International Journal of Mathematics And its Applications

A Note on Construction of Finite Field of Order p and p^{2}

Research Article

S.K.Pandey ${ }^{1 *}$
1 Department of Mathematics, Sardar Patel University of Police, Security and Criminal Justice, Daijar, Jodhpur, Rajasthan, India.

Abstract

In this note we construct finite field of order p (here p is a positive prime) and p^{2} for $p>2$ through even square elements of $Z_{2 p}$. It has been already noticed that a finite field of order $p^{2}, p>2$ can be directly constructed without using the concept of quotient rings. We utilize the same technique to yield a finite field of order p^{2} for $p>2$ however here we use the notion of even square elements of a ring R. It is noticed that for all the finite fields constructed in this article the reducing modulo m is a composite integer. MSC: 12E20.

Keywords: Finite field, matrix field, matrix, even square element.
(C) JS Publication.

1. Introduction

In the mathematical literature [4-6], the most common example of a finite field of order p is Z_{p}. Generally one does not find any other example in the textbooks. Though all finite fields of a given order are algebraically equivalent however it is interesting to yield various examples of a finite field of a given order. Conventionally a finite field of order p^{2} is constructed by using the concept of quotient rings. However in this article we follow the approach given in [2] and we do not use the well known conventional technique to get a finite field of order p^{2}.

In [1] we have given a technique to yield finite matrix fields of order p for each positive prime p. [2] gives a technique to yield a finite field of order p^{2} for each $p>2$. Here we provide some other representations and we utilize the concept of even square elements and the techniques introduced in [1] and [2].

In [3] we have introduced the notion of even square elements and even square rings. It may be noted that an element a of a ring R is called an even square element if $a^{2} \in 2 R$ and a ring R is called an even square ring if every element of R is an even square element. For more details one may refer [3].

It may also be noted that in the case of Z_{p} the reducing modulo p is a prime integer however here in the case of F, F_{1}, F_{2} and F_{3} described in the next section the reducing modulo m is a composite integer. Similarly in the case of finite field of order p^{2} given below the reducing modulo m is a composite integer. It is worth to note that the construction of a finite field of order p^{2} described in [2] is different from the conventional technique. We follow the same approach as described in [2] but here we use the even square elements of $Z_{2 p}$.

[^0]
2. Finite Fields of Order \mathbf{p}

In [1] we have given the following three representations for Z_{p}.
a). $M_{1}=\left\{\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right): x \in Z_{p}\right\}$,
b). $M_{2}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right): a \in Z_{p}\right\}$,
c). $M_{3}=\left\{\left(\begin{array}{ll}a & a \\ a & a\end{array}\right): a \in Z_{p}\right\}$.

It may be noted that M_{3} works for $p>2$. Here we consider some other representations of Z_{p} for $p>2$ based on the notion of even square elements of a ring R. First of all we consider the set F consisting of all even square elements of Z_{m} where $m=2 p$ and $p>2$ is a prime integer.
d). $F=\{x: x \in D\}$. Here D is the set of all even square elements of Z_{m}.

It is easy to verify that F gives a finite field of order p under addition and multiplication modulo m. It is noticed that if we replace Z_{p} by F in M_{1}, M_{2} and M_{3} then we shall obtain F_{1}, F_{2} and F_{3} respectively which are given by
e). $F_{1}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right): a \in F\right\}$,
f). $F_{2}=\left\{\left(\begin{array}{ll}a & a \\ a & a\end{array}\right): a \in F\right\}$,
g). $F_{3}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right): a \in F\right\}$.

One may easily verify that F_{1}, F_{2} and F_{3} all give a finite field of order p under addition and multiplication of matrices modulo m. Clearly the reducing modulo m is a composite integer.

Thus this article gives four distinct finite fields of order p for each $p>2$. These four representations of Z_{p} are distinct from those given in [1] however all representations are algebraically same for a given prime p.

3. Finite Fields of Order p^{2}

In [2] we have noticed that $M=\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right): a, b \in Z_{p}, p>2\right\}$ gives a finite field of order p^{2} under addition and multiplication of matrices modulo p. Here we provide another representation of M using even square elements of $Z_{2 p}$. Let $M^{\prime}=\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right): a, b \in F\right\}$. It is easy to see that M^{\prime} gives a finite field of order p^{2} under addition and multiplication of matrices modulo m. Though M and M^{\prime} are algebraically equivalent however both provide two distinct representations of a finite field of order p^{2} for each $p>2$. Here the reducing modulo m is a composite number. Taking $p=3$ we obtain a finite field of order 9 as under.

$$
M_{9}^{\prime}=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right),\left(\begin{array}{ll}
0 & 4 \\
2 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 2 \\
4 & 0
\end{array}\right),\left(\begin{array}{ll}
2 & 4 \\
2 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 2 \\
4 & 2
\end{array}\right),\left(\begin{array}{ll}
4 & 2 \\
4 & 4
\end{array}\right),\left(\begin{array}{ll}
4 & 4 \\
2 & 4
\end{array}\right)\right\}
$$

One may verify that M_{9}^{\prime} is a finite field of characteristic 3 under addition and multiplication of matrices modulo 6 . This representation of a finite field of order 9 is obtained using M^{\prime} and it is distinct from those given in [2]. Similarly if we take $F=\{0,2,4,6,8\}$ then M^{\prime} shall yield a finite field of order 25 as under.
M_{25}^{\prime} is a finite field of order 25 under addition and multiplication of matrices modulo 10 . Similarly M^{\prime} easily yields a finite field of order 49, 121, 169 and so on.

References

[1] S.K.Pandey, Matrix Field of Finite and Infinite Order, International Research Journal of Pure Algebra, 5(12)(2015), 214-216.
[2] S.K.Pandey, Visualizing Finite Field of Order p² through Matrices, Global Journal of Science Frontier Research (F), XVI(1-1)(2016).
[3] S.K.Pandey, Nil Elements and Even Square Rings, (communicated).
[4] I.N.Herstein, Topics in Algebra, Wiley-India, New Delhi, (2011).
[5] T.W.Hungerford, Algebra, Springer-India, New Delhi, (2005).
[6] W.J.Wickless, A First Graduate Course in Abstract Algebra, Marcel Dekker Inc., New York, (2004).

[^0]: * E-mail: skpandey12@gmail.com

