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Abstract: Nowadays many real life problems are identified with Fuzzy set theory. The Fuzzy set theory is a useful tool to describe

the situation in which data are imprecise or vague or uncertain. This set theory is completely described by its membership
function. A membership function of a classical fuzzy set assigns to each element of the universe of discourse a number from

the interval [0, 1] to indicate the degree of belongingness to the set under consideration. The degree of non belongingness

is just automatically the complement to ”1” of the membership degree. But many times, a human being does not express
the degree of non membership as the complement to ”1”.There may be some hesitation about the belongingness and

non-belongingness. This missing data or hesitation is accomplished by a set known as intuitionistic fuzzy set. In this
paper, Milne’s Predictor - Corrector method is used for finding numerical solution of an intuitionistic fuzzy differential

equation (IFDE). The proposed method is based on the concept of generalized differentiability. IFDE is transformed

into four ordinary differential systems and then Milne’s Predictor - Corrector method is applied.Also,the convergence and
stability of the proposed method is given and its applicability is illustrated by solving a first order IFDE.
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1. Introduction

In 1965, Zadeh introduced the fuzzy set theory [38] and Atanassov extended the concept of fuzzy set theory to intu-

itionistic fuzzy set (IFS) theory[9].Fuzzy differential equation (FDE) models have wide range of applications in many

branches of engineering and in the field of medicine. Many research papers have been focused on numerical solutions

of fuzzy initial value problems (FIVPs).Ming Ma et al introduced Euler method for solving FDEs numerically under

H-derivative[24]. Numerical solutions for FIVPs using H-derivatives have been studied and can be found out in [1, 3,

5, 16, 27, 31].But they have some disadvantages that the diameter of the solution becomes infinite as the independent

variable increases.To over come this disadvantage,Bede and Gal introduced the strongly generalized differentiability to

FDEs[12] and first order fuzzy differential equation has been studied under generalised differentiablity in [13].Following

Bede and Gal[12],Chalco-Cano and Roman-Flores studied numerical solution of fuzzy differential equations by lateral H-

derivative[14].This opened a way to study numerical solutions of FDEs under generalised differentiability concept.Bede[11]
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has also proved a characterization theorem which states that under certain conditions a FDE under H-derivative is

equivalent to a system of ordinary differential equations(ODEs)[11].So any numerical method which is used to solve

ODEs,can be extended to solve FDEs.Using this characterization theorem,numerical solutions of FDEs have been studied in

[6, 7, 19]and the numerical solutions studied through generalised differentiability can be found out in [4, 8, 10, 26, 34, 35, 37] .

Differential and partial differential equations under intuitionistic fuzzy environment have been discussed by Melliani and

Chadli[21, 22].Abbasbandy and Allah Viranloo have discussed numerical solution of FDE by Runge-Kutta method with

intuitionistic treatment [2].A time dependent intuitionistic fuzzy linear differential equation has been introduced by Sneh

Lata and Amit Kumar and they have proposed a method to solve it[36]. Sankar Prasad Mondal and Tapan Kumar Roy

have discussed strong and weak solution of intuitionistic fuzzy ordinary differential equation [32] and they have studied

system of differential equations with initial value as triangular intuitionistic fuzzy number[33].Mondal and Roy have stuided

second order linear differential equations with generalized trapezoidal intuitionistic Fuzzy boundary value[25]. Numerical

solutions of IFDE under generalised differentiability have been studied through Euler method, modified Euler method and

fourth order Runge-Kutta method respectively in [28, 29, 30].Successive approximations method has been used for finding

solution of IFDEs in [15].In this paper, intuitionistic fuzzy Cauchy problem is solved numerically by Milne’s Predictor -

Corrector method under generalised differentiability concept.

This paper is arranged as follows: Section 2 is related to derivatives of intuitionistic fuzzy functions. Intuitionistic fuzzy

Cauchy problem is given in Section 3. Milne’s Predictor - Corrector method for IFDE is presented in Section 4. The

convergence and stability of the proposed method is presented in Section 5. Section 6 consists of a numerical example and

conclusion of the paper is in section 7.

2. Preliminaries

Definition 2.1 ([17]). An intuitionistic fuzzy number(IFN) is as an intuitionistic fuzzy set defined over the real axis

R.(i.e)An intuitionistic fuzzy number is given by N = {(x, µN (x), νN (x))\x ∈ R} such that µN (x) and (1 − νN )(x) =

1 − νN (x), ∀x ∈ R, are fuzzy numbers. Therefore an IFN N is a conjecture of two fuzzy numbers,namely N+ with a

membership function µN+(x) = µN (x) and N− with a membership function µN−(x) = 1− νN (x).

