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1. Introduction

In 2015, Aleksandar Ivic discussed the Laplace Transform of P 2(x) and obtained expression
∞∫
0

P (x)e−sxdx =

πs−2
∞∑
n=1

r(n)e−π
2/n [2]. In practice, many applications of Laplace Transform L[f(x)] =

∞∫
0

f(x)e−sxdx, and the forward

Discrete Laplace Transform L[f(n)] =
∞∑
n=0

f(n)e−sn are discussed and mentioned by several authors and in the citations

[2, 6–8]. A new type generalized Laplace Transform defined as

L`u(k) = ū`(s) = `∆−1
` u(k)esk

∣∣∣∞
0

= `

∞∑
r=0

u(r`)e−sr`. (1)

This transform is introduced in [4]. Outcomes of the Generalized Laplace Transform lies in between the outcomes of the

Discrete Laplace Transform and Laplace Transform. The Generalized Laplace Transform becomes the Discrete Laplace

Transform and the Laplace Transform when ` = 1 and `→ 0 respectively [1, 2]. The general theory on ∆`, ∆α, ∆α(`) and

∆k(`) one can refer [3]. From α difference operator [9], if ∆
α(`)

v(k) = u(k) then we have

v(k) = ∆−1
α(`)u(k)− α[ k

`
]∆−1

α(`)u(ˆ̀(k)) =

[
k
`

]∑
r=1

αr−1u(k − r`), ˆ̀(k) = k − [k/`]` (2)

By replacing the parameter α by variable k, we define k-Difference operator with variable coefficient as

∆
k(`)

v(k) = v(k + `)− kv(k) (3)
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The α-Laplace Transform of u(k) is defined as

L
α(`)

u(k) = ū
α(`)

(s) = `
−1

∆
α(`)

u(k)esk
∣∣∣∞
0
. (4)

and the k-Laplace Transform defined as

L
k(`)

u(k) = ū
k(`)

(s) = `
−1

∆
k(`)

u(k)e−sk
∣∣∣∞
0
. (5)

In this paper, we establish α, k-Discrete Laplace Transform for certain functions using the above said operators.

2. Preliminaries

In this section, we present basic theory of the Generalized difference operator ∆`,∆α(`),∆k(`) for getting results on k-

Discrete Laplace Transform. Let smr and Smr are Stirling numbers of first and second kinds respectively, ` > 0, m is

non-negative integer and k
(m)
` = k(k − `)(k − 2`) · · · (k − (m− 1)`). From [5] we use the following identities:

(i) k
(m)
` =

m∑
r=1

smr `
m−rkr, (ii) km =

m∑
r=1

Smr `
m−rk

(r)
` , (iii) ∆`k

(m)
` = (m`)k

(m−1)
` , (6)

(iv) ∆−1
` k

(m)
` =

k
(m+1)
`

`(m+ 1)
(v) ∆−1

` km =

m∑
r=1

Smr `
m−rk

(r)
`

(r + 1)`
(vi) ∆−1

` eisk =
eisk

(eis` − 1)
, (7)

(vii) ∆−1
` u(k)

∣∣∣b
a

=

M−1∑
r=0

u(a+ r`), M =
b− a
`

and (viii) ∆−1
` u(k)

∣∣∣∞
0

=
∞∑
r=0

u(r`). (8)

Lemma 2.1 ([5]). Let ` > 0 and u(k), w(k) are real valued bounded functions. Then

∆−1
` (u(k)w(k)) = u(k)∆−1

` w(k)−∆−1
` (∆−1

` w(k + `)∆`u(k)). (9)

Lemma 2.2 ([3]). (1(k)-series of u(k)): The first order generalized k-difference equation v(k + `)− kv(k) = u(k), k ∈ [`, ∞), ` > 0,
has a summation solution of the form[

k
`

]∑
r=0

k
(r)
` u(k − r`) =

−1
∆

(k+`)(`)
u(k + `)− k([

k
`
]+1)

`

−1
∆

ˆ̀(k)(`)

u(ˆ̀(k)). (10)

Lemma 2.3. Let ` > 0 and u(k), v(k) are real valued bounded functions. Then

−1
∆
k(`)

(u(k)v(k)) = u(k)
−1
∆
k(`)

v(k)−
−1
∆
k(`)

(
−1
∆
k(`)

v(k + `)∆`u(k)). (11)

Proof. From (3), we get

∆
k(`)

(u(k)w(k)) = u(k) ∆
k(`)

w(k) + w(k + `)∆`u(k). (12)

