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1. Introduction

The quadratic integral equations have been a topic of interest since long time because of their occurrence in the problems of

some natural and physical processes of the universe. See Argyros [10], Deimling [13], Chandrasekher [11] and the references

therein. The study gained momentum after the formulation of the hybrid fixed point principles in Banach algebras due to

Dhage [14–17]. The existence results for such quadratic operators equations are generally proved under the mixed Lipschitz

and compactness type conditions together with a certain growth condition on the nonlinearities involved in the quadratic

operator or functional equations. The hybrid fixed point theorems in Banach algebras find numerous applications in the

theory of nonlinear quadratic differential and integral equations. See Dhage [15–17], Dhage and Dhage [22, 23] and the

references therein. The Lipschitz and compactness hypotheses are considered to be very strong conditions in the theory of

nonlinear differential and integral equations but nevertheless do not yield any algorithm to determine the numerical solutions.

Therefore, it is of interest to relax or weaken these conditions in the existence and approximation theory of quadratic integral

equations. This is the main motivation of the present paper. In this paper we prove the existence as well as approximations

of the solutions of a certain generalized quadratic integral equation via an algorithm based on successive approximations

under weak partial Lipschitz and compactness type conditions. Given a closed and bounded interval J = [0, T ] of the real

line R for some T > 0, we consider the quadratic fractional integral equation (in short QFIE)

x(t) = f(t, x(t))

(
1

Γ(q)

∫ t

0

(t− s)(q−1)Qγ,q,rα,β,δ((t− s)
q)g(s, x(s))ds

)
(1)
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where f, g : J×R→ R and q : J → R are continuous functions, 1 ≤ q < 2 and Γ is the Euler gamma function, and Qγ,q,rα,β,δ(x)

is generalized mittag leffler function.

By a solution of the QFIE (1) we mean a function x ∈ C(J,R) that satisfies the equation (1) on J , where C(J,R) is the

space of continuous real-valued functions defined on J .

2. Auxiliary Results

Unless otherwise mentioned, throughout this paper that follows, let E denote a partially ordered real normed linear space

with an order relation � and the norm ‖·‖. It is known that E is regular if {xn}n∈N is a nondecreasing (resp. nonincreasing)

sequence in E such that xn → x∗ as n → ∞, then xn � x∗ (resp. xn � x∗) for all n ∈ N. Clearly, the partially ordered

Banach space C(J,R) is regular and the conditions guaranteeing the regularity of any partially ordered normed linear space

E may be found in Heikkilä and Lakshmikantham [28] and the references therein.

In this section,we present some basic definitions and preliminaries which are useful in further discussion.

Definition 2.1 (Mittag-Leffler Function [3]). The Mittag - Leffler function of one parameter is denoted by Eα(z) and defined

as,

Eα(z) =

∞∑
k=0

1

Γ(αk + 1)
zk (2)

where z, α ∈ C, Re(α) > 0.

If we put α = 1 , then the above equation becomes

E1(z) =

∞∑
k=0

zk

Γ(k + 1)
=

∞∑
k=0

zk

k!
= ez. (3)

Definition 2.2 (Mittag-Leffler Function for two parameters). The generalization of Eα(z) was studied by Wiman (1905)

[9] , Agarwal [1] and Humbert and Agarwal [5] defined the function as,

Eα,β(z) =

∞∑
k=0

1

Γ(αk + β)
zk (4)

where z, α, β ∈ C, Re(α) > 0, Re(β) > 0,

In 1971, The more generalized function is introduced by Prabhakar [? ] as

Eγα,β((z) =

∞∑
k=0

(γ)kz
k

Γ(αk + β)
. (5)

where z, α, β, γ ∈ C, Re(α) > 0, Re(β) > 0, Re(γ) > 0, where γ 6= 0, γ)k = γ(γ + 1)(γ + 2)...(γ + k − 1) is the Pochhammer

symbol [7], and

(γ)k = Γ(γ+k)
Γ(γ)

