International Journal of Mathematics And its Applications

Another New Proof of the Butterfly Theorem

Dasari Naga Vijay Krishna ${ }^{1 *}$

1 Department of Mathematics, Narayana Educational Instutions, Machilipatnam, Bengalore, India.

Abstract: In this article we present a new proof of butterfly theorem.
Keywords: Cyclic Quadrilateral, Butterfly theorem, Ptolemy's theorem.
(C) JS Publication.

1. Introduction

Butterfly Theorem: Let $X Y$ be a chord of a circle with midpoint P. Suppose $A C$ and BD are two other chords that pass through P. Let L and N be the intersections of $A B$ and $C D$ with $X Y$. Then $P L=P N$ (see Figure 1).

Figure 1.

[^0]Butterfly theorem has gained a lot of interest in the past, in particular, In the last quarter of the $20^{\text {th }}$ century, see the list of references, in particular [5], Recently In the articles [2], [6] and [7] Cesare Donolato, Martin Celli and Tran Quang Hung gave new synthetic proofs of this theorem, Much to my delight, the proof I came up with, used a lemma related to the cyclic quadrilateral. A variety of proofs can even be found on the internet [1].

2. Main Result

Lemma 2.1. Let $A B C D$ is a cyclic quadrilateral and Q be the point of intersection of diagonals $A C, B D$. If M be any point in the plane of a quadrilateral then the following are true.

$$
\begin{gather*}
\frac{C Q}{A C} A M^{2}+\frac{A Q}{A C} C M^{2}=\frac{D Q}{B D} B M^{2}+\frac{B Q}{B D} D M^{2} \tag{1}\\
\frac{A C}{B D}=\frac{B C \cdot C D \cdot A M^{2}+A B \cdot A D \cdot C M^{2}}{A D \cdot C D \cdot B M^{2}+A B \cdot B C \cdot D M^{2}} \tag{2}
\end{gather*}
$$

Proof. The proof of the above lemma can be found in [3].
Theorem 2.2 (The Butterfly Theorem). Through the midpoint P of a chord $X Y$ of a circle, two other chords $A C$ and $B D$ are drawn. Chords $A B$ and $C D$ intersect $X Y$ at points L and N, respectively. Then P is also the midpoint of $L N$.

Proof. From the chords AB, CD and XY, we have

$$
\begin{equation*}
\frac{A L}{B L}=\frac{A X \cdot A Y}{B X \cdot B Y}, \frac{D N}{C N}=\frac{D X \cdot D Y}{C X \cdot C Y} \tag{3}
\end{equation*}
$$

and

$$
\frac{P X}{P Y}=\frac{A X \cdot C X}{A Y \cdot C Y}=\frac{B X \cdot D X}{B Y \cdot D Y}
$$

Now Since P is the midpoint of the chord XY, we can notice that

$$
\begin{equation*}
\frac{A X \cdot B X}{C Y \cdot D Y}=\frac{A Y \cdot B Y}{C X \cdot D X}=\frac{A X \cdot B X+A Y \cdot B Y}{C X \cdot D X+C Y \cdot D Y} \tag{4}
\end{equation*}
$$

By applying Lemma 2.1 (1), for the cyclic quadrilateral AXBY, we get

$$
\frac{A L}{A B} B M^{2}+\frac{B L}{A B} A M^{2}=\frac{X L}{X Y} Y M^{2}+\frac{Y L}{X Y} X M^{2}
$$

Since it is true for any M, let us fix M as X then

$$
\begin{equation*}
\frac{A L}{A B} B X^{2}+\frac{B L}{A B} A X^{2}=X L . Y X \tag{5}
\end{equation*}
$$

In the similar manner by applying Lemma 2.1 (1), for the cyclic quadrilateral DYCX and also by fixing M as Y we get

$$
\begin{equation*}
\frac{D N}{C D} C Y^{2}+\frac{C N}{C D} D Y^{2}=Y L . Y X \tag{6}
\end{equation*}
$$

