to solve ordinary and partial nonlinear differential equations. Using this method is possible to express

analytic solutions in terms of a series [4, 31]. In a nutshell, the method identifies and separates the linear and nonlinear parts

of a differential equation. Inverting and applying the highest order differential operator that is contained in the linear part

of the equation, it is possible to express the solution in terms of the rest of the equation affected by the inverse operator.

At this point, the solution is proposed by means of a series with terms that will be determined and that give rise to the

Adomian Polynomials [29]. The nonlinear part can also be expressed in terms of these polynomials. The initial (or the

border conditions) and the terms that contain the independent variables will be considered as the initial approximation.

In this way and by means of a recurrence relations, it is possible to find the terms of the series that give the approximate

solution of the differential equation. Given a partial (or ordinary) differential equation

Fu(x, t) = g(x, t) (1)

with initial condition

u(x, 0) = f(x) (2)

where F is a differential operator that could, in general, be nonlinear and therefore includes some linear and nonlinear terms.

In general, equation (1) could be written as

Ltu(x, t) +Ru(x, t) +Nu(x, t) = g(x, t) (3)

where Lt = ∂
∂t

, R is a linear operator that includes partial derivatives with respect to x, N is a nonlinear operator and g is

a non-homogeneous term that is u-independent. Solving for Ltu(x, t), we have

Ltu(x, t) = g(x, t)−Ru(x, t)−Nu(x, t). (4)
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The Laplace transform L is an integral transform discovered by Pierre-Simon Laplace and is a powerful and very useful

technique for solving ordinary and partial differential Equations, which transforms the original differential equation into an

elementary algebraic equation [17]. Before using the Laplace transform combined with Adomian decomposition method we

review some basic definitions and results on it.

Definition 2.1. Given a function f(t) defined for all t ≥ 0, the Laplace transform of f is the function F defined by

F (s) = L{f(t)} =

∫ ∞
0

f(t)e−stdt (5)

for all values of s for which the improper integral converges. In particular L{tn} = n!
sn+1 .

It is well known that there exists a bijection between the set of functions satisfying some hypotheses and the set of their

Laplace transforms. Therefore, it is quite natural to define the inverse Laplace transform of F (s).

Definition 2.2. Given a continuous function f(t), if F (s) = L{f(t)}, then f(t) is called the inverse Laplace transform of

F (s) and denoted f(t) = L−1{F (s)}.

The Laplace transform has the derivative properties:

L{f (n)(t)} = snL{f(t)} −
n−1∑
k=0

sn−1−kf (k)(0), (6)

L{tnf(t)} = (−1)nF (n)(s), (7)

where the superscript (n) denotes the n− th derivative with respect to t for f (n)(t), and with respect to s for F (n)(s). The

LADM consists of applying Laplace transform [30] first on both sides of Eq. (4), obtaining

L{Ltu(x, t)} = L{g(x, t)−Ru(x, t)−Nu(x, t).} (8)

An equivalent expression to (8) is

su(x, s)− u(x, 0) = L{g(x, t)−Ru(x, t)−Nu(x, t)} (9)

In the homogeneous case, g(x, t) = 0, we have

u(x, s) =
f(x)

s
− 1

s
L{Ru(x, t) +Nu(x, t)} (10)

now, applying the inverse Laplace transform to equation (10)

u(x, t) = f(x)− L−1[1

s
L{Ru(x, t) +Nu(x, t)}

]
. (11)

The ADM method proposes a series solution u(x, t) given by,

u(x, t) =

∞∑
n=0

un(x, t) (12)

The nonlinear term Nu(x, t) is given by

Nu(x, t) =

∞∑
n=0

An(u0, u1, . . . , un) (13)
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where {An}∞n=0 is the so-called Adomian polynomials sequence established in [29] and [7] and, in general, give us term to

term:

A0 = N(u0)

A1 = u1N
′(u0)

A2 = u2N
′(u0) +

1

2
u2
1N
′′(u0)

A3 = u3N
′(u0) + u1u2N

′′(u0) +
1

3!
u3
1N

(3)(u0)

A4 = u4N
′(u0) + (

1

2
u2
2 + u1u3)N ′′(u0) +

1

2!
u2
1u2N

(3)(u0) +
1

4!
u4
1N

(4)(u0)

...