By taking ∆
k(`)

w(k) = v(k) and w(k) =
−1
∆
k(`)

v(k) in equation (12), we obtain (11)

Theorem 2.4. Let k ∈ (−∞,∞) and ` > 0. Then we have

−1
∆
α(`)

(e−sk cos ak) =
e−sk(e−s` cos a(k − `))− α cos ak

e−2s` − 2αe−s` cos a`+ α2
, (13)

−1
∆
α(`)

(e−sk sin ak) =
e−sk(e−s` sin a(k − `)− α sin ak)

e−2s` − 2αe−s` cos a`+ α2
. (14)

Proof. The proof follows by the definition of
−1
∆
α(`)

and solving the following relations:

∆
α(`)

(e−sk cos ak) = e−sk cos ak(e−s` cos a`− α)− e−ske−s` sin ak sin a`,

∆
α(`)

(e−sk sin ak) = e−sk sin ak(e−s` cos a`− α) + e−ske−s` cos ak sin a`.
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3. Generalized Alpha Laplace Transform and its Properties

In this section we derive α-Laplace and k-Laplace Transforms for the the parameter α and variable k. When α = 1 and ` → 0, the
α-Laplace Transform becomes Laplace Transform.

Theorem 3.1. For n ∈ N(0), the α-ifference equation ∆
α(`)

v(k) = kn has a closed form solution of the form

−1
∆
α(`)

kn =

n∑
m=0

(n
m

) (−1)m`mkn−m

(1− α)m+1
(`

(α)
m ). (15)

Where

`
(α)
m =

m∑
r=1

(−1)r+1
(m
r

)
(`

(α)
m−r)(1− α)r−1 and `

(α)
0 = `

(α)
1 = 1, α 6= 1, m ∈ N(0). (16)

Proof. Taking v(k) = k0 in (2), we get ∆
α(`)

k0 = (k + `)0 − αk0. Taking ` as constant and using
−1
∆
α(`)

, we arrive

−1
∆
α(`)

k0 =
1

1− α
=

1

1− α
(`

(α)
0 ), where `

(α)
0 = 1. (17)

Taking v(k) = k in (2), we get ∆
α(`)

k = (k + `)− αk = (1− α)k + `, which gives

−1
∆
α(`)

k =
k

1− α
−

`

(1− α)

−1
∆
α(`)

1. (18)

By substituting (17) in (18), we get

−1
∆
α(`)

k =
k

1− α
−

`

(1− α)2
=

k

1− α
(`

(α)
0 )−

`

(1− α)2
(`

(α)
1 ), where `

(α)
0 = `

(α)
1 = 1. (19)

Now taking v(k) = k2 in (2), we get ∆
α(`)

k2 = (k + `)2 − αk2, which gives

−1
∆
α(`)

k2 =
k2

1− α
−

2`

(1− α)

−1
∆
α(`)

k −
`2

(1− α)

−1
∆
α(`)

1, (20)

By substituting (17) and (19)in (20), we get

−1
∆
α(`)

k2 =
k2

1− α
−

2`k

(1− α)2
+

`2

(1− α)3
(1 + α) =

(2

0

) k2

1− α
(`

(α)
0 )−

(2

1

) `k

(1− α)2
(`

(α)
1 ) +

(2

2

) `2

(1− α)3
(`

(α)
2 ), (21)

where `
(α)
2 = 1 + α =

(2
1

)
(`

(α)
1 )−

(2
2

)
(`

(α)
0 )(1− α). Taking v(k) = k3 in (2), we get ∆

α(`)
k3 = (k + `)3 − αk3, which gives

−1
∆
α(`)

k3 =
k3

1− α
−

3`

(1− α)

−1
∆
α(`)

k2 +
3`2

(1− α)

−1
∆
α(`)

k −
`3

(1− α)

−1
∆
α(`)

1 (22)

From (17), (19)and (21), we arrive

−1
∆
α(`)

k3 =
k3

1− α
−

3`k2

(1− α)2
+

3`2k(1 + α)

(1− α)3
−
`3(α2 + 4α+ 1)

(1− α)4
(23)

−1
∆
α(`)

k3 =
(3

0

) k3

1− α
(`

(α)
0 )−

(3

1

) `k2

(1− α)2
(`

(α)
1 ) +

(3

2

) `2k(`
(α)
2 )

(1− α)3
−
`3(`

(α)
3 )

(1− α)4
(24)

where `
(α)
3 = 1 + 4α+ α2 =

(3
1

)
(`

(α)
2 )−

(3
2

)
(`

(α)
1 )(1− α) +

(3
3

)
(`

(α)
0 )(1− α)2. Continuing this process, we get the proof of the theorem.