Now from (5) and (6), for proving the butterfly theorem it is enough to prove (5) $=(6)$. That is we need to prove

$$
\frac{A L}{A B} B X^{2}+\frac{B L}{A B} A X^{2}=\frac{D N}{C D} C Y^{2}+\frac{C N}{C D} D Y^{2}
$$

Using (3). It can be rewritten as

$$
\begin{equation*}
\frac{A X \cdot A Y \cdot B X^{2}+B X \cdot B Y \cdot A X^{2}}{C X \cdot C Y \cdot D Y^{2}+D X \cdot D Y \cdot C Y^{2}}=\frac{A X \cdot A Y+B X \cdot B Y}{C X \cdot C Y+D X \cdot D Y} \tag{7}
\end{equation*}
$$

Now using Lemma 2.1 (2), for the cyclic quadrilaterals AXBY and XDYC, we have

$$
\begin{equation*}
\frac{A B}{X Y}=\frac{A X \cdot A Y \cdot B M^{2}+B X \cdot B Y \cdot A M^{2}}{A X \cdot B X \cdot Y M^{2}+A Y \cdot B Y \cdot X M^{2}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{X Y}{C D}=\frac{C X \cdot D X \cdot Y M^{2}+C Y \cdot D Y \cdot X M^{2}}{D X \cdot D Y \cdot C M^{2}+C X \cdot C Y \cdot D M^{2}} \tag{9}
\end{equation*}
$$

Since (8) is true for any M, let us fix M as X as well as S (circumcenter). We get

$$
\frac{A B}{X Y}=\frac{A X \cdot A Y \cdot B X^{2}+B X \cdot B Y \cdot A X^{2}}{A X \cdot B X \cdot Y X^{2}}=\frac{A X \cdot A Y+B X \cdot B Y}{A X \cdot B X+A Y \cdot B Y}
$$

Further simplified as

$$
\begin{equation*}
\frac{A X \cdot A Y \cdot B X^{2}+B X \cdot B Y \cdot A X^{2}}{A X \cdot A Y+B X \cdot B Y}=\frac{A X \cdot B X \cdot Y X^{2}}{A X \cdot B X+A Y \cdot B Y} \tag{10}
\end{equation*}
$$

In the similar manner, since (9) is true for any M , let us fix M as Y as well as S (circumcenter). We get

$$
\begin{equation*}
\frac{D X \cdot D Y \cdot C Y^{2}+C X \cdot C Y \cdot D Y^{2}}{C X \cdot C Y+D X \cdot D Y}=\frac{C Y \cdot D Y \cdot Y X^{2}}{C X \cdot D X+C Y \cdot D Y} \tag{11}
\end{equation*}
$$

Now using (4), we can prove (10)=(11) it implies (7). Which proves $X L=Y N$ and it implies $P L=P N$. It concludes the proof of Butterfly Theorem.

Acknowledgement

The author is would like to thank an anonymous referee for his/her kind comments and suggestions, which lead to a better presentation of this paper.

References

[1] A.Bogomolny, The Butterfly Theorem, http://www.cut-the-knot.org/pythagoras/Butterfly.shtml.
[2] Cesare Donolato, A Proof of the Butterfly Theorem Using Ceva's Theorem, Forum Geometricorum, 16(2016), 185-186.
[3] Dasari Naga Vijay Krishna, The New Proof of Ptolemy's Theorem, Journal of Classical Geometry, 4(2015), 1-7.
[4] Dasari Naga Vijay Krishna, The New Proofs of Ptolemy's Theorem 8 Nine Point Circle Theorem, Mathematics and Computer Science, 1(2)(2016), 93-100.
[5] L.Bankoff, The metamorphosis of the butterfly problem, Mathematics Magazine, 60(1987), 195-210.
[6] Martin Celli, A Proof of the Butterfly Theorem Using the Similarity Factor of the Two Wings, Forum Geometricorum, 16(2016), 337-338.
[7] Tran Quang Hung, Another synthetic proof of the butterfly theorem using the midline in triangle, Forum Geometricorum, 16(2016), 345-346.

[^0]: * E-mail: vijay9290009015@gmail.com