Other polynomials can be generated in a similar way. For more details, see [29] and [7] and references therein. Some other

approaches to obtain Adomian’s polynomials can be found in [15, 16]. Using (12) and (13) into equation (11), we obtain,

∞∑
n=0

un(x, t) = f(x)− L−1
[1

s
L{R

∞∑
n=0

un(x, t) +
∞∑

n=0

An(u0, u1, . . . , un)}
]
, (14)

From the equation (14) we deduce the following recurrence formulas

 u0(x, t) = f(x),

un+1(x, t) = −L−1
[
1
s
L{Run(x, t) +An(u0, u1, . . . , un)}

]
, n = 0, 1, 2, . . .

(15)

Using (15) we can obtain an approximate solution of (1), (2) using

u(x, t) ≈
k∑

n=0

un(x, t), where lim
k→∞

k∑
n=0

un(x, t) = u(x, t). (16)

It becomes clear that, the Adomian decomposition method, combined with the Laplace transform needs less work in compar-

ison with the traditional Adomian decomposition method. This method decreases considerably the volume of calculations.

The decomposition procedure of Adomian will be easily set, without linearising the problem. In this approach, the solution

is found in the form of a convergent series with easily computed components; in many cases, the convergence of this series is

very fast and only a few terms are needed in order to have an idea of how the solutions behave. Convergence conditions of

this series are examined by several authors, mainly in [1, 2, 10, 11]. Additional references related to the use of the Adomian

Decomposition Method, combined with the Laplace transform, can be found in [5, 20, 30].

3. The Nonlinear Kundu-Eckhaus Equation

In mathematical physics, the Kundu-Eckhaus equation is a nonlinear partial differential equations within the nonlinear

Schrödinger class [18, 22]:

iut + uxx + 2(|u|2)xu+ |u|4u = 0. (17)

In the equation (17) the dependent variable u(x, t) is a complex-valued function of two real variables x and t. The equation

(17) is a basic model that describes optical soliton propagation in Kerr media [24] . The complete integrability and multi-

soliton solutions, breather solutions, and various types of rogue wave solutions associated with the Kundu-Eckhaus equation

have been widely reported by many authors [6, 8, 23, 24]. Nevertheless, in optic fiber communications systems, one always
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has to increase the intensity of the incident light field to produce ultrashort (femtosecond) optical pulses [33]. In this case,

the simple NLS equation is inadequate to accurately describe the phenomena, and higher-order nonlinear terms, such as

third-order dispersion, self-steepening, and self-frequency shift, must be taken into account [27, 28, 32]. Explicitly calculating

the derivatives that appear in equation (17), we obtain

ut = iuxx + 2i(|u|2)xu+ i|u|4u. (18)

To make the description of the the problem complete, we will consider some initial condition

u(x, 0) = f(x)

In the following section we will develop an algorithm using the method described in section 2 in order to solve the nonlinear

Kundu-Eckhaus equation (18) without resort to any truncation or linearization.

4. The General Solution of the Nonlinear Kundu-Eckhaus Equation
Through LADM

Comparing (18) with equation (4) we have that g(x, t) = 0, Lt and R becomes:

Ltu =
∂

∂t
u, Ru = i

∂2u

∂x2
, (19)

while the nonlinear term is given by

Nu = i[2(|u|2)x + |u|4]u. (20)

By using now equation (15) through the LADM method we obtain recursively

 u0(x, t) = f(x),

un+1(x, t) = L−1
[
1
s
L{Run(x, t) +An(u0, u1, . . . , un)}

]
, n = 0, 1, 2, . . .