The expression given in (16) is called poly-binomial numbers. Which generates the following table of poly-binomial numbers for `m for
m = 0, 1, 2, ..., n.
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Table of poly-binomial numbers

`
(α)
0 :1

`
(α)
1 :1

`
(α)
2 : 1 + α

`
(α)
3 : 1 + 4α+ α2

`
(α)
4 : 1 + 11α+ 11α2 + α3

`
(α)
5 : 1 + 26α+ 66α2 + 26α3 + α4

.............................................................................

.............................................................................

Corollary 3.2. The α-difference equation ∆
α(`)

v(k) = k
(n)
` has a closed form solution of the form

−1
∆
α(`)

k
(p)
` =

p∑
n=1

spn`
p−n

{
n∑

m=0

(n
m

) (−1)m`mkn−m

(1− α)m+1
(`αm)

}
. (25)

Proof. The proof (25) follows from (6) and (15).

Theorem 3.3. Let ` > 0 and k ∈ [`,∞). Then L
α(`)

(k
(n)
` ) =

(−1)n+1`n+1n!e−ns`

(e−s` − α)n+1
.

Proof. Taking u(k) = k
(n)
` in (4) we get the proof.

Corollary 3.4. Let ` > 0 and k ∈ [`,∞). Then L
α(`)

(kn) =
n∑
q=0

Snq `
n−q(−`)q+1q!e−qs`

(e−s` − α)q+1
.

Proof. The proof follows from (6) and Theorem 3.3.

Proposition 3.5. If L
α(`)

(u(k)) = ū
α(`)

(s) and L
α(`)

(v(k)) = v̄
α(`)

(s), then

L
α(`)

(au(k) + bv(k)) = a ū
α(`)

(s) + b v̄
α(`)

(s) and L
α(`)

(u(ak)) =
1

a
ū
α(`)

( s
a

)
. (26)

Proof. From (4), we have L
α(`)

(u(ak)) =
−1
∆
α(`)

u(ak)e−sk
∣∣ ∞
k=0

. By substituting ak by t we get the proof of (26).

Proposition 3.6. If L
α(`)

(u(k)) = ū
α(`)

(s), then L
α(`)

(e−aku(k)) = ū
α(`)

(s+ a)

Proof. The proof follows by taking u(k) = e−aku(k) in (4).

Theorem 3.7. Let k ∈ (0, ∞), ` > 0 and s > 0. If e(s±na)` 6= α, then we have L
α(`)

(e±nak) =
`e(s±na)`

e(s±na)` − α
.

Proof. The proof follows by taking u(k) = e±nak in (4).

Theorem 3.8. If e−2s` − 2αe−s` cos a`+ α2 6= 0, then we have

(i) L
α(`)

(sin ak) =
`e−s` sin a`

e−2s` − 2αe−s` cos a`+ α2
,

(ii) L
α(`)

(cos ak) =
`(α− e−s` cos a`)

e−2s` − 2αe−s` cos a`+ α2
. (27)

Proof. The proof of (27) follows from (4).
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Theorem 3.9. If S1 = sin(n− 2r)a`, C1 = cos(n− 2r)a` and e−2s` − 2αe−s`C1 + α2 6= 0, then we have the following relations

L
α(`)

(sinn ak) =
(−1)

n−1
2

2n−1

[n/2]∑
r=0

(−1)r
(n
r

) `e−s`S1

e−2s` − 2αe−s`C1 + α2
, n is odd, (28)

L
α(`)

(sinn ak) =
(−1)

n
2

2n−1

[n/2]−1∑
r=0

(n
r

) (−1)r`(α− e−s`C1)

e−2s` − 2αe−s`C1 + α2
+
(n
n
2

)2−n(−1)
n
2

(α− e−s`)
, n is even, (29)

L
α(`)

(cosn ak) =
1

2n−1

[n/2]∑
r=0

(n
r

) `(α− e−s`C1)

e−2s` − 2αe−s`C1 + α2
, n is odd, (30)

L
α(`)

(cosn ak) =
1

2n−1

[n/2]−1∑
r=0

(n
r

) `(α− e−s`C1)

e−2s` − 2αe−s`C1 + α2
+
(n
n
2

) 2−n

(α− e−s`)
, n is even. (31)

Proof. From sinn ak =
(−1)

n−1
2

2n−1

[n/2]∑
r=0

(−1)r
(n
r

)
sin(n−2r)ak, by using (4) and (27) we get the proof of (28). Similarly we can obtain

the proof of (29), (30) and (31).