In 2007, Shulka and Prajapati [7] introduced the function which is defined as,

Eγ,qα,β((z) =

∞∑
k=0

(γ)qkz
k

k!Γ(αk + β)
. (6)

where z, α, β, γ ∈ C, min{Re(α), Re(β), Re(γ)} > 0, and q ∈ (0, 1) ∪N . In 2012, further generalization of Mittag - Leffler

function was defined by Salim [8] and Chauhan [2] as,

Eγ,δ,qα,β ((z) =

∞∑
k=0

(γ)qkz
k

(δ)(qk)Γ(αk + β)
. (7)

where z, α, β, γ ∈ C, min{Re(α), Re(β), Re(γ)} > 0, and q ∈ (0, 1) ∪N
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(γ)qk = Γ(γ+qk)
Γ(γ)

and (δ)qk = Γ(δ+qk)
Γ(δ)

denote the generalized Pochhammer symbol [7],

Definition 2.3 ([6]). The generalization of Mittag - Leffler function denoted by Qγ,q,rα,β,δ(x) and defined by

Qγ,q,rα,β,δ(x) = Qγ,q,rα,β,δ(a1, a2, ..., ar, b1, b2, ..., br, x)

=

∞∑
s=0

Πr
n=1β(bn, s)(γ)qs

Πr
n=1β(an, s)(δ)qsΓ(αs+ β)

xs,
(8)

where x, α, β, γ, δ, ai, bi ∈ C, min{Re(α), Re(β), Re(γ)} > 0, and q ∈ (0, 1) ∪N ,

(γ)qk = Γ(γ+qk)
Γ(γ)

and (δ)qk = Γ(δ+qk)
Γ(δ)

Definition 2.4. A mapping T : E → E is called isotone or nondecreasing if it preserves the order relation �, that is, if

x � y implies T x � T y for all x, y ∈ E.

Definition 2.5 ([19]). A mapping T : E → E is called partially continuous at a point a ∈ E if for ε > 0 there exists a

δ > 0 such that ‖T x − T a‖ < ε whenever x is comparable to a and ‖x − a‖ < δ. T called partially continuous on E if it

is partially continuous at every point of it. It is clear that if T is partially continuous on E, then it is continuous on every

chain C contained in E.

Definition 2.6. A mapping T : E → E is called partially bounded if T (C) is bounded for every chain C in E. T is

called uniformly partially bounded if all chains T (C) in E are bounded by a unique constant. T is called bounded if

T (E) is a bounded subset of E.

Definition 2.7. A mapping T : E → E is called partially compact if T (C) is a relatively compact subset of E for all

totally ordered sets or chains C in E. T is called uniformly partially compact if T (C) is a uniformly partially bounded

and partially compact on E. T is called partially totally bounded if for any totally ordered and bounded subset C of

E, T (C) is a relatively compact subset of E. If T is partially continuous and partially totally bounded, then it is called

partially completely continuous on E.

Definition 2.8 ([19]). The order relation � and the metric d on a non-empty set E are said to be compatible if {xn}n∈N

is a monotone, that is, monotone nondecreasing or monotone nonincreasing sequence in E and if a subsequence {xnk}n∈N

of {xn}n∈N converges to x∗ implies that the original sequence {xn}n∈N converges to x∗. Similarly, given a partially ordered

normed linear space (E,�, ‖ · ‖), the order relation � and the norm ‖ · ‖ are said to be compatible if � and the metric d

defined through the norm ‖ · ‖ are compatible.

Definition 2.9 ([16]). A upper semi-continuous and monotone nondecreasing function ψ : R+ → R+ is called a D-function

provided ψ(r) = 0 iff r = 0. Let (E,�, ‖ · ‖) be a partially ordered normed linear space. A mapping T : E → E is called

partially nonlinear D-Lipschitz if there exists a D-function ψ : R+ → R+ such that

‖T x− T y‖ ≤ ψ(‖x− y‖) (9)

for all comparable elements x, y ∈ E. If ψ(r) = k r, k > 0, then T is called a partially Lipschitz with a Lipschitz constant k.

