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Abstract: In this paper In Finite Journal bearing considering the effects of additives in lubrication with viscosity variation and
thermal effects are analyzed. The generalized Reynolds equation for two layer fluid is derived and is applied for finite
journal bearing. The finite journal bearing with modified Reynolds equation is solved numerically by using Finite Difference
Method technique. As the thermal effect increases for two layer fluids increases the pressure and load capacity in the
lubrication process.
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1. Introduction

In general, most of the lubricated systems can be considered to consist of moving (stationary) surfaces (plane/curve or
loaded/unloaded) with a thin film of an external material (lubricant) between them. The presence of such a thin film
between these surfaces not only helps to support considerable load but also minimizes friction. The characteristics such as
pressure in the film, frictional force at the surface, flow rate of lubricant etc. of the system depend upon the nature of the
surfaces, the nature of the lubricant film boundary conditions etc. The equation governing the pressure generated in the
lubricant film can be obtained by coupling the equation of motion with the equation of continuity and was first derived by
Reynolds [16] and is known as “Reynolds Equation”. In deriving this equation, the thermal effects, compressibility, viscosity
variation, slip at the surface, inertia and surface roughness effects were ignored. Later this Reynolds equation is modified
by including viscosity and density variation along the fluid film. Dowson [7] unified the various attempts in generalizing
the Reynolds equation by considering the variation of fluid properties across as well as along the fluid film-thickness by
neglecting slip effects at the bearing surfaces.Bharath Kumar [4] analyzed fluid pressure and load capacity by considering
thermal effects. It may be noted that the effects of viscosity at the surface and thermal variation is important on the flow
behavior of gases and liquids particularly when the film-thickness is very small and the surface is very smooth. In this paper
the modified Reynolds equation with the viscosity variation and thermal effects on finite journal bearing are studied by
Finite Difference Method technique. Expression for pressure and load capacity is obtained and analyzed numerically. The
effect of peripheral layer thickness, eccentricity, and thermal factor on load capacity and pressure is found. The point of

maximum pressure increases due to thermal effect, whereas the load capacity decreases.
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2. Mathematical Formulation of the Problem

The Physical configuration of the journal bearing is shown in fig 1. C be the clearance of the bearing, c=r — Rand e = £

be the eccentricity ratio as show in fig 1, h is the total film thickness, is given by

h=c(1+ecosh)

oh .
56 = —esiné (1)
The equation of governing to the fluid flow in the bearing is given by
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. h) (k=1)+1
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Figure 1: Journal bearing configuration
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By substituting equation (5) in (7), then the modified Reynolds equation in a non-dimensional form can be written a
9 |z op 9 —ap| Uon ®)
RO6 1211 RO6 Loy | 12m~ Loy | R O6
Where A\ = L2

=c¢(1+ecosh)
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By solving the above equation (7), we get the non-dimensional pressure as

2

__ pc
= 10
P= R (10)
Now the equation (7) reduced to
8 —=73—¢q 8ﬁ 1 8 —=73—q 8ﬁ .
ZNFR T+ = |FR Y| = —12es 11
20 { h 39]+4A28§[ h a7 esin6 (11)
The boundary conditions for fluid film pressure are
p=0at 6 =0
g (12)
p=0at 0=m

The modified Reynolds equation is solved numerically using Finite difference method. The film domain under consideration

is divided by grid points as shown in Fig 2. In finite increment format, the terms of equation (11) can be written as

Pi, j+1

R

L
.

Pil,j

Pi-1,j —
Pi.j

Pij-1 AO

Figure 2: Grid point notation for film domain

—3—¢q _ _ — —
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h 1 F Pij ~Pij 7 Piji1 —Pi, _ :
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By solving we get as
e — — —
WNE (Fi1/2Pi; — Fiv125Pi1; — Fic1/25 P41 + Fic1/25 i 5] +

34
h 1 _ — _ — _ = _ .
AN2 A2 Fi7j+1/2pi,j = Fij+1/2D;5-1 — Flij-1/2,Pip1,; + Fij—1/2 piyj] = —12¢sinf

—3— _ — _ — _ — _
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R [Fij+1/2Di; — Fijr12Di 1 — Fijo12, i ji1 + Fij—1/2Di ;] = —12e4)\? sin 6 AY” (14)