Example 3.10. From (30), we arrive L
α(`)

(cos5 ak) =
1

24

2∑
r=0

(5
r

) `(α− e−s`C1)

e−2s` − 2αe−s`C1 + α2
. In particular, we take α = 2, ` = 4, s =

5, a = 3 and here we provide MATLAB coding for verification of Alpha Laplace Transform. syms r

symsum(4. ∗ 2. ∧ (−(r + 1)). ∗ ((cos(12 ∗ r)). ∧ 5). ∗ (exp(−20 ∗ r)), r, 0, inf) = 4. ∗ (2− exp(−20). ∗ (cos(5) ∗ 12))./(16. ∗ (exp(−40)−
4 ∗ exp(−20). ∗ (cos(5) ∗ 12) + 4)) + 5. ∗ 4. ∗ (2− exp(−20). ∗ (cos(3) ∗ 12))./(16. ∗ (exp(−40)− 4 ∗ exp(−20). ∗ (cos(3) ∗ 12) + 4)) + 10. ∗
4. ∗ (2− exp(−20). ∗ (cos(1) ∗ 12))./(16. ∗ (exp(−40)− 4 ∗ exp(−20). ∗ (cos(1) ∗ 12) + 4)).

Theorem 3.11. If e−(s±a)` 6= α and s > 0, then we have α-Laplace for hyperbolic functions

L
α(`)

(sinh ak) =
`

2

( e−s`(ea` − e−a`)
(e−(s+a)` − α)(e−(s−a)` − α)

)
, (32)

L
α(`)

(cosh ak) =
`

2

( 2α− e−s`(ea` + e−a`)

(e−(s+a)` − α)(e−(s−a)` − α)

)
. (33)

Proof. From (4), we have L
α(`)

(sinh ak) = (1/2)
−1
∆
α(`)

e−sk(eak − e−ak). Which completes the proof of (32). Similarly we can obtain

(33).

Theorem 3.12. Let E1 = e−(s−(n−2r)a)` 6= 0 and E2 = e−(s+(n−2r)a)` 6= 0. Then we have

L
α(`)

(sinhn ak) =
`

2n

[n/2]∑
r=0

(n
r

)( (−1)r(E1 − E2)

(E1 − α)(E2 − α)

)
, n is odd. (34)

L
α(`)

(sinhn ak) =
`

2n

[n/2]−1∑
r=0

(n
r

)( (−1)r+1(E1 + E2 − 2α)

(E1 − α)(E2 − α)

)
+
(n
n
2

)2−n(−1)
n
2 `

(α− e−s`)
, n is even. (35)
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L
α(`)

(coshn ak) =
`

2n

[n/2]∑
r=0

(n
r

)( 2α− E1 − E2

(E1 − α)(E2 − α)

)
, n is odd. (36)

L
α(`)

(coshn ak) =
`

2n

[n/2]−1∑
r=0

(n
r

)( 2α− E1 − E2

(E1 − α)(E2 − α)

)
+
(n
n
2

) 2−n`

(α− e−s`)
, n is even. (37)

Proof. From sinhnak =
1

2n−1

[n/2]∑
r=0

(−1)r
(n
r

)
sinh(n − 2r)ak, using (4) and (32) we get the proof of (34). Similarly, we can obtain

the proof of (35), (36) and (37).

Proposition 3.13. If L
k(`)

(u(k)) = ū
k(`)

(s) and L
k(`)

(v(k)) = v̄
k(`)

(s), then we have

L
k(`)

(au(k) + bv(k)) = a ū
k(`)

(s) + b v̄
k(`)

(s) and L
k(`)

(u(ak)) =
1

a
ū
k(`)

( s
a

)
, a 6= 0. (38)

Proof. From (5), we have L
k(`)

(u(ak)) =
−1
∆
k(`)

u(ak)e−sk
∣∣ ∞
k=0

. By substituting ak by t we get the proof of (26).

Proposition 3.14. If L
k(`)

(u(k)) = ū
k(`)

(s), then L
k(`)

(e−aku(k)) = ū
k(`)

(s+ a)

Proof. The proof follows by replacing u(k) by e−aku(k) in (5).