Let (E,�, ‖ · ‖) be a partially ordered normed linear algebra. Denote

E+ =
{
x ∈ E | x � θ, where θ is the zero element of E

}
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and

K = {E+ ⊂ E | uv ∈ E+ for all u, v ∈ E+}. (10)

The elements of K are called the positive vectors of the normed linear algebra E. The following lemma follows immediately

from the definition of the set K and which is often times used in the applications of hybrid fixed point theory in Banach

algebras.

Lemma 2.10 ([17]). If u1, u2, v1, v2 ∈ K are such that u1 � v1 and u2 � v2, then u1u2 � v1v2.

Definition 2.11. An operator T : E → E is said to be positive if the range R(T ) of T is such that R (T ) ⊆ K.

Theorem 2.12 ([20]). Let
(
E,�, ‖ · ‖

)
be a regular partially ordered complete normed linear algebra such that the order

relation � and the norm ‖ · ‖ in E are compatible in every compact chain of E. Let A,B : E → K be two nondecreasing

operators such that

(a) A is partially bounded and partially nonlinear D-Lipschitz with D-functions ψA,

(b) B is partially continuous and uniformly partially compact, and

(c) MψA(r) < r, r > 0, where M = sup{‖B(C)‖ : C is a chain in E}, and

(d) there exists an element x0 ∈ X such that x0 � Ax0 Bx0 or x0 � Ax0 Bx0.

Then the operator equation

AxBx = x (11)

has a solution x∗ in E and the sequence {xn} of successive iterations defined by xn+1 = Axn Bxn, n = 0, 1, . . . , converges

monotonically to x∗.

3. Main Result

The QFIE (1) is considered in the function space C(J,R) of continuous real-valued functions defined on J . We define a

norm ‖ · ‖ and the order relation ≤ in C(J,R) by

‖x‖ = sup
t∈J
|x(t)| (12)

and

x ≤ y ⇐⇒ x(t) ≤ y(t) (13)

for all t ∈ J respectively. Clearly, C(J,R) is a Banach algebra with respect to above supremum norm and is also partially

ordered w.r.t. the above partially order relation ≤. The following lemma in this connection follows by an application of

Arzelá-Ascoli theorem.

Lemma 3.1. Let
(
C(J,R),≤, ‖ · ‖

)
be a partially ordered Banach space with the norm ‖ · ‖ and the order relation ≤ defined

by (12) and (13) respectively. Then ‖ · ‖ and ≤ are compatible in every partially compact subset of C(J,R).

The lemma mentioned in Dhage [20], but the proof appears in Dhage [21].
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Definition 3.2. A function v ∈ C(J,R) is said to be a lower solution of the QFIE (1) if it satisfies

v(t) ≤ f(t, v(t))

(
1

Γ(q)

∫ t

0

(t− s)(q−1)Qγ,q,rα,β,δ((t− s)
q)g(s, v(s))ds

)
for all t ∈ J. Similarly, a function u ∈ C(J,R) is said to be an upper solution of the QFIE (1) if it satisfies the above

inequalities with reverse sign.

We consider the following set of assumptions in what follows:

(A1) The functions f, g : J × R→ R+, q : J → R+ where q is continuous function.

(A2) There exists constants Mf ,Mg > 0 such that 0 ≤ f(t, x) ≤Mf and 0 ≤ g(t, x) ≤Mg for all t ∈ J and x ∈ R.

(A3) There exists a D-function ψf such that 0 ≤ f(t, x)− f(t, y) ≤ ψf (x− y) for all t ∈ J and x, y ∈ R,x ≤ y.

(A4) g(t, x) is nondecreasing in x for all t ∈ J .

(A5) The QFIE (1) has a lower solution v ∈ C(J,R).

Theorem 3.3. Assume that hypotheses (A1)-(A5) holds then the QFIE (1) has a solution x∗ defined on J and the sequence

{xn}n∈N∪{0} of successive approximations defined by

xn+1(t) =
[
f(t, xn(t))

]( 1

Γ(q)

∫ t

0

(t− s)q−1Qγ,q,rα,β,δ((t− s)
q) g(s, xn(s)) ds

)
(14)

for all t ∈ J, where x0 = v, converges monotonically to x∗.