(21)

Note that, the nonlinear term Nu = i[2(|u|2)x + |u|4]u can be split into three terms to facilitate calculations

N1u = iu3ū2, N2u = 2iu2ūx, N3u = 2iuxuū

from this, we will consider the decomposition of the nonlinear terms into Adomian polynomials as

N1u = iu3ū2 =

∞∑
n=0

Pn(u0, u1, . . . , un) (22)

N2u = 2iu2ūx =

∞∑
n=0

Qn(u0, u1, . . . , un). (23)

N3u = 2iuxuū =

∞∑
n=0

Rn(u0, u1, . . . , un). (24)
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Calculating, we obtain

P0 = iū2
0u

3
0,

P1 = 3iū2
0u

2
0u1 + 2iū0u1u

3
0,

P2 = 3iū2
0u

2
0u2 + 3iū2

0u0u
2
1 + 6iū0ū1u

2
0u1 + 2iū0ū2u

3
0 + iū2

1u
3
0,

P3 = 3iū2
0u

2
0u3 + 6iū2

0u0u1u2 + iū2
0u

3
1 + 6iū0u1u

2
0u2 + 6iū0ū1u0u

2
1 + 2iū0ū3u

3
0 + 3iū2

1u
2
0u1 + 2iū1ū2u

3
0 + 6iū0ū2u

2
0u1,

P4 = 3iū2
0u

2
0u4 + 3iū2

0u
2
1u2 + 6iū2

0u0u1u3 + 3iū2
0u0u

2
2 + 6iū0ū1u

2
0u3 + 2iū0ū1u

3
1 + 12iū0ū1u0u1u2 + 6iū0ū2u0u

2
1

+ 6iū0ū2u
2
0u2 + 6iū0ū3u

2
0u1 + 2iū0ū4u

3
0 + 3iū2

1u
2
0u2 + 3iū2

1u0u
2
1 + 6iū1u2u

2
0u1 + 2iū1ū3u

3
0 + iū2

2u
3
0,

...

Q0 = 2iu2
0ū0x,

Q1 = 2iu2
0ū1x + 4iu0u1ū0x,

Q2 = 2iu2
1ū0x + 2iu2

0ū2x + 4iu0u1ū1x + 4iu0u2ū0x,

Q3 = 2iu2
1ū1x + 2iu2

0ū3x + 4iu0u1ū2x + 4iu0u2ū1x + 4iu0u3ū0x + 4iu1u2ū0x,

Q4 = 2iu2
2ū0x + 2iu2

1ū2x + 4iu0u1ū3x + 4iu0u2ū2x + 4iu0u3ū1x + 4iu0u4ū0x + 4iu1u2ū1x + 4iu1u3ū0x,

...

R0 = 2iu0ū0u0x,

R1 = 2iu0ū0u1x + 2iu0ū1u0x + 2iu1ū0u0x,

R2 = 2iu0ū0u2x + 2iu0ū1u1x + 2iu0ū2u0x + 2iu1ū0u1x + 2iu1ū1u0x + 2iu2ū0u0x,

R3 = 2iu0ū0u3x + 2iu0ū1u2x + 2iu0ū2u1x + 2iu0ū3u0x + 2iu1ū0u2x + 2iu1ū1u1x + 2iu1ū2u0x + 2iu2ū0u1x

+ 2iu2ū1u0x + 2iu3ū0u0x,

R4 = 2iu0ū0u4x + 2iu0ū1u3x + 2iu0ū2u2x + 2iu0ū3u1x + 2iu0ū4u0x + 2iu1ū0u3x + 2iu1ū1u2x + 2iu1ū2u1x

+ 2iu1ū3u0x + 2iu2ū0u2x + 2iu2ū1u1x + 2iu2ū2u0x + 2iu3ū0u1x + 2iu3ū1u0x + 2iu4ū0u0x,

...