Theorem 3.15. For k ∈ [0,∞) and ` > 0, we have

(i)
−1
∆
k(`)

e−sk(e−s`(k + `)n − kn+1) = kne−sk (39)

(ii)
−1
∆
k(`)

e−sk(e−s`(k + `)
(n)
` − kk(n)` ) = k

(n)
` e−sk (40)

(iii)
−1
∆
k(`)

e−sk(e−s` cosn(k + `)n − k cosn k) = e−sk cosn k (41)

(iv)
−1
∆
k(`)

e−sk(e−s` sinn(k + `)n − k sinn k) = e−sk sinn k (42)

Proof. From (3), we have ∆
k(`)

k0e−sk = e−s(k+`) − ke−sk. Now applying
−1
∆
k(`)

we get
−1
∆
k(`)

e−sk(e−s`(k + `) − k) = e−sk. Again by

applying (3), we have ∆
k(`)

ke−sk = (k+ `)e−s(k+`) − k2e−sk. By using
−1
∆
k(`)

, we get
−1
∆
k(`)

e−sk(e−s`(k+ `)− k2) = ke−sk. By repeating

this process, we get the proof of (39). Similarly we can get the proof (40), (41) and (42).

Example 3.16. From (10) and (39), and j = k −
[k
`

]
` = ˆ̀(k) we get,

[
k
`

]∑
r=0

k
(r)
` e−s(k−r`)(e−s`(k − (r − 1)`)− (k − r`)n+1) = (k + `)ne−s(k+`) − k

(
[
k
`

]
+1)

` jne−sj .

In particular, for n = 2, k = 5, ` = 3, and s = 10, we provide MATLAB coding for verification
>> symsum(5.∧r.∗exp(−10.∗(5−r∗3)).∗(exp(−10∗3).∗(5−(r−1).∗3).2−(5−r∗3).∧3), r, 0, 1) = (8).∧2.∗exp(−10.∗(8))−40∗exp(−20).

Theorem 3.17. For k ∈ [0,∞) and ` > 0, we have the identities

−1
∆
k(`)

( 1

(k + `)n
−

1

kn−1

)
=

1

kn
,
−1
∆
k(`)

(kn−1e−s` − (k + `)n

kn−1(k + `)n

)
e−sk =

e−sk

kn
(43)

and
−1
∆
k(`)

(
k
dk/`e
` e−sk

)
((k + `)e−s` − k) = k

dk/`e
` e−sk (44)

Proof. The proof of (43) and (44) follows by taking ∆
k(`)

for
1

kn
,
e−sk

kn
and k

dk/`e
` e−sk.

Theorem 3.18. For k ∈ [0,∞) and ` > 0, we have
−1
∆
α(`)

−1
∆
k(`)

e−sk(e−s` − k) =
e−sk

e−s` − α
.

Proof. From (3) we get ∆
k(`)

esk = esk(es` − k), the proof follows by taking ∆
α(`)

on given expression.
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Theorem 3.19. For k ∈ [0,∞) and ` > 0, we have

[k/`]∑
r=1

αr−1e−s(k−r`+`) + e−sj
n∑

r1=1

r1∑
m=0

snr1`
n−r1

(r1
m

)
(−1)m`m(kr1−m − α[k/`]jr1−m)(`

(α)
m )

(1− α)m+1
(45)

− e−sj
[k/`]∑
r=1

αr−1(k − r`)(n)` =
e−s(k+`)

(e−s` − α)
− α[k/`] e

−s(j+`)

(e−s` − α)
. (46)

Proof. From (5) we get
−1
∆
k(`)

e−sk(e−s` − k) = e−sk. Now applying (10), we have

[k/`]∑
r=1

k
(r)
` e−s(k−r`)(e−s` − k + r`) = e−s(k+`) − k([k/`]+1)

` e−sj .

Taking
−1
∆
α(`)

on both sides and using (2), (15), we get the proof of (46).

Theorem 3.20. For k ∈ [0,∞) and ` > 0, we have the relation

n∑
r=0

n−r∑
m=0

(n
r

)
`r
(n−r
m

)
(−1)m`m

−1
∆
k(`)

kn−r−m(`
(α)
m )

(1− α)m+1
−
n+1∑
m=0

(n+1
m

)
(−1)m`m

−1
∆
k(`)

kn+1−m(`
(α)
m )

(1− α)m+1

=

n∑
m=0

(n
m

) (−1)m`mkn−m

(1− α)m+1
(`

(α)
m ). (47)

Proof. From (3) we get ∆
k(`)

kn = (k + `)n − kn+1 =⇒
n∑
r=0

(n
r

)
`r
−1
∆
k(`)

kn−r = kn +
−1
∆
k(`)

kn+1.

Taking
−1
∆
α(`)

on both sides and using (15), we get the proof of (47).

4. Conclusion

The above outcomes prove the fact that better outcomes can be achieved by replacing the usual Laplace by the newly derived α and
k-Laplace Transform. Which tunes the input signals by varying the value of α.
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