Definition 2.2 ([17]). The α-cut of an IFN N is defined as follows:

N = {(x, µN (x), νN (x))\x ∈ R,µN (x) ≥ α, νN (x) ≤ 1− α}, ∀ x ∈ [0, 1].

The α-cut representation of IFN N is given by [N ]α = {[N+(α), N
+

(α)], [N−(α), N
−

(α)]}.

Definition 2.3 ([20]). A Triangular Intuitionistic Fuzzy Number(TIFN) T is an intuitionistic fuzzy set in R with the

following membership function µT (x) and non-membership function νT (x) given as follows:

µT (x) =


x−al
a2−al

, al ≤ x ≤ a2
a3−x
a3−a2

, a2 ≤ x ≤ a3

0, otherwise

and νT (x) =


a2−x
a2−a

′
l

, a
′
l ≤ x ≤ a2

x−a2
a
′
3−a2

, a2 ≤ x ≤ a
′
3

1, otherwise

where a
′
1 ≤ a1 ≤ a2 ≤ a3 ≤ a

′
3 and TIFN is denoted by N = (a1, a2, a3; a

′
1, a2, a

′
3).

For arithmetic operations over TIFNs ,we refer to [20]. By Definition(2.8),we can define α-cut of an intuitionistic fuzzy

function as follows:
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Definition 2.4 ([28]). Let f : I → W be an intuitionistic fuzzy function for some interval I.The α - cut of f is given by

[f(t)]α = {[f+(t;α), f+(t;α)], [f−(t;α), f−(t;α)]}, where

f+(t;α) = Min{f+(t;α) | t ∈ I, 0 ≤ α ≤ 1},

f+(t;α) = Max{f+(t;α) | t ∈ I, 0 ≤ α ≤ 1}

f−(t;α) = Min{f−(t;α) | t ∈ I, 0 ≤ α ≤ 1},

f−(t;α) = Max{f−(t;α) | t ∈ I, 0 ≤ α ≤ 1}

Let W be the class of all intuitionistic fuzzy subsets over R.Then W can be written as W = [E+, E−] where E+ and E−

are two spaces of fuzzy numbers.So, we can define metric structures on E+ and E− as follows: The metric structure on E+

can be defined as D+ : E+ × E+ → R+ ∪ {0} such that D+(u+, v+) = sup0≤r≤1max{|u+ − v+|, |u+ − v+|}. The metric

structure on E− can be defined as D− : E−×E− → R+∪{0} such that D−(u−, v−) = sup0≤r≤1max{|u−−v−|, |u−−v−|},

where u+ = [u+, u+], v+ = [v+, v+] ∈ E+ and u− = [u−, u−], v− = [v−, v−] ∈ E−. Clearly (E+, D+) and (E−, D−) are

complete metric spaces [18]. A study on intuitionistic metric spaces can also be found out in [23]. Extending the generalised

differentiability concept of fuzzy functions [12] to intuitionistic fuzzy function ,we have:(only two cases have been taken):

Definition 2.5 ([28]). Let F : (a, b) → W and t0 ∈ (a, b).It is said that F is strongly generalized differentiable on t0, if

∃ F+′(t0) ∈ E+, F−′(t0) ∈ E−, such that

(i) for all h > 0 sufficiently small, ∃ F+(t0 + h)− F+(t0), F+(t0)− F+(t0 − h)and the limits(in the metric D+)

lim
h↘0

F+(t0 + h)− F+(t0)

h
= lim
h↘0

F+(t0)− F+(t0 − h)

h
= F+′(t0) (OR)

(ii) for all h > 0 sufficiently small, ∃ F+(t0)− F+(t0 + h), F+(t0 − h)− F+(t0) and the limits

lim
h↘0

F+(t0)− F+(t0 + h))

−h = lim
h↘0

F+(t0 − h)− F+(t0)

−h = F+′(t0) and

(ia) for all h > 0 sufficiently small,∃F−(t0 + h)− F−(t0), F−(t0)− F−(t0 − h)and the limits(in the metric D−)

lim
h↘0

F−(t0 + h)− F−(t0)

h
= lim
h↘0

F−(t0)− F−(t0 − h)

h
= F−′(t0) (OR)

(iia) for all h > 0 sufficiently small, ∃ F−(t0)− F−(t0 + h), F−(t0 − h)− F−(t0) and the limits

lim
h↘0

F−(t0)− F−(t0 + h))

−h = lim
h↘0

F−(t0 − h)− F−(t0)

−h = F−′(t0)

where, [h and (−h) at denominators mean 1
h
� and −1

h
�, respectively].