Proof. Set E = C(J,R). Then, from Lemma 3.1 it follows that every compact chain in E possesses the compatibility

property with respect to the norm ‖ · ‖ and the order relation ≤ in E. Define two operators A and B on E by

Ax(t) = f(t, x(t)), t ∈ J, (15)

Bx(t) =
1

Γ(q)

∫ t

0

(t− s)q−1Qγ,q,rα,β,δ((t− s)
q) g(s, x(s)) ds, t ∈ J, (16)

From the continuity of the integral and the hypotheses (A1)-(A5), it follows that A and B define the maps A,B : E → K.

Now by definitions of the operators A and B, the QFIE (1) is equivalent to the operator equation

Ax(t)Bx(t) = x(t), t ∈ J. (17)

We shall show that the operators A and B satisfy all the conditions of Theorem 2.12. This is achieved in the series of

following steps.

Step I: A and B are nondecreasing on E.

Let x, y ∈ E be such that x ≤ y. Then by hypothesis (A3)and (A4), we obtain

Ax(t) = f(t, x(t)) ≤ f(t, y(t)) = Ay(t),

and

Bx(t) =
1

Γ(q)

∫ t

0

(t− s)q−1Qγ,q,rα,β,δ((t− s)
q) g(s, x(s)) ds, t ∈ J,

≤ 1

Γ(q)

∫ t

0

(t− s)q−1Qγ,q,rα,β,δ((t− s)
q) g(s, y(s)) ds, t ∈ J,

= By(t)
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for all t ∈ J . This shows that A and B are nondecreasing operators on E into E. Thus, A and B are nondecreasing positive

operators on E into itself.

Step II: A is partially bounded and partially D-Lipschitz on E.

Let x ∈ E be arbitrary. Then by (A2),

|Ax(t)| ≤
∣∣f(t, x(t)))

∣∣ ≤Mf ,

for all t ∈ J . Taking supremum over t, we obtain ‖Ax‖ ≤Mf and so, A is bounded. This further implies that A is partially

bounded on E. Now, let x, y ∈ E be such that x ≤ y. Then, by hypothesis (A3),

|Ax(t)−Ay(t)| =
∣∣f(t, x(t))− f(t, y(t))

∣∣
≤ ψf |x(t)− y(t)|

≤ ψf (‖x− y‖),

for all t ∈ J . Taking supremum over t, we obtain

‖Ax−Ay‖ ≤ ψf (‖x− y‖)

for all x, y ∈ E with x ≤ y. Hence A is partially nonlinear D-Lipschitz operators on E which further implies that it is also

a partially continuous on E into itself.

Step III: B is a partially continuous operator on E.

Let {xn}n∈N be a sequence in a chain C of E such that xn → x for all n ∈ N. Then, by dominated convergence theorem, we

have

lim
n→∞

Bxn(t) = lim
n→∞

1

Γ(q)

∫ t

0

(t− s)q−1Qγ,q,rα,β,δ((t− s)
q) g(s, xn(s)) ds,

=
1

Γ(q)

∫ t

0

(t− s)q−1Qγ,q,rα,β,δ((t− s)
q)
[

lim
n→∞

g(s, xn(s))
]
ds

=
1

Γ(q)

∫ t

0

(t− s)q−1Qγ,q,rα,β,δ((t− s)
q) g(s, x(s)) ds

= Bx(t),

for all t ∈ J . This shows that Bxn converges monotonically to Bx pointwise on J . Next, we will show that {Bxn}n∈N is an

equicontinuous sequence of functions in E. Let t1, t2 ∈ J with t1 < t2. Then

∣∣∣Bxn(t2)−Bxn(t1)
∣∣∣ ≤ ∣∣∣∣ 1

Γ(q)

∫ t2

0

(t2 − s)q−1Qγ,q,rα,β,δ((t2 − s)
q) g(s, xn(s)) ds

− 1

Γ(q)

∫ t1

0

(t1 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q) g(s, xn(s)) ds

∣∣∣∣
≤ 1

Γ(q)

