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1. Introduction

With the advent of the modern high speed electronic digital computer, the Numerical Integration have been successfully

applied to study problems in Mathematics, Engineering, Computer Science and Physical Science. Numerical integration is

the study of how the approximate numerical value of a definite integral can be found. It is helpful for the following cases:

—• Many integrals cant be evaluated analytically or dont possess a closed form solution.

—• Closed form solution exists, but numerical evaluation of the answer can be bothersome.

—• The integrand f(x) is not known explicitly, but a set of data points is given for this integrand.

—• The integrand f(x) may be known only at certain points, such as obtained by sampling.

Numerical integration of a function of a single variable is called Quadrature, which represents the area under the curve f(x)

bounded by the ordinates x0, xn and x-axis. The numerical integration of a multiple integral is sometimes described as

Cubature. Numerical integration problems go back at least to Greek antiquity when e.g. the area of a circle was obtained

by successively increasing the number of sides of an inscribed polygon. In the seventeenth century, the invention of calculus

originated a new development of the subject leading to the basic numerical integration rules. In the following centuries,

the field became more sophisticated and, with the introduction of computers in the recent past, many classical and new

algorithms had been implemented leading to very fast and accurate results. An extensive research work has already been

done by many researchers in the field of numerical integration. M. Concepcion Ausin [1] compared different numerical

integration producers and discussed about more advanced numerical integration procedures. Gordon K. Smith [2] gave an

analytic analysis on numerical integration and provided a reference list of 33 articles and books dealing with that topic.

Rajesh Kumar Sinha [3] worked to evaluate an integrable polynomial discarding Taylor Series. Gerry Sozio [4] analyzed a
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detailed summary of various techniques of numerical integration. J. Oliver [5] discussed the various processes of evaluation

of definite integrals using higher-order formulae. Otherwise, every numerical analysis book contains a chapter on numerical

integration. The formulae of numerical integrations are described in the books of S.S. Sastry[6] , R.L. Burden [7], J.H.

Mathews [8] and many other authors.

The purpose of this paper is quadrature methods for approximate calculation of definite integrals

I =

∫ b

a

f(x)dx (1)

where f(x) is integrable, in the Riemann sense on [a b]. The limit of the integration may be finite. Numerical integration

is always carried out by mechanical quadrature and its basic scheme is as follows:

∫ b

a

f(x) =

n−1∑
i=0

Aifi, (2)

where fi = f(xi), Ai > 0, i = 0, 1, 2, ...n− 1 and xi ∈[a b] i = 0, 1, 2..., n− 1. are called Coefficients(Weights) and nodes

for Numerical Quadrature, respectively. Once the coefficients and nodes are set down, the scheme (1) can be determined.

2. Preliminaries

Definition 2.1 (Order of Numerical Integration). Order of accuracy, or precision, of a Quadrature formula is the largest

positive integer n such that the formula is exact for xk, for each k = 0, 1, . . . , n.

Definition 2.2. The Integration (1) is approximated by a finite linear combination of value of f(x) in the form (2). The

error of approximation of (2) is given as

Rn =
C

(m+ 1)!
f (m+1)(ξ), (3)

where ξ =(a b), m ≥ n is order of (2) and error constant of (2) is

C =

∫ b

a

xm+1 −
n−1∑
i=0

Aix
m+1
i (4)

Definition 2.3 (Open or Closed type Integration Method). The Quadrature method (2)of (1) is called Open Type method

If the nodes xi ∈ (a b), ∀i = 0, 1, ..., n− 1. and is called Closed Type method if the nodes x0 = a, and xn−1 = b.

3. Mid-Point Quadrature Method

Consider the integral in the form (2) for each i = 0, 1, 2..., n − 1. Now we dividing the interval [a b] into n ∈ N equal

sub interval and take the nodes x′s are equispaced points such that xi = a + (h/2) + ih ∈[a b], i=0,1,2,...n-1, where

h = (b − a)/(n). So that a = x0 − h/2 and b = xn + h/2. so this method has n unknown A′s and making this method

exact for f(x) = 1, x, x2, ..., xn−1. Then the error constant is (4) for error (3). this integration method is called Mid Point

Integration method or Mn−Integration Method. Now following case arise.