Remark 2.6. A function that is strongly differentiable as in cases(i)[and (ia)] and (ii)[(iia)] of definition (2.5),will be

referred as (1)- differentiable and (2) differentiable, respectively.

With respect to Chalco-Cano & Roman-Flores [14], the intuitionistic fuzzy lateral H-derivative for an intuitionistic fuzzy

mapping F : (a, b)→W is defined as follows:

Definition 2.7 ([28]). Let F : (a, b)→W and t0 ∈ (a, b). We say that, if ∃ F+′(t0) ∈ E+, F−′(t0) ∈ E−, such that

(i) for all h > 0 sufficiently small, ∃ F+(t0 +h)−F+(t0), F+(t0)−F+(t0−h), F−(t0 +h)−F−(t0), F−(t0)−F−(t0−h)and

the limits (in the metric D+ and in D−,respectively)

lim
h→0+

F+(t0 + h)− F+(t0)

h
= lim
h→0+

F+(t0)− F+(t0 − h)

h
= F+′(t0)
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lim
h→0+

F−(t0 + h)− F−(t0)

h
= lim
h→0+

F−(t0)− F−(t0 − h)

h
= F−′(t0)

(OR)

(ii) for all h < 0 sufficiently small, ∃ F+(t0 + h)−F+(t0), F+(t0)−F+(t0− h), F−(t0 + h)−F−(t0), F−(t0)−F−(t0− h)

and the limits (in the metric D+ and in D−, respectively)

lim
h→0−

F+(t0 + h)− F+(t0)

h
= lim
h→0−

F+(t0)− F+(t0 − h)

h
= F+′(t0)

lim
h→0−

F−(t0 + h)− F−(t0)

h
= lim
h→0−

F−(t0)− F−(t0 − h)

h
= F−′(t0)

Theorem 2.8 ([28]). Let F : (a, b)→W and t ∈ (a, b). [F (t)]α = {[F+(t;α), F+(t;α)], [F−(t;α), F−(t;α)]}, 0 ≤ α ≤ 1.

(i) If F is (1)-differentiable,then F+′ , F+′ , F−
′
, F−′ are differentiable functions and

[F ′(t)]α = {[F+′ , F+′ ], [F−
′
, F−′ ]}.

(ii) If F is (2)-differentiable,then F+′ , F+′ , F−
′
, F ′− are differentiable functions and

[F ′(t)]α = {[F+′ , F+′ ], [F−′ , F−
′
]}.

3. Intuitionistic Fuzzy Cauchy Problem

Following Ming Ma et al [24], an intuitionistic fuzzy Cauchy problem of first order is defined as follows:

y
′
(t) = f(t, y(t)), y(t0) = y0 and t ∈ I = [a, b] (1)

where the initial value y(t0) = y0 is an intiutionistic fuzzy number and f : I ×W →W .

Theorem 3.1. Let f+ : I×E+ → E+ and f− : I×E− → E− be two continuous fuzzy functions such that there exist k1 > 0

and k2 > 0 respectively such that D+(f+(t, x1), f+(t, z1)) ≤ k1D+(x1, z1) and D−(f−(t, x2), f−(t, z2)) ≤ k2D−(x2, z2), ∀ t ∈

I, x1, z1 ∈ E+, x2, z2 ∈ E−. Then the problem in Equation (1) has two solutions [(1)-differentiable and (2)-differentiable] on

I.

By the theorem (2.8),equation (1) can be replaced by four equivalent systems when y(t) is (1)-differentiable as follows:

y
′
(t) = {[y

′+(t), y′+(t)], [y
′−(t), y′−(t)]},where

y
′+(t) = f+(t, y+) = min{f+(t, u) | u ∈ [y+, y+]} = F (t, y+, y+), y+(t0) = y+0 (2)

y′+(t) = f+(t, y+) = max{f+(t, u) | u ∈ [y+, y+]} = G(t, y+, y+), y+(t0) = y+0 (3)

y
′−(t) = f−(t, y−) = min{f−(t, u) | u ∈ [y−, y−]} = H(t, y−, y−), y−(t0) = y−0 (4)

y′−(t) = f−(t, y−) = max{f−(t, u) | u ∈ [y−, y−]} = I(t, y−, y−), y−(t0) = y−0 (5)