Now, considering (22), (23) and (24), we have

N(u) =

∞∑
n=0

An(u0, u1, . . . , un) =

∞∑
n=0

(
(Pn +Qn +Rn)(u0, u1, . . . , un)

)
, (25)

then, the Adomian polynomials corresponding to the nonlinear part Nu = i[2(|u|2)x + |u|4]u are

A0 = iū2
0u

3
0 + 2iu2

0ū0x + 2iu0ū0u0x,

A1 = 3iū2
0u

2
0u1 + 2iū0u1u

3
0 + 2iu2

0ū1x + 4iu0u1ū0x + 2iu0ū0u1x + 2iu0ū1u0x + 2iu1ū0u0x,

A2 = 3iū2
0u

2
0u2 + 3iū2

0u0u
2
1 + 6iū0ū1u

2
0u1 + 2iū0ū2u

3
0 + iū2

1u
3
0 + 2iu2

1ū0x + 2iu2
0ū2x + 4iu0u1ū1x

+ 4iu0u2ū0x + 2iu0ū0u2x + 2iu0ū1u1x + 2iu0ū2u0x + 2iu1ū0u1x + 2iu1ū1u0x + 2iu2ū0u0x,

A3 = 3iū2
0u

2
0u3 + 6iū2

0u0u1u2 + iū2
0u

3
1 + 6iū0u1u

2
0u2 + 6iū0ū1u0u

2
1 + 2iū0ū3u

3
0 + 3iū2

1u
2
0u1 + 2iū1ū2u

3
0 + 6iū0ū2u

2
0u1

+ 2iu2
1ū1x + 2iu2

0ū3x + 4iu0u1ū2x + 4iu0u2ū1x + 4iu0u3ū0x + 4iu1u2ū0x + 2iu0ū0u3x + 2iu0ū1u2x + 2iu0ū2u1x

+ 2iu0ū3u0x + 2iu1ū0u2x + 2iu1ū1u1x + 2iu1ū2u0x + 2iu2ū0u1x + 2iu2ū1u0x + 2iu3ū0u0x,
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A4 = 3iū2
0u

2
0u4 + 3iū2

0u
2
1u2 + 6iū2

0u0u1u3 + 3iū2
0u0u

2
2 + 6iū0ū1u

2
0u3 + 2iū0ū1u

3
1 + 12iū0ū1u0u1u2 + 6iū0ū2u0u

2
1

+ 6iū0ū2u
2
0u2 + 6iū0ū3u

2
0u1 + 2iū0ū4u

3
0 + 3iū2

1u
2
0u2 + 3iū2

1u0u
2
1 + 6iū1u2u

2
0u1 + 2iū1ū3u

3
0 + iū2

2u
3
0 + 2iu2

2ū0x + 2iu2
1ū2x

+ 4iu0u1ū3x + 4iu0u2ū2x + 4iu0u3ū1x + 4iu0u4ū0x + 4iu1u2ū1x + 4iu1u3ū0x + 2iu0ū0u4x + 2iu0ū1u3x + 2iu0ū2u2x

+ 2iu0ū3u1x + 2iu0ū4u0x + 2iu1ū0u3x + 2iu1ū1u2x + 2iu1ū2u1x + 2iu1ū3u0x + 2iu2ū0u2x + 2iu2ū1u1x

+ 2iu2ū2u0x + 2iu3ū0u1x + 2iu3ū1u0x + 2iu4ū0u0x,

...

Using the expressions obtained above for equation (18), we will illustrate, with two examples, the efectiveness of LADM to

solve the nonlinear Kundu-Eckhaus equation.

5. Numerical Example

Using Laplace Adomian decomposition method (LADM), we solve this Kundu-Eckhaus equation subject to the initial

condition u(0, x) = f(x) = βeix. Here i is the imaginary unit and β ∈ R with β 6= 0. To use ADM, the equation (18) is

decomposed in the operators (19) and (20). Through the LADM (21), we obtain recursively

u0(x, t) = f(x),

u1(x, t) = L−1
[1

s
L{Ru0 +A0}

]
,

u2(x, t) = L−1
[1

s
L{Ru1 +A1}

]
,

...

un+1(x, t) = L−1
[1

s
L{Run +An}

]
.

