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1. Introduction

The idea of even square semigroups has originated through [1]. In [1] we have introduced the notion of even square rings

and given some results on commutative as well as noncommutative even square rings. There are several examples of even

square semigroups of finite as well as infinite order and even square semigroups have implicit presence in the mathematical

literatures [2–7]. We notice that even square semigroups have additional structures. In this paper we consider even and even

square semigroups and provide some results on even square semigroups containing nil elements. Nil elements are special

type of nilpotent elements and have already been introduced and studied in [1]. It is seen that every even semigroup is an

even square semigroup however each even square semigroup is not necessarily an even semigroup. We see that each non-zero

element of a trivial even square semigroup is obviously a zero divisor however there are non-trivial even square semigroups

whose every non-zero element is a zero divisor. It is noticed that if S is a trivial even square semigroup of order n then it

has total 2n−1 even square subsemigroups and at least one even square subsemigroup of order m for each 0 < m ≤ n. In

this case each even square subsemigroup is an ideal of S. It is notable that each element of an even square semigroup is

even square element however each element of a subsemigroup of an even square semigroup is not necessarily an even square

element. Therefore each subsemigroup of an even square semigroup does not necessarily be an even square subsemigroup.

Thus even square property is not a hereditary property of semigroups.

2. Even Square Semigroups

Definition 2.1. A multiplicative semigroup S together with a unary operation f : S → S defined by f (a) = 2a, ∀ a ∈ S is

called a unary semigroup.
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Definition 2.2. Let S be a unary semigroup. An element a ∈ S is called an even element of S if a ∈ 2S.

Definition 2.3. Let S be a unary semigroup. An element a ∈ S is called an even square element of S if a2 ∈ 2S.

Definition 2.4. Let S be a unary semigroup. An element a ∈ S is called a nil element of S if a2 = 2a = 0.

Definition 2.5. A unary semigroup S is said to have even square property if every element of S is an even square element.

Definition 2.6. Let us call a unary semigroup S an even semigroup if a ∈ 2S, ∀ a ∈ S.

Definition 2.7. Let us call a unary semigroup S an even square semigroup if a2 ∈ 2S, ∀ a ∈ S.

Remark 2.8. Every even semigroup is an even square semigroup however an even square semigroup is not necessarily an

even semigroup.

Definition 2.9. Let us call a unary semigroup S a trivial even square semigroup if for each a, b ∈ S; a2 = b2 = ab = ba = 0.

If a unary semigroup S is not a trivial even square semigroup then it is called a non-trivial even square semigroup.

Remark 2.10. The least order of a non-trivial even square semigroup is two. Let S = {a, b}. Define a2 = 2a = b,

b2 = b = 2a, ab = a. Then S is a non-trivial even square semigroup of order two.

Definition 2.11. Let S be a unary semigroup. An element a ∈ S is said to annihilate S if ab = ba = 0, ∀ b ∈ S.

Proposition 2.12. The set of all even elements in a unary semigroup S forms an even square ideal of S.

Proposition 2.13. The set of all even square elements in a commutative unary semigroup S forms an even square ideal of

S.

Corollary 2.14. Let a and b are any two even square elements of a commutative unary semigroup S then ab is an even

square element.

Proposition 2.15. The set of all nil elements in a commutative unary semigroup S forms an even square ideal of S.

Remark 2.16. If S be an anticommutative unary semigroup then Propositions 2.2 and 2.3 hold good. If S is a noncom-

mutative unary semigroup then the set of all nil elements in S forms an ideal of S provided each nil element annihilates

S.

Proposition 2.17. If a finite commutative even square semigroup S contains a unique nonzero nil element a then a

annihilates S.

Proof. Let S be a finite commutative even square semigroup and a ∈ S is a unique nonzero nil element of S. Let b is any

element of S. Then (ab)2 = 0 and 2ab = 0. Therefore ab is a nil element of S. Hence, ab = ba = 0.

Corollary 2.18. Each nonzero element of S (in Proposition 2.17) is a zero divisor.

Proposition 2.19. Let S be an even square semigroup such that a2 = b2 = 0 for each a, b ∈ S then S is not necessarily a

trivial even square semigroup.

Proposition 2.20. Let S be a trivial even square semigroup of order n then it has at least one even square subsemigroup

of order m for each 0 < m ≤ n.

Proposition 2.21. Let S be a trivial even square semigroup of order n then S has
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(1). one even square subsemigroup of order 1.

(2). n− 1 even square subsemigroups of order two.

(3). 1
2

(n− 1) (n− 2) even square subsemigroups of order three.

(4). 1
6

(n− 1) (n− 2) (n− 3) even square subsemigroups of order four.

(5). 1
24

(n− 1) (n− 2) (n− 3) (n− 4) even square subsemigroups of order five and so on.

(6). total 2n−1 even square subsemigroups and each subsemigroup is an ideal of S.