The parametric forms of the system of equations given in Equations (2 to 5) are as follows:

y
′+(t; r) = F (t, y+(t; r), y+(t; r)), y+(t0; r) = y0

+(r)
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y′+(t; r) = G(t, y+(t; r), y+(t; r)), y+(t0; r) = y0
+(r)

y
′−(t; r) = H(t, y−(t; r), y−(t; r)), y−(t0; r) = y0

−(r)

y′−(t; r) = I(t, y−(t; r), y−(t; r)), y−(t0; r) = y0
−(r)

for r ∈ [0, 1]. Again, by the Theorem (2.8), Equation (1) can be replaced by four equivalent systems when y(t) is (2)-

differentiable as follows: y
′
(t) = {[y′+(t), y

′+(t)], [y′−(t), y
′−(t)]}, where

y
′+(t; r) = G(t, y+(t; r), y+(t; r)), y+(t0; r) = y0

+(r)

y′+(t; r) = F (t, y+(t; r), y+(t; r)), y+(t0; r) = y0
+(r)

y
′−(t; r) = I(t, y−(t; r), y−(t; r)), y−(t0; r) = y0

−(r)

y′−(t; r) = H(t, y−(t; r), y−(t; r)), y−(t0; r) = y0
−(r)

for r ∈ [0, 1].

4. The Milne’s Predictor-Corrector Method

In this section, we will present the Milne’s Predictor - Corrector Method for finding the numerical solutions of the in-

tuitionistic fuzzy differential equations. In the interval I = [a, b] we consider a set of discrete equally spaced grid

points a = t0 < t1 < t2 < · · · < tN = b at which two exact solutions Y1(t) = {[Y +
1 (t), Y +

1 (t)], [Y −1 (t), Y −1 (t)]} and

Y2(t) = {[Y +
2 (t), Y +

2 (t)], [Y −2 (t), Y −2 (t)]} are approximated by some y1(t) = {[y+1 (t), y+1 (t)], [y−1 (t), y−1 (t)]} and y2(t) =

{[y+2 (t), y+2 (t)], [y−2 (t), y−2 (t)]} ,respectively.The grid points at which the solutions are calculated are tn = t0 + nh where

h = b−a
N

. The exact and approximate solutions at tn, 0 ≤ n ≤ N are denoted by Y1(n)(r), Y2(n)(r), y1(n)(r) and

y2(n)(r), respectively. Rewriting the Milne’s Predictor-Corrector method to the IFDE given in Equation (1) when y(t)

is (1)-differentiable, we have (6 to 9):

y+
1(n+4,P )

(r) = y
1
(n)+(r) +

4h

3
[2f+

1(n+1)
(r)− f+

1(n+2)(r) + 2f+

1(n+3)
(r)];

y+
1(n+4,C)

(r) = y+
1(n+2)

(r) +
h

3
[f+

1(n+2)
(r) + 4f+

1(n+3)
(r) + f+

1(n+4)
(r)]; (6)

y+1(n+4,P )(r) = y+1(n)(r) +
4h

3
[2f

+

1(n+1)(r)− f
+

1(n+2)
(r) + 2f

+

1(n+3)(r)];

y+1(n+4,C)(r) = y+1(n+2)(r) +
h

3
[f

+

1(n+2)(r) + 4f
+

1(n+3)(r) + f
+

1(n+4)(r)]; (7)

y−
1(n+4,P )

(r) = y−
1(n)

(r) +
4h

3
[2f−

1(n+1)
(r)− f−1(n+2)(r) + 2f−

1(n+3)
(r)];

y−
1(n+4,C)

(r) = y−
1(n+2)

(r) +
h

3
[f−

1(n+2)
(r) + 4f−

1(n+3)
(r) + f−

1(n+4)
(r)]; (8)

y−1(n+4,P )(r) = y−1(n)(r) +
4h

3
[2f
−
1(n+1)(r)− f

−
1(n+2)

(r) + 2f
−
1(n+3)(r)];

y−1(n+4,C)(r) = y−1(n+2)(r) +
h

3
[f
−
1(n+2)(r) + 4f

−
1(n+3)(r) + f

−
1(n+4)(r)]; (9)

Again,when y(t) is (2)-differentiable,we have (10 to 13):

y+
2(n+4,P )