By substituting this equation in (10), we get

I - - - - _2 . 73— - _
pi,jh a4 [4)\27'2 (FfH,l/g’j + Fifl/gﬁj) + (Fi,j+l/2 + Fi’jfl/g)] = —1284)\2Ay2 sin 6 + h q[4A2T2Fi+1/2’jpi71‘j

+ 4A2T2Fi71/2,jpi+17j + Fi,j+1/217¢,j_1 + Fi,j71/2@,]-+1]
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_ 3— —3— —_— _ —_— _ — _ E—1 _ _ .
coPi b T =h AN Fip 0Py AN T2, Doy + Fijri2Pi o1+ Figo1/2D; 541) — 124X Ay? sin 6

Dij = C1Di_1,; t C2Diq1 5 +C3P; j_1 + CaCijr1 +Cs5 (15)
The coefficient co, c1, c2, c3, c4, cs5, defined as

Co = [4)\27"2 (Fi+1/2,j +Fi—1/2,j) + (Fi’j+1/2 +F1"j,1/2)] , C1 = 4)\27’2Fi+1/2,j/60, Co = 4)\27'2?1-,1/2,]-/00

c3=F;j1/2/c0, ca=F;;_12/co, c5 = 748)\2A§26sin0/coﬁg_q (16)

Az

T= 2. The pressure p is calculated numerically with grid spacing of Af = 0.05 and AZ = 9°. The load carrying capacity

of the bearing W, generated by the film pressure is obtained by

O=m z=1/2
W = / pcosfdb.dz (17)

6=0 =0

By using (11) in (16), we get non dimensional load as

o 2 O=m z=1/2 _
W= Z/UCR :/ / pcosBdl.dz (18)
6=0 z=0
M N
A=Y > P A0 AZ (19)
=0 =0

Il
<}

k3

Where M + 1 and N + 1 are the grid point numbers in the x and z direction respectively.

3. Result and Discussion

The pressure in equation (15) the mesh of the film domain has 20 equal intervals along the bearing length and circumference.
The coefficient matrix of the system of algebraic equation is of pentadiagonal form. These equations have been solved by
using sci-lab tools.

Pressure: The variation of non-dimensional pressure p for different values of q with @ = 0.1 and r = 1.5 is shown in Fig 3.
It is observed that p increases for increasing value of q. Fig 4 shows The variation of film pressure p and different values of
peripheral layer thickness @ with k = 0.5 and » = 1.5. It is observed that p decreases for increasing values of a@. Fig 5 shows
the variation of film pressure p and different values of k with ¢ = 0.1. It is observed that p increasing for increasing values
of k.

Load carrying capacity: Fig 6 shows that the variation of non-dimensional load carrying capacity W with e for different
values of q at k = 0.5. It is observed that the increasing values of q decrease the W and the corresponding values of load
at different  are shown in Table 1. Fig 7 shows that the variation of non-dimensional load carrying capacity W with q for
different values of € at k = 0.5. It is observed that the increasing values of ¢ increase the W and the corresponding values

of load at different ¢ are shown in Table 2.

Fig 8 shows that the variation of non-dimensional load carrying capacity W with q for different values of k at @ = 0.1. It is
observed that the increasing values of k increase the W and the corresponding values of load W at different k are shown in
Table 3. Fig 9 shows that the variation of non-dimensional load carrying capacity W with q for different values of @. It is
observed that the increasing values of @ decrease the W and the corresponding values of load W at different @ are shown in

Table 4.
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4. Graphs

)

L
1

(a) q=1(2.03230127990072) (b) q=2(2.214355030045597) (c) a=3(2.545465945596239)

Figure 3: Non-Dimensionless pressure p for different values of q with a = 0.1, r = 1.5, e =04, A =0.75

(a) a=0.1(1.983636565406811) (b) a=0.01(2.455285750254697) (c) a=0.001(2.522529964714077)

Figure 4: Non-Dimensionless pressure p for different values of @ with £ = 0.5, ¢ = 0.1, ¢ = 0.4, A =0.75

(a) K=1(2.530321510631443) (b) K=2(2.939949783363757) (c) K=3(3.109080349522665)

Figure 5: Non-Dimensionless pressure p for different values of k with @ = 0.1, ¢ = 0.1, e = 0.4, A = 0.75
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Figure 6: Dimensionless load W Vs ¢ for different q
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Figure 8: Dimensionless load W Vs q for different values of k
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Figure 9: Dimensionless load W Vs q for different values of a