One point formula: Take n = 1 in (2), we get I =
∫ b

a
f(x)dx = A0f0, where h = b − a ,x0 = a + h/2 = a + (b − a)/2 =

(a+ b)/2. The method has one unknown A0. Making the method exact for f(x) = 1, we get

∫ b

a

1dx = A0 ⇒ A0 = (b− a).
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Hence, the method is given by ∫ b

a

f(x)dx = (b− a)f

(
a+ b

2

)
. (5)

which is same as mid-point formula and it’s called M1 − rule. The error constant is

C =

∫ b

a

x2dx− (b− a)(a+ b)2/4 =
1

12
h3

the error is

R1 =
C

2!
f (2)(ξ) =

h3

24
f (2)(ξ) =

(b− a)3

24
f (2)(ξ)

where ξ ∈ [ab] and

Two point formula: Take n = 2 in(2), we get,

I =

∫ b

a

f(x)dx = A0f0 +A1f1

where h = (b − a)/2, x0 = a + h/2, x1 = a + 3h/2. The method has two unknowns A0, A1. Making the method exact for

f(x) = 1, x, we get

A0 +A1 = b− a,A0x0 +A1x1 =
b2 − a2

2
.

Solving for A0 A1 we get,A0 = A1 = h, there fore the method given by∫ b

a

f(x) = h (f0 + f1) . (6)

This formula is called M2 − rule. The error constant is

C =

∫ b

a

x2 − h(x20 + x21) =
b3 − a3

3
− h(x2 + (x+ h)2) =

h3

6
.

R2 =
C

2!
f (2)(ξ) =

h3

12
f (2)(ξ) =

(b− a)3

96
f (2)(ξ), where ξ = [ab].

Tree point formula: Take n = 3 in(2), we get,

I =

∫ b

a

f(x) = A0f0 +A1f1 +A2f2.

where x0 = a + h/2, x1 = a + 3h/2 x2 = a + 5h/2. The method has two unknowns A0, A1 A2. Making the method exact

for f(x) = 1, x, x2, we get

A0 +A1 +A2 = b− a,A0x0 +A1x1 +A2x2 =
b2 − a2

2
, A0x

2
0 +A1x

2
1 +A2x

2
2 =

b3 − a3

3
.

Solving for A0 A1 and A2, we getA0 = A2 =
9h

8
and A1 =

3h

4
. This method is given by

∫ b

a

f(x) =
3h

8
(3f0 + 2f1 + 3f3) . (7)

This rule is called M3 − rule. The error constant is

C =

∫ b

a

x3 − 3h

8

(
3x30 + 2x31 + 3x32

)
= 0

It means this method is exact for order 3. Again find C for n = 4.

C =

∫ b

a

x4 − 3h

8

(
3x40 + 2x41 + 3x42

)
=

63h5

80

R3 =
C

4!
f (4)(ξ) =

21h5

640
f (4)(ξ) =

7(b− a)5

51840
f (4)(ξ), where ξ = [ab].

Following this process we get the table bellow.
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n Formula with h = (b− a)/n Error Order

1 hf0
(b− a)3

24
f (2)(ξ) 2

2 h (f0 + f1)
(b− a)3

96
f (2)(ξ) 2

3
3h

8
(3f0 + 2f1 + 3f2)

7(b− a)5

51840
f (4)(ξ) 4

4
h

12
(13f0 + 11f1 + 11f2 + 13f3)

103(b− a)5

1474560
f (4)(ξ) 4

5
5h

1152
[275f0 + 100f1 + 402f2 + 100f3 + 275f4]

223(b− a)7

604800000
f (6)(ξ) 6

6
3h

640
[247f0 + 139f1 + 254f2 + 254f3 + 139f4 + 247f5]

1111(b− a)7

5016453120
f (6)(ξ) 6

where fi = f(xi),x0 = a+ h/2 and xi = x0 + ih i = 1, 2, ..., n− 1.

4. Composite Formulas

To avoid the use of higher order methods and still obtain accurate results, we use the composite integration methods. We

divide the interval [a, b] into a number of subintervals and evaluate the integral in each subinterval by a particular method.If

we divide the interval [a b] into n = cN , where c,N ∈ N equal subinterval. Then

∫ b

a

f(x)dx =

(∫ c1

a=c0

+

∫ c2

c1

+...+

∫ b=cN

cN−1

)
︸ ︷︷ ︸ f(x)dx (8)

N- integrations

where ci, i =1,2,..,N-1 are end points of each interval, respectively. Now following case arise.