(r) = y+
2(n)

(r) +
4h

3
[2f

+

2(n+1)(r)− f
+

2(n+2)
(r) + 2f

+

2(n+3)(r)];
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y+
2(n+4,C)

(r) = y+
2(n+2)

(r) +
h

3
[f

+

2(n+2)(r) + 4f
+

2(n+3)(r) + f
+

2(n+4)(r)]; (10)

y+2(n+4,P )(r) = y+2(n)(r) +
4h

3
[2f+

2(n+1)
(r)− f+

2(n+2)(r) + 2f+

2(n+3)
(r)];

y+2(n+4,C)(r) = y+2(n+2)(r) +
h

3
[f+

2(n+2)
(r) + 4f+

2(n+3)
(r) + f+

2(n+4)
(r)]; (11)

y−
2(n+4,P )

(r) = y−
2(n)

(r) +
4h

3
[2f
−
2(n+1)(r)− f

−
2(n+2)

(r) + 2f
−
2(n+3)(r)];

y−
2(n+4,C)

(r) = y−
2(n+2)

(r) +
h

3
[f
−
2(n+2)(r) + 4f

−
2(n+3)(r) + f

−
2(n+4)(r)]; (12)

y−2(n+4,P )(r) = y−2(n)(r) +
4h

3
[2f−

2(n+1)
(r)− f−2(n+2)(r) + 2f−

2(n+3)
(r)];

y−2(n+4,C)(r) = y−2(n+2)(r) +
h

3
[f−

2(n+2)
(r) + 4f−

2(n+3)
(r) + f−

2(n+4)
(r)]; (13)

5. Convergence and Stability

The following lemmas will be applied to show the convergences of the approximations [y+
1(n+4,C)

(r), y+1(n+4,C)(r)],

[y−
1(n+4,C)

(r), y−1(n+4,C)(r)],[y
+

2(n+4,C)
(r), y+2(n+4,C)(r)] and [y−

2(n+4,C)
(r), y−2(n+4,C)(r)] to the exact solutions.

Lemma 5.1. Let the sequence of numbers {Wn}Nn=0 satisfy |Wn+1 |≤ A |Wn | +B ,0 ≤ n ≤ N − 1,for some given positive

constants A and B,then |Wn |≤ An |W0 | +BAn−1
A−1

,0 ≤ n ≤ N − 1.

Lemma 5.2. Let the sequence of numbers{Wn}Nn=0,{Vn}Nn=0 satisfy |Wn+1 |≤|Wn | +Amax{|Wn |, | Vn |}+B, | Vn+1 |≤|

Vn | +Amax{| Wn |, | Vn |} + B, for some positive constantsA and B, and denote Un =| Wn | + | Vn |, 0 ≤ n ≤ N .Then

Un ≤ (1 + 2A)U0 + 2B [1+2A]n−1
[1+2A]−1

,0 ≤ n ≤ N .

Theorem 5.3. For arbitrary fixed r,0 ≤ r ≤ 1 the approximate solutions given in Equations(6 to 9) converge to the

exact solutions Y +
1 (r),Y +

1 (r),Y −1 (r) and Y −1 (r),respectively.And the approximate solutions given in Equations(10 to 13)

converge to the exact solutions Y +
2 (r),Y +

2 (r),Y −2 (r) and Y −2 (r),respectively uniformly in t, for Y +
1 (r),Y +

1 (r),Y −1 (r) , Y −1 (r),

Y +
2 (r),Y +

2 (r),Y −2 (r) and Y −2 (r) ∈ C4[t0, tN ].

Definition 5.4. An m-step method for solving the initial value problem is one whose difference equation for finding the

approximation y(ti+1) at the mesh point ti+1 can be represented by the following equation:

y(ti+1) = am−1y(ti) + am−2y(ti−1) + ....+ a0y(ti+1−m) + h{bmf(ti+1, yi+1) + bm−1f(ti, yi) + ...+ b0f(ti+1−m, yi+1−m)},

for i = m− 1,m, ..., N − 1 such that a = t0 ≤ t1 ≤ .... ≤ tN = b, h = (b−a)
N

and a0, a1, a2, · · · am−1, b0, b1, ....bm are constants

with the starting values y0 = α0, y1 = α1, ......ym−1 = αm−1

When bm = 0,the method is known as explicit and when bm 6= 0,the method is known as implicit.