5. Tables

e |¢g=0.001|¢g=001]¢g=0.1] ¢g=0.2
0.4 | 2.3112 |2.24867|1.81281|1.548982
0.425| 2.45493 |2.38813 | 1.924 |1.644106
0.45 | 2.59852 |2.52738 |2.03478|1.738926
0.475| 2.74197 | 2.66642 |2.14515(1.833426
0.5 | 2.88528 |2.80521 |2.25506|1.927591
0.525| 3.02842 |2.94376 |2.36449|2.021404
0.55 | 3.1714 |3.08203 |2.47341| 2.11485
0.575| 3.3142 |3.22001 |2.58179|2.207917
0.6 | 3.45683 |3.35769 |2.68959| 2.30059

Table 1: Dimensionless load W Vs Eccentricity Ratio ¢ for different ¢

q |epc=0.5|epc=0.6|epc=0.7|epc=0.8
0.01|2.88444 | 3.45537 | 4.02293 | 4.58642
0.03]2.88264 | 3.45222 | 4.01785 | 4.57862
0.05| 2.8809 | 3.4492 |4.01297|4.57115
0.07]2.87924 | 3.4463 | 4.0083 | 4.56401
0.09|2.87765 | 3.44353 | 4.00384 | 4.55718
0.11]2.87613 | 3.44088 | 3.99958 | 4.55067
0.13]2.87468 | 3.43836 | 3.99553 | 4.54448
0.15| 2.8733 | 3.43597 | 3.99168 | 4.53861
0.17]2.87198 | 3.43369 | 3.98803 | 4.53305
0.19]2.87074 | 3.43154 | 3.98458 | 4.52779

Table 2: Dimensionless load W Vs Thermal effect q for different e
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q |[K=05|K=1|K=15 K=2
0.012.88444 |2.89365 | 2.89673 | 2.89827
0.03|2.88264 [2.89182| 2.8949 |2.89644
0.05| 2.8809 |2.89008 | 2.89315 |2.89469
0.07|2.87924 | 2.8884 | 2.89146 | 2.893
0.09| 2.87765 | 2.88679 2.88985 |2.89138
0.11|2.87613 |2.88525 | 2.88831 | 2.88984
0.13(2.87468 |2.88379 | 2.88684 |2.88836
0.15| 2.8733 |2.882392.88544 |2.88696
0.17|2.87198 |2.88106 | 2.8841 |2.88563
0.19| 2.87074 |2.87981/ 2.88284 |2.88436

Table 3: Dimensionless load W Vs Thermal effect for different k

q | a=0.1 | a=0.2 | a=0.3 | a=0.4
0.01{2.25877(1.93204| 1.7417 |1.62517
0.03]2.25785|1.93137(1.74109(1.62453
0.05(2.25699(1.93075|1.74052|1.62392
0.07]2.25617|1.93018|1.73999|1.62336
0.09(2.25542|1.92966|1.73951|1.62284
0.11]2.25472|1.92918(1.73906|1.62236
0.13]2.25407|1.92875|1.73866|1.62191
0.15(2.25347|1.92836| 1.7383 |1.62151
0.17(2.25293|1.92802|1.73798|1.62114
0.19(2.25244|1.92772|1.73771|1.62081

Table 4: Dimensionless load W Vs Thermal effect for different @

6. Summary

In this paper Finite Journal bearings considering the effects of additives in lubrication with viscosity variation and thermal
effects are analyzed. The generalized Reynolds equation for two layer fluid isderived and is applied for finite journal bearing.
The finite journal bearing with modified Reynolds equation is solved numerically by using FDM technique with a grid space
of #=9%and AZ=0.05. As the thermal effect increases for two layer fluids it increases the pressure and decreases viscosity

and load capacity .

Nomenclature

a peripheral layer thickness
pressures
Film thickness

n Viscosity of the fluid

X,Y,Z Cartesian coordinates

0 Circumference angle

c Clearance

e Eccentricity

R Radius of the shaft

K Ratio of viscosity near the surface to the purely hydrodynamic
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u, V,w Velocity component of the film in x,y,z direction
U Velocity

€ Eccentricity ratio

q Thermal factor
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