Composite M1 − rule Take c=1, that is number of sub interval is n = N and h = (b− a)/N . Apply One point formula for

each integration in above integration (8), we get

∫ b

a

f(x)dx = hf0 + hf1 + ....+ hfN−1 = h

N−1∑
i=0

fi (9)

where xi = x0 + ih, i = 1, 2, .., N − 1 and x0 = a+ h/2. The error of this integration is

RN =
−h3

12
[f (2)(ξ1) + f (2)(ξ2) + ...+ f (2)(ξN )]

where ci < ξ < ci+1, i = 0, 1, ..., N − 1. If f (2) is constant for all x in[a b], then

| RN |6
Nh4

12
f (2)(ζ) =

(b− a)3

24N2
f (2)(ζ)

where f (2)(ζ) = MAXa6x6b | f (2)(x) |, a < ζ < b.

Composite M2 − rule Take c=2, that is number of sub interval is n = 2N and h = (b− a)/2N . Apply Two point formula

for each integration in above integration (8), we get

∫ b

a

f(x)dx = h(f0 + f1) + h(f2 + f3 + ...+ h(f2N−2 + f2N−1) = h

2N∑
i=0

fi. (10)
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This is same as Composite one point formula. where xi = x0 + ih, i = 1, 2, .., 2N − 1 and x0 = a+ h/2. The error is

| R2N |6
(b− a)3

768N2
f (2)(ζ)

where f (2)(ζ) = MAXa6x6b | f (2)(x) |, a < ζ < b.

Composite M3 − rule Take c=3, that is number of sub interval is n = 3N and h = (b− a)/3N . Apply three point formula

for each integration in above integration (8), we get

∫ b

a

f(x) =
3h

8
(3f0 + 2f1 + 3f2) +

3h

8
(3f3 + 2f4 + 3f5) + ...+

3h

8
(3f3N−3 + 2f3N−2 + 3f3N−1)∫ b

a

f(x) =
3h

8
(3(f0 + f2 + f3 + f5 + ...+ f3N−3 + f3N−1) + 2(f1 + f4 + ...+ f3N−2)) . (11)

where xi = x0 + ih, i = 1, 2, .., 3N − 1 and x0 = a+ h/2. The error is

| R3N |6
7(b− a)5

12597120N4
f (4)(ζ)

where f (4)(ζ) = MAXa6x6b | f (4)(x) |, a < ζ < b.

Composite M4 − rule Take c=4, that is number of sub interval is n = 4N and h = (b− a)/4N . Apply three point formula

for each integration in above integration (8), we get

∫ b

a

f(x) =
h

12
(13f0 + 11f1 + 11f2 + 13f3) +

h

12
(13f4 + 11f5 + 11f6 + 13f7) + ...+

h

12
(13f4N−4 + 11f4N−3 + 11f4N−2 + 13f4N−1)∫ b

a

f(x) =
h

12
(13(f0 + f3 + f4 + f7 + ...+ f4N−4 + f4N−1) + 11(f1 + f2 + f5 + f6 + ...+ f4N−3 + f4N−2)) . (12)

where xi = x0 + ih, i = 1, 2, .., 4N − 1 and x0 = a+ h/2. The error is

| R4N |6
103(b− a)5

377487360N4
f (4)(ζ)

where f (4)(ζ) = MAXa6x6b | f (6)(x) |, a < ζ < b.

5. Comparing M3 − rule to Others Three Points Formula

The interval of formula (7) can change to [-1 1], we get

I =
1

4

(
3f(
−2

3
) + 2f(0) + 3f(

2

3
)

)
+

7

1620
f (4)(ξ).

The below table is three points formulas in the interval [-1 1] and −1 < ξ < 1.

93



Open-Type Quadrature Methods with Equispaced Nodes and a Maximal Polynomial Degree of Exactness

Name of formula Formula Error order

M3 − rule I =
1

4

(
3f(
−2

3
) + 2f(0) + 3f(

2

3
)

)
7

1620
f (4)(ξ) 4

Simpson’s 1/3 rule
1

3
(f(−1) + 4f(0) + f(1))

−1

90
f (4)(ξ) 4

Open newton-cotes
2

3

(
2f(
−1

2
)− f(0) + 2f(

1

2
)

)
7

720
f (4)(ξ) 4

Quasi-Monte Carlo
2

3

(
f(
−1
√

2
) + f(0) + f(

1
√

2
)

)
1

360
f (4)(ξ) 4

From above table we know, The error of M3 − rule is smaller then three point Newton’s cotes (open or Closed) formula.