Definition 5.5. Associated with the difference equation

y(ti+1) = am−1y(ti) +am−2y(ti−1) + ...+a0y(ti+1−m) +h{bmf(ti+1, yi+1) + bm−1f(ti, yi) + ...+ b0f(ti+1−m, yi+1−m)} (14)

the characteristic polynomial of the method is defined by

P (λ) = λm − am−1λ
m−1 − am−2λ

m−2 − ...a1λ− a0.

50



V.Parimala, P.Rajarajeswari and V.Nirmala

If | λi |≤ 1for i = 1, 2, 3...m,and all roots with absolute value 1 are simple roots, then the difference method is said to satisfy

the root condition.

Theorem 5.6. A multistep method of the form given in Equation(14) is stable iff it satisfies the root condition.

Remark 5.7. A Predictor-Corrector method is stable iff the corresponding Corrector method is stable.

Theorem 5.8. The implicit four step method is stable.

Proof. For the implicit four step method, there exists only one characteristic polynomial P (λ) = λ4 − λ2. So it satisfies

the root condition, and therefore, it is a stable method.

6. Numerical examples

Example 6.1. Let us consider the nuclear decay equation:

y
′
(t) = −λ� y(t), y(t0) = y0, t ∈ I = [t0, T ] (15)

where y(t)is the number of radio nuclide present in a given radioactive material,λ is the decay constant and y0 is the initial

number of radio nuclide. In the model, uncertainty is introduced if we have uncertain information on the initial value y0 of

radio nuclide present in the material. Note that the phenomenon of nuclear disintegration is considered a stochastic process,

uncertainty being introduced by the lack of information on the radioactive material under study. However, in some situations,

there may be hesitation on the number of radio nuclide present in the radioactive material .In order to take into account the

uncertainty and hesitation; we consider y0 being a triangular intuitionistic fuzzy number.

Solution:

Let λ = 1 and I = [0, 1]. The α - cut of the initial value is given by y(t0, α) = y0(α) = {[5 + 2α, 9− 2α], [3 + 4α, 11− 4α]}

Case(1): (1)-Differentiability

The exact solution of equation(15) under (1)-differentiability is given by

y+(t;α) = (2α− 2)et + 7e−t, y+(t;α) = −(2α− 2)et + 7e−t

y−(t;α) = (4α− 4)et + 7e−t, y−(t;α) = −(4α− 4)et + 7e−t.

Approximate solutions were calculated at different r-values for different t. In particular ,errors are estimated for both

membership and non-membership functions of equation(15) at t =0.04 with h=0.01 and are given in Table 1.

r Error (Membership) Error (Non-Membership)

0 0.000362739 0.000725476

0.2 0.00029019 0.000580382

0.4 0.000217643 0.000435286

0.6 0.000145096 0.00029019

0.8 0.000072547 0.000145096

1 0 0

Table 1. Comparison of error between exact and approximate solutions at t = 0.04

Case(2): (2)-Differentiability

The exact solution of equation(15) under (2)-differentiability is given by y+(t;α) = (5 + 2α)e−t; y+(t;α) = (9 − 2α)e−t,

y−(t;α) = (3 + 4α)e−t; y−(t;α) = (11− 4α)e−t. The Error estimation for both membership and non-membership functions

of equation(15) at t =0.04 with h=0.01 is given in Table 2.
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r Error (Membership) Error (Non-Membership)

0 0.000348515 0.000697029

0.2 0.00027881 0.000557625

0.4 0.000209109 0.000418218

0.6 0.000139407 0.00027881

0.8 0.000069702 0.000139407

1 0 0

Table 2. Comparison of error between exact and approximate solutions at t = 0.04

The solution of equation(15) under (1)-differentiability has an increasing length of its support,which leads us to the conclu-

sion that there is a possibility that,the number of radio nuclide increases and even a non-zero possibility that it is negative.

Fortunately, the real situation is different and the number of radio nuclide decreases with time and it cannot be

negative.Therefore,(2)-differentiability is suitable for this type of problems. In both cases,the numerical solutions obtained

for the equation(15) by the Milne’s predictor - corrector method are closer to the exact solutions.However,the errors can be

minimised by reducing the step size h.

7. Conclusion

In this work the Milne’s predictor - corrector method has been used for finding the numerical solution of IFDEs under

generalised differentiabilty.The applicability of the method is illustrated by solving a first order intuitionistic fuzzy

differential equation.In future,other predictor-corrector methods will be used to study numerical solution of intuitionistic

fuzzy differential equations.
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