Besides

A0 = iβ5eix,

A1 = −β5(1− β4)(3 + 2e2ix)teix,

A2 = β3 (1− β4) 4iβ6e−ix + 11iβ6eix + 6iβ6e3ix + 14β4e−ix

−β4eix − 14β4e3ix − iβ2eix − 7eix

 t2

2
,

A3 = β3 (1− β4)


86iβ8e−ix − 143β10e−ix − 82β10e3ix

−36β10e5ix + 9iβ8eix − 6iβ8e3ix

−96β6e−ix + 110β6eix + 134β6e3ix

+36β6e5ix − 99iβ4eix − 43β2eix

−18β2e3ix + 24ieix + 8iβ4e−ix


t3

3!
.

With the above, we have

u0(x, t) = βeix,

u1(x, t) = L−1
[1

s
L{iu0,xx + iβ5eix}

]
= L−1

[1

s
L{−iβeix + iβ5eix}

]
= L−1

[ 1

s2

(
iβeix(β4 − 1))

)]
= −iβ(1− β4)teix,

7
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u2(x, t) = L−1
[1

s
L{iu1,xx − β5(1− β4)(3 + 2e2ix)eix}

]
= L−1

[1

s
L{β(1− β4)teix − β5(1− β4)(3 + 2e2ix)eix}

]
= L−1

[ 1

s3

(
(1− β4)(βeix − 3β5eix − 2β5e3ix)

)]
=
[
β(1− β4)(eix − 3β4eix − 2β4e3ix)

] t2
2
,

u3(x, t) = L−1
[1

s
L{iu2,xx +A2}

]
= −β(1− β4)

 4iβ4eix + 18iβ4e3ix − ieix + 7β2eix + 14β6e3ix + β6eix

−14β6e−ix − 6iβ8e3ix − 11iβ8eix − 4iβ8e−ix

 t3

3!
,

u4(x, t) = L−1
[1

s
L{iu3,xx +A3}

]

= −β(1− β4)



143β12e−ix + 82β12e3ix + 36β12e5ix − 86iβ10e−ix

−9iβ10eix + 6iβ10e3ix + 100β8e−ix − 99β8eix

−80β8e3ix − 36β8e5ix + 100iβ6eix − 22iβ6e−ix

+126iβ6e3ix + 39β4eix − 144β4e3ix − 17iβ2eix


t4

4!
.

Thus, the solution approximate of the nonlinear Kundu-Eckhaus equation (18) is given by:

uLADM = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + u4(x, t). (26)

In the following examples, we will compare (26) with the exact solution of (18) found in [34], which is given for α = 1 as

u(x, t) = ±eix · 1(
1 + ( 1

u4
0
− 1)e4it

) 1
4

(27)

with the initial condition u(x, 0) = u0e
ix.

Example 5.1. In this numerical example, we will consider β = 16
√

2. With this value for β we obtain

uLADM (x, t) = 1.04427eix + 0.19758iteix − 0.19758(−2.3784e3ix − 2.5676eix)
t2

2!

+ 0.19758
(
− 5.6569ie−ix + 12.920ie3ix − 18.156e−ix + 18.156e3ix − 10.802ieix

+ 8.9304eix − ieix
) t3

3!
+ 0.19758

(
− 161.1606ie−ix + 172.6550ie3ix + 381.918e−ix

− 146.476e3ix + 9.6329e5ix + 97.2654ieix − 93.6281eix
) t4

4!
.

In Tables 1 and 2 we show, for different times, the values of the exact solution of (18) given in [34] and the values given by

the approximation previous uLADM . The expression for the exact solution of (18) is:

uexact(x, t) =
eix(

1 + (2−
1
4 − 1)e4it

) 1
4

. (28)

Comparing the values of the exact solution with the values given by LADM, we conclude that the approximate solution is

very close to the exact solution when time values are small. As time becomes greater.

The quality of the approximation is also shown in figures 1 and 2 where the real part of the exact uexact and the approximate

solution uLADM (imaginary part of uexact and the approximate solution uLADM respectively) are depicted in the same figure.
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Figure 1. Plot of the real part (left) and imaginary part (right) of the approximate solution uLADM versus the real part of the uexact.

Figure 2. Graph of real part (left) and imaginary part (right) of uLADM versus real part and imaginary part of uex for t = 1, 2, 3, 4,

and 5.