Comparing with Simpson 1-3rd rule it’s give 275 percentage accuracy value.

6. Problems

Problem 6.1. Evaluate

I =

∫ 1

−1

e−x

1 + x2
dx

By three points formula. The exact value is 1.795521283.

solution Here f(x) =
e−x

1 + x2
. The solution of I by using three points formula is given below.

Name of formula Solution |Error| '

M3 − rule 1.77790541 1.762 · 10−2

Simpson’s 1/3 rule 1.847693545 5.2172 · 10−2

Open newton-cotes 1.7389353933 5.659 · 10−2

Quasi-Monte Carlo 1.7871927433 0.833 · 10−2

Gauss-Legendre 1.86501225889 6.949 · 10−2

Problem 6.2. Evaluate ∫ 1

0

sin(1 + x)ex
2

1 + x
dx.

Compare with exact value 0.913631.

Solution Here f(x) =
sin(1 + x)ex

2

1 + x
, a = 0 and b = 1.

If n = 1 then h = 1, and x0 = a+ h/2 = 0 + 1/2 = 1/2.

If n = 2 then h = 1/2 x0 = 0 + h/2 = 1/4, and x1 = h/2 + h = 1/4 + 1/2 = 3/4.

If n = 3 then h = 1/3, x0 = h/3 = 1/6, x1 = h/2 + h = 3/6 and x2 = h/2 + 2h = 5/6.

If n = 4 then h = 1/4 x0 = 1/8, x1 = 3/8, x2 = 5/8, and x3 = 7/8.

If n = 5 then h = 1/5v x0 = 1/10, x1 = 3/10, x2 = 5/10, x3 = 7/10 and x4 = 9/10

If n = 6 then h = 1/6 x0 = 1/12, x1 = 3/12, x2 = 5/12,x3 = 7/12, x4 = 9/12 and x5 = 11/12.

the value is given below.
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Name of rule Formula Value Error

M1 − rule 0.853873 0.059758

M2 − rule 0.897490 0.016141

M3 − rule 0.912915 0.000716

M4 − rule 0.913260 0.000371

M5 − rule 0.913629 0.000002

M6 − rule 0.913630 0.0000001

Problem 6.3. Evaluate ∫ 1

0

1

1 + x
dx.

By using Composite M3 − rule, take n = 3, 6 and 12. Compare with exact value ln(2)=0.69314718.

Solution Here f(x) =
1

1 + x
. Let In and E(In) be represent the value obtained by composite three points rule using n

nodes and error of In, respectively. The composite M3 − rule is

In=3N =
3h

8
(3(f0 + f2 + f3 + f5 + ...+ f3N−2 + f3N−1) + 2(f1 + f4 + ...+ f3N−2))

When n = 3 or N=1, we have h = 1/3 and.

∴ I3 =
1

8
(3f0 + 2f1 + 3f2) = 0.69264069.

When n = 6 or N=2, we have h = 1/6 and

I6 =
1

16
(3(f0 + f2 + f3 + f5) + 2(f1 + f4))) = 0.69310558.

When n = 12 or N=4, we have h = 1/12 and

I12 =
1

32
(3(f0 + f2 + f3 + f5 + f6 + f8 + f9 + f11) + 2(f1 + f4 + f7 + f10)) = 0.69314432.

The errors E(I3) = 0.00050649, E(I6) = 0.0000416 and E(I12) = 0.00000286

7. Conclusion

We develop this method for easy to solve definite integral of finite interval. The purpose of this method is the nodes of

composite method have been taken as midpoints and it’s give good accuracy more then Closed or Open Type Newton-cotes

rules. If n is the number of sub intervals then the number of nodes in closed Newton cotes formula is n + 1 and in open

type Newton Cotes formula is n− 1. there is no open type Newtons cotes formula for n = 1. But in Mid Point formula the

number of notes is equal to the number of subintervals. so there exist a formula for any value of n. Suppose in Simpson 1/3

rule, three nodes and two equal subintervals, in M3 − rule three nodes and three equal subintervals. Hence the error in this

method is small(i.e the value h is small compare with Newton cotes formula). Hence we researched about the nodes, there

are no fixed nodes to give exact value of integration for all integrable functions f(x). We are researching about mid point

nodes, this method is give stable for all functions f(x). So many persons used composite Simpson’s rule, because the nodes

of composite Simpson’s rule are equispaced points. So this method is better then Simpson’s (1/3-rule or 3/8-rule).
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