Common Fixed Points of Two Pairs of Selfmaps Satisfying (E.A)-property in b-metric Spaces Using a New Control Function

Research Article

Venkata Ravindranadh Babu Gutti ${ }^{1}$ and Dula Tolera Mosissa ${ }^{1 *}$

1 Department of Mathematics, Andhra University, Visakhapatnam, India.

[^0]Keywords: b-metric space, common fixed point, b-(E. A)-property, weakly compatible.
(c) JS Publication.

1. Introduction and Preliminaries

In 1993, Stefan Czerwik [4] introduced the concept of b-metric spaces which is a generalization of metric space and generalized the Banach contraction principle in the context of complete b-metric spaces. Afterwards, many mathematicians studied fixed point theorems for single-valued and multi-valued mappings in b-metric spaces. In 2002, Aamari and Moutawakil [1] introduced the notion of property $(E . A)$. Different authors apply this concept to prove the existence of common fixed points (see [2], [9], [11] [12]). We now mention some well-known notations, definitions and primary known results in the literature that will be needed in the sequel.

Definition 1.1 ([4]). Let X be a non-empty set. A function $d: X \times X \rightarrow[0, \infty)$ is said to be a b-metric if the following conditions are satisfied;
(1). $0 \leq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$,
(2). $d(x, y)=d(y, x)$ for all $x, y \in X$,
(3). there exists $s \geq 1$ such that $d(x, z) \leq s[d(x, y)+d(y, z)]$ for all $x, y, z \in X$.

In this case, the pair (X, d) is called a b-metric space with coefficient s.

Every metric space is a b-metric space with $s=1$. In general, every b-metric space is not a metric space.

Definition 1.2 ([3]). Let (X, d) be a b-metric space.

[^1](1). A sequence $\left\{x_{n}\right\}$ in X is called b-convergent if there exists $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. In this case, we write $\lim _{n \rightarrow \infty} x_{n}=x$.
(2). A sequence $\left\{x_{n}\right\}$ in X is called b-Cauchy if $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.
(3). The b-metric space (X, d) is b-complete if every b-Cauchy sequence in X is b-convergent.
(4). Let $Y \subset X$. Then Y is called b-closed if and only if for each sequence $\left\{x_{n}\right\}$ in Y which b-converges to an element x, we have $x \in Y$.

Remark 1.3. A b-metric need not be a continuous function. For more details, we refer [5].

Lemma 1.4 ([5]). Let (X, d) be a b - metric space with $s \geq 1$.
(1). If a sequence $\left\{x_{n}\right\} \subset X$ is a b-convergent sequence, then it admits a unique limit.
(2). Every b-convergent sequence in X is b-Cauchy.

Definition 1.5 ([8]). Let f and g be selfmaps on a metric space (X, d). If $f x=g x=w$ for some $x \in X$, then x is called a coincidence point of f and g and the set of all coincidence points of f and g is denoted by $C(f, g)$, and w is called point of coincidence of f and g.

Definition $1.6([6])$. A pair (f, g) of selfmaps on a metric space (X, d) is said to be compatible if $\lim _{n \rightarrow \infty} d\left(g f x_{n}, f g x_{n}\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=z$ for some z in X.

Definition 1.7. A pair (f, g) of selfmaps on a metric space (X, d) is said to be noncompatible if there exists at least one sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=z$ for some z in X but $\lim _{n \rightarrow \infty} d\left(g f x_{n}, f g x_{n}\right)$ is either non-zero or does not exist.

Definition $1.8([1])$. A pair (f, g) of selfmaps on a metric space (X, d) is said to be satisfy $(E . A)$-property if there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=z$ for some z in X.

Definition $1.9([10])$. A pair (f, g) of selfmaps on a b-metric space (X, d) is said to be satisfy b-(E.A)-property if there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=z$ for some z in X.

Definition $1.10([7])$. A pair (f, g) of selfmaps on a set X is said to be weakly compatible if $f g x=g f x$ whenever $f x=g x$ for any x in X.

We denote $\Psi=\{\psi:[0, \infty) \rightarrow[1, \infty) \mid \psi$ is continuous, nondecreasing on $[0, \infty)$ and $\psi(t)=1$ if and only if $t=0\}$.

Example 1.11. The following functions $\psi:[0, \infty) \rightarrow[1, \infty)$ are elements of Ψ. For $t \in[0, \infty)$ and $a \in(1, \infty)$
(1). $\psi(t)=t+1$,
(2). $\psi(t)=a^{t}$,
(3). $\psi(t)=a^{\sqrt{t}}$.

Very recently, Ozturk and Radenovic [11] obtained the following result in b-metric spaces.

Theorem 1.12 ([11]). Let (X, d) be a b-metric space with coefficient $s>1$ and $f, g, S, T: X \rightarrow X$ be selfmappings of X with $f X \subset T X$ and $g X \subset S X$ such that

$$
\begin{equation*}
\left.s^{\epsilon} d(f x, g y) \leq M_{s}(x, y)\right) \text { for all } x, y \in X, \tag{1}
\end{equation*}
$$

where $\epsilon>1$ is a constant and
$\left.M(x, y)=\max \left\{d(S x, T y), d(S x, f x), d(T y, g y), \frac{d(S x, g y)+d(T y, f x)}{2 s}\right)\right\}$. Suppose one of the pairs (f, S) and (g, T) satisfy the b-(E.A)-property and that of one of the subspaces $f X, g X, S X$ and $T X$ is b-closed in X. Then the pairs (f, S) and (g, T) have a point of coincidence in X. Moreover, if the pairs (f, S) and (g, T) are weakly compatible, then f, g, S and T have a unique common fixed point.