From Tables 1 , 2, 3 and 4, we can conclude that the difference between the exact and the obtained LADM approximate

solution is very small. This fact tells us about the effectiveness and accuracy of the LADM method.

x Re(uex) [34] Re(uLADM ) Error

0.5 0.867245034766 0.867450061289 2.05 × 10−4

1.0 0.548389430252 0.548531893954 1.42 × 10−4

1.5 0.095268967462 0.0953139882595 4.50 × 10−5

2.0 −0.381176661184 −0.381240105952 6.34 × 10−5

2.5 −0.764296949171 −0.764453326013 1.56 × 10−4

3.0 −0.960290688213 −0.960501710624 2.11 × 10−4

3.5 −0.921171775472 −0.921385777806 2.14 × 10−4

4.0 −0.656517885107 −0.656682472129 1.64 × 10−4

4.5 −0.231125519605 −0.231200394673 4.78 × 10−5

5.0 0.250854433879 0.250887602795 3.31 × 10−5

Table 1. Table for the real parts with t = 1.0.
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x Re(uex) [34] Re(uLADM ) Error

0.5 0.851260107762 0.851444733853 1.84 × 10−4

1.0 0.503432273480 0.503521108880 8.88 × 10−5

1.5 0.0323466608364 0.0323179555396 2.87 × 10−5

2.0 −0.446658542510 −0.446797760445 1.39 × 10−4

2.5 −0.816306156888 −0.816521802055 2.15 × 10−4

3.0 −0.986093554388 −0.986332829329 2.39 × 10−4

3.5 −0.914450858558 −0.914655180424 2.04 × 10−4

4.0 −0.618918699965 −0.619038043636 1.19 × 10−4

4.5 −0.171853658076 −0.171858804059 5.14 × 10−6

5.0 0.317287152916 0.317397464537 1.10 × 10−4

Table 2. Table for the real parts with t = 2.0.

x Im(uex) [34] Im(uLADM ) Error

0.5 0.443634458364 0.443712601886 7.81 × 10−5

1.0 0.805105282409 0.805272154752 1.66 × 10−4

1.5 0.969458254291 0.969672999286 2.14 × 10−4

2.0 0.896454034484 0.896664075067 2.10 × 10−4

2.5 0.603966602108 0.604120513019 1.53 × 10−4

3.0 0.163607081464 0.163667179944 6.00 × 10−5

3.5 −0.316809158718 −0.316857586873 4.84 × 10−5

4.0 −0.719659467741 −0.719804565630 1.45 × 10−4

4.5 −0.946312040059 −0.946518282658 2.06 × 10−4

5.0 −0.941274421185 −0.941491313113 2.16 × 10−4

Table 3. Table for the imaginary parts with t = 1.0.

x Im(uex) [34] Im(uLADM ) Error

0.5 0.508147216007 0.508299876291 1.52 × 10−4

1.0 0.854056971297 0.854279457764 2.22 × 10−4

1.5 0.990863793735 0.991101633938 2.37 × 10−4

2.0 0.885072601884 0.885267564246 1.94 × 10−4

2.5 0.562584769106 0.562689120041 1.04 × 10−4

3.0 0.102356564020 0.102344754781 1.18 × 10−5

3.5 −0.382932097747 −0.383057175847 1.25 × 10−4

4.0 −0.774465626762 −0.774673350242 2.07 × 10−4

4.5 −0.976382959913 −0.976622470821 2.39 × 10−4

5.0 −0.939247691931 −0.939460349642 2.12 × 10−4

Table 4. Table for the imaginary parts with t = 2.0.

6. Conclusions

In order to show the accuracy and efficiency of our method, we have solved two examples, comparing our results with the

exact solution of the equation that was obtained in [34]. Our results show that LADM produces highly accurate solutions

in complicated nonlinear problems. We therefore, conclude that the Laplace-Adomian decomposition method is a notable

non-sophisticated powerful tool that produces high quality approximate solutions for nonlinear partial differential equations

using simple calculations and that attains converge with only few terms.
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