∣∣∣∣∫ t2

0

(t2 − s)q−1Qγ,q,rα,β,δ((t2 − s)
q)g(s, xn(s))ds

−
∫ t2

0

(t2 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q)g(s, xn(s))ds

∣∣∣∣
+

∣∣∣∣∫ t2

0

(t2 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q)g(s, xn(s))ds

−
∫ t1

0

(t2 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q)g(s, xn(s))ds

∣∣∣∣
+

∣∣∣∣∫ t1

0

(t2 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q)g(s, xn(s))ds

−
∫ t1

0

(t1 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q)g(s, xn(s))ds

∣∣∣∣
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≤
∫ t2

0

(t2 − s)q−1
∣∣Qγ,q,rα,β,δ((t2 − s)

q)−Qγ,q,rα,β,δ((t1 − s)
q)
∣∣ |g(s, xn(s))| ds

+

∣∣∣∣∫ t2

t1

(t2 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q)g(s, xn(s))ds

∣∣∣∣
+

∫ t1

0

∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣Qγ,q,rα,β,δ((t1 − s)

q) |g(s, xn(s))| ds

≤
∫ T

0

(t2 − s)q−1
∣∣Qγ,q,rα,β,δ((t2 − s)

q)−Qγ,q,rα,β,δ((t1 − s)
q)
∣∣Mgds

+

∫ T

0

∣∣(t2 − s)q−1 − (t1 − s)α−1
∣∣Qγ,q,rα,β,δ((t1 − s)

q)Mgds

+

∫ T

0

∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣Qγ,q,rα,β,δ((t1 − s)

q)Mgds

≤Mg

(∫ T

0

∣∣(t2 − s)q−1
∣∣2 ds)1/2(∫ T

0

∣∣Qγ,q,rα,β,δ((t2 − s)
q)−Qγ,q,rα,β,δ((t1 − s)

q)
∣∣2 ds)1/2

+ 2

(∫ T

0

∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣2 ds)1/2(∫ T

0

∣∣Qγ,q,rα,β,δ((t1 − s)
q)
∣∣2 ds)1/2

Mg (18)

Since the functions Qγ,q,rα,β,δ, q are continuous on compact interval J and interval is continuous on compact set J × J , they

are uniformly continuous there. Therefore, from the above inequality (18) it follows that

|Bxn(t2)− Bxn(t1)| → 0 as n→∞

uniformly for all n ∈ N. This shows that the convergence Bxn → Bx is uniform and hence B is partially continuous on E.

Step IV: B is uniformly partially compact operator on E.

Let C be an arbitrary chain in E. We show that B(C) is a uniformly bounded and equicontinuous set in E. First we show

that B(C) is uniformly bounded. Let y ∈ B(C) be any element. Then there is an element x ∈ C be such that y = Bx. Now,

by hypothesis (A1),

|y(t)| ≤
∣∣∣∣ 1

Γ(q)

∫ t

0

(t− s)q−1Qγ,q,rα,β,δ((t2 − s)
q) g(s, x(s)) ds

∣∣∣∣
≤ r

for all t ∈ J . Taking the supremum over t, we obtain ‖y‖ ≤ ‖Bx‖ ≤ r for all y ∈ B(C). Hence, B(C) is a uniformly bounded

subset of E. Moreover, ‖B(C)‖ ≤ r for all chains C in E. Hence, B is a uniformly partially bounded operator on E. Next,

we will show that B(C) is an equicontinuous set in E. Let t1, t2 ∈ J with t1 < t2. Then, for any y ∈ B(C), one has

∣∣∣Bx(t2)−Bx(t1)
∣∣∣ ≤ ∣∣∣∣ 1

Γ(q)

∫ t2

0

(t2 − s)q−1Qγ,q,rα,β,δ((t2 − s)
q) g(s, x(s)) ds

− 1

Γ(q)

∫ t1

0

(t1 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q) g(s, x(s)) ds

∣∣∣∣
≤ 1

Γ(q)