Proof. Let S = {0 = a1, a2, ..., an} be a trivial even square semigroup of order n. Let S1 = {0}, then S1 is an even square

subsemigroup of S. Clearly there is only one even square subsemigroup of order one. Each non-zero element of S together

with the zero element forms an even square subsemigroup of S. Thus there are n − 1 even square subsemigroups of order

two. As each even square subsemigroup of S contains the zero element therefore to form an even square subsemigroup of

order three we have to select two elements out of n − 1 elements and this can be done in 1
2

(n− 1) (n− 2) ways. Thus

there are 1
2

(n− 1) (n− 2) even square subsemigroups of order three. Similarly there are 1
6

(n− 1) (n− 2) (n− 3) and

1
24

(n− 1) (n− 2) (n− 3) (n− 4) even square subsemigroups of order four and five respectively. Proceeding similarly one can

get the number of even square subsemigroups of order six and more. Hence there are total 2n−1 even square subsemigroups.

It can be easily seen that each even square subsemigroup of S is an ideal of S.

Proposition 2.22. Let S be a finite even square semigroup of order 2t, t is a positive integer. Then each element of S is

nilpotent provided S contains the zero element and the reducing modulo m is a divisor of 2t or 2t+1.

Proof. Let S be a finite even square semigroup of order 2t, where t is a positive integer. Let 0 ∈ S. If t = 1 then each

element of S will be nil and therefore each element is a nilpotent element (see Example 2.25). Let t > 1 and x 6= 0 is any

element of S and each element of S is non-nil. Then using the even square property we have x2t = 2t+1y for some y ∈ S.

Clearly, 2t+1 ≡ 0 (modm) if m divides 2t or 2t+1. Hence each nonzero element of S is a nilpotent element of index ≤ 2t.

Remark 2.23. Proposition 2.22 holds for non-commutative even square semigroups also. m is a divisor of 2t or 2t+1 is

sufficient but not a necessary condition for each element of a finite even square semigroup of order 2t to be nilpotent.

Proposition 2.24. If an even square semigroup S contains more than two nil elements then each nil element does not

necessarily annihilate S.

Example 2.25. Let S = {0, 2, 4}. S is an even square semigroup under multiplication modulo 8. Clearly 2 ∈ S is an even

square element of S but 2 is not an even element. However 4 is even as well as even square element. In this Example 4 is

a nil element.

Example 2.26. Let Z = {· · ·,−3− 2,−1, 0, 1, 2, 3, · · ·}. Then Z is a unary semigroup and 2 ∈ Z is an even as well as even

square element of Z.

Example 2.27. Let E = {· · ·,−4− 2, 0, 2, 4, · · ·}. Clearly E is the set of all even square elements of Z. The set E of even

square integers is an even square semigroup of infinite order. For each m 6= 0, 1,−1; S = {mx : x ∈ E} is a proper even

square subsemigroup of E.
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Example 2.28. Consider the set Q of all rational numbers. It is easy to see that Q is an even square semigroup under

multiplication. Let S1 = {0, 1} , S2 = {0, 1,−1} , S3 = {1,−1}. Clearly S1, S2 and S3 all are subsemigroups of Q but none

of these are even square semigroups. The set Z of integers is a non- even square subsemigroup of Q of infinite order. Thus

even square property is not a hereditary property of semigroups.

Example 2.29. Let S = {0, a, b, c}. Let us define a2 = 2a = b, b2 = 2b = 0, c2 = b = 2a, ab = bc = 0 and ac = b. Then S

is a nontrivial even square semigroup of order 4. Each element of S is nilpotent and b annihilates S. b is a unique nonzero

nil element of S.

Example 2.30. Let S = {0, a, b, c}. If we take a2 = b2 = c2 = 0, ab = c, ac = 0, bc = 0, 2a = 2b = 2c = 0. Then S is a

nontrivial even square semigroup and each element of S is nil element and c annihilates S.

Example 2.31. Let S =


 0 0

0 0

 ,

 1 1

1 1

 ,

 2 2

2 2

 ,

 3 3

3 3

 ,

 4 4

4 4


. Clearly S is an even square semigroup

of order five under multiplication modulo 6 and

 3 3

3 3

 is a unique nonzero nil element of S and it annihilates S.

Example 2.32. The set of all rational, real and complex numbers possess the even square property however we introduce the

set EQ and ER as the set of even square rational numbers and real numbers respectively. It may be noted that a non-empty

set A is called an even square set if a2 ∈ 2A, ∀a ∈ A. A set A possesses even square property iff it is an even square set. Let

us define EQ =
{

p
q

: (p, q) = 1, q 6= 0, p ∈ E, q ∈ Z
}

and ER = EQ

⋃
IR, where IR is the set of those irrational numbers so

that ER possesses even square property. Here E and Z are the set of even square integers and integers respectively. Clearly
√

2 /∈ ER but 2
√

2 ∈ ER.

We define the set of even square complex numbers over EQ and ER as EQ
C = {a + ib : a, b ∈ EQ} and ER

C =

{a + ib : a, b ∈ ER} respectively. It is easy to see that EQ, ER, EQ
C and ER

C provide examples of even square semigroups of

infinite order.

3. Concluding Remarks

This article introduces the notion of even square semigroups and provides some results and examples of even square semi-

groups. However a further study is desirable to develop the possible theory of even square semigroups.
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