In Section 2, we prove our main results in which we study the existence of common fixed points of two pairs of selfmaps satisfying b-(E.A)-property in b-metric spaces. In Section 3, we provide corollaries and an example in support of our results. Our results generalize the results of Ozturk and Radenovic [11].

2. Main Results

Proposition 2.1. Let (X, d) be a b-metric space with coefficient $s \geq 1$. Let $f, g, S, T: X \rightarrow X$ be selfmaps of X with $f X \subset T X$ and $g X \subset S X$. Assume that there exist $\psi \in \Psi$ and $k \in[0,1)$ such that

$$
\begin{equation*}
\psi(s d(f x, g y)) \leq\left(\psi\left(M_{s}(x, y)\right)\right)^{k} \text { for all } x, y \in X \tag{2}
\end{equation*}
$$

where $M_{s}(x, y)=\max \left\{d(S x, T y), d(S x, f x), d(T y, g y), \frac{d(S x, g y)+d(T y, f x)}{2 s}\right\}$. Suppose that the pairs (f, S) and (g, T) are weakly compatible. Then $F(f, S) \neq \emptyset$ if and only if $F(g, T) \neq \emptyset$, where $F(f, S)$ and $F(g, T)$ are the set of all common fixed points of the pairs (f, S) and (g, T) respectively. In this case, if $q \in F(f, S)$ then $q \in F(g, T)$ and q is the unique common fixed point of f, g, S and T. Similarly, if $q \in F(g, T)$ then $q \in F(f, S)$ and q is the unique common fixed point of f, g, S and T.

Proof. First we assume that $F(f, S) \neq \emptyset$. Let $q \in F(f, S)$, then $q=f q=S q$. Now, we show that $q \in F(g, T)$. Since $f X \subset T X$ there exists $r \in X$ such that $q=f q=T r$, then we have $S q=f q=T r=q$. We now show that $g r=q$. Suppose that $g r \neq q$. From (2) we have

$$
\begin{equation*}
\psi(s d(q, g r))=\psi(s d(f q, g r)) \leq\left(\psi\left(M_{s}(q, r)\right)\right)^{k} \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
M_{s}(q, r) & =\max \left\{d(S q, T r), d(S q, f q), d(T r, g r), \frac{d(S q, g r)+d(T r, f q)}{2 s}\right\} \\
& =\max \left\{d(q, q), d(q, q), d(q, g r), \frac{d(q, g r)+d(q, q)}{2 s}\right\} \\
& =\max \left\{0,0, d(q, g r), \frac{d(q, g r)}{2 s}\right\} \\
& =d(q, g r) . \tag{4}
\end{align*}
$$

Now, from (3) using (4) we have

$$
\psi(s d(q, g r))=\psi(s d(f q, g r)) \leq\left(\psi\left(M_{s}(q, r)\right)\right)^{k}=(\psi(d(q, g r)))^{k}<\psi(d(q, g r)),
$$

a contradiction. Hence $g r=q$. Therefore $g r=T r=q$. Since g and T are weakly compatible, we have $g q=T q$. We now show that $g q=q$. Suppose $g q \neq q$. From (2) we have

$$
\begin{equation*}
\psi(s d(q, g q))=\psi(s d(f q, g q)) \leq\left(\psi\left(M_{s}(q, q)\right)\right)^{k} \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
M_{s}(q, q) & =\max \left\{d(S q, T q), d(S q, f q), d(T q, g q), \frac{d(S q, g q)+d(T q, f q)}{2 s}\right\} \\
& =\max \left\{d(q, g q), d(q, q), d(g q, g q), \frac{d(q, g q)+d(g q, q)}{2 s}\right\} \\
& =\max \left\{d(q, g q), 0,0, \frac{d(q, g q)}{s}\right\} \\
& =d(q, g q) . \tag{6}
\end{align*}
$$

From (5) and using (6), we have

$$
\psi(s d(q, g q))=\psi(s d(f q, g q)) \leq\left(\psi\left(M_{s}(q, q)\right)\right)^{k}=(\psi(d(q, g q)))^{k}<\psi(d(q, g q))
$$

a contradiction. Hence $g q=q$. Therefore $T q=g q=q$ and hence $F(g, T) \neq \emptyset$.
Conversely, we assume that $F(g, T) \neq \emptyset$. Let $u \in F(g, T)$ i.e., $g u=T u=u$. On using similar steps as above we can show that $u \in F(f, S)$ and hence $F(f, S) \neq \emptyset$. We now show that f, g, S and T have a unique common fixed point. Let u and q be common fixed points of f, g, S and T. Suppose that $u \neq q$. From (2), we have

$$
\begin{equation*}
\psi(s d(u, q))=\psi(s d(f u, g q)) \leq\left(\psi\left(M_{s}(u, q)\right)\right)^{k} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
M_{s}(u, q) & =\max \left\{d(S u, T q), d(S u, f u), d(T q, g q), \frac{d(S u, g q)+d(T q, f u)}{2}\right\} \\
& =\max \left\{d(u, q), d(u, u), d(q, q), \frac{d(u, q)+d(q, u)}{2 s}\right\} \\
& =\max \left\{d(u, q), 0,0, \frac{d(u, q)}{s}\right\} \\
& =d(u, q) . \tag{8}
\end{align*}
$$

From (7) and using (8), we have

$$
\psi(s d(u, q))=\psi(s d(f u, g q)) \leq\left(\psi\left(M_{s}(u, q)\right)\right)^{k}=(\psi(d(u, q)))^{k}<\psi(d(u, q))
$$

a contradiction. Hence $u=q$. Therefore S, f, g and T have a unique common fixed point.

The main results of this paper is the following.
Theorem 2.2. Let (X, d) be a b-metric space with coefficient $s \geq 1$. Let $f, g, S, T: X \rightarrow X$ be selfmaps of X