∣∣∣∣∫ t2

0

(t2 − s)q−1Qγ,q,rα,β,δ((t2 − s)
q)g(s, x(s))ds

−
∫ t2

0

(t2 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q)g(s, x(s))ds

∣∣∣∣
+

∣∣∣∣∫ t2

0

(t2 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q)g(s, x(s))ds

−
∫ t1

0

(t2 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q)g(s, x(s))ds

∣∣∣∣
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+

∣∣∣∣∫ t1

0

(t2 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q)g(s, x(s))ds

−
∫ t1

0

(t1 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q)g(s, x(s))ds

∣∣∣∣
≤
∫ t2

0

(t2 − s)q−1
∣∣Qγ,q,rα,β,δ((t2 − s)

q)−Qγ,q,rα,β,δ((t1 − s)
q)
∣∣ |g(s, x(s))| ds

+

∣∣∣∣∫ t2

t1

(t2 − s)q−1Qγ,q,rα,β,δ((t1 − s)
q)g(s, x(s))ds

∣∣∣∣
+

∫ t1

0

∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣Qγ,q,rα,β,δ((t1 − s)

q) |g(s, x(s))| ds

≤
∫ T

0

(t2 − s)q−1
∣∣Qγ,q,rα,β,δ((t2 − s)

q)−Qγ,q,rα,β,δ((t1 − s)
q)
∣∣Mgds

+

∫ T

0

∣∣(t2 − s)q−1 − (t1 − s)α−1
∣∣Qγ,q,rα,β,δ((t1 − s)

q)Mgds

+

∫ T

0

∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣Qγ,q,rα,β,δ((t1 − s)

q)Mgds

≤Mg

(∫ T

0

∣∣(t2 − s)q−1
∣∣2 ds)1/2(∫ T

0

∣∣Qγ,q,rα,β,δ((t2 − s)
q)−Qγ,q,rα,β,δ((t1 − s)

q)
∣∣2 ds)1/2

+ 2

(∫ T

0

∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣2 ds)1/2(∫ T

0

∣∣Qγ,q,rα,β,δ((t1 − s)
q)
∣∣2 ds)1/2

Mg

−→ 0 as t1 → t2,

uniformly for all y ∈ B(C). Hence B(C) is an equicontinuous subset of E. Now, B(C) is a uniformly bounded and

equicontinuous set of functions in E, so it is compact. Consequently, B is a uniformly partially compact operator on E into

itself.

Step V: v satisfies the operator inequality v ≤ Av Bv.

By hypothesis (A5), the QFIE (1) has a lower solution v defined on J . Then, we have

v(t) ≤ f(t, v(t))

(
1

Γ(q)

∫ t

0

(t− s)(q−1)Qγ,q,rα,β,δ((t2 − s)
q)g(s, v(s))ds

)
(19)

for all t ∈ J. From the definitions of the operators A, B and C it follows that v(t) ≤ Av(t)Bv(t) for all t ∈ J . Hence

v ≤ Av Bv.

Step VI: The D-functions ψA satisfy the growth condition MψA(r) < r, for r > 0.

Finally, the D-function ψA of the operator A satisfy the inequality given in hypothesis (d) of Theorem 2.12, viz.,

MψA(r) < r

for all r > 0. Thus A and B satisfy all the conditions of Theorem 2.12 and we conclude that the operator equation AxBx = x

has a solution. Consequently the QFIE (1) has a solution x∗ defined on J . Furthermore, the sequence {xn}n∈N of successive

approximations defined by (14) converges monotonically to x∗. This completes the proof.

Example 3.4. Given a closed and bounded interval J = [0, 1], consider the QFIE,

x(t) =
1

2

[
2 + tan−1 x(t)

]( 1

Γ(5/4)

∫ t

0

(t− s)1/4Qγ,q,rα,β,δ((t− s)
5/4) · [1 + tanhx(s)]

4
ds

)

for t ∈ J .
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4. conclusion

Finally, An algorithm for the solutions is developed and it is shown that the sequence of successive approximations converges

monotonically to the positive solution of related quadratic fractional integral equation under some suitable mixed hybrid

conditions. Some of the results along this line will be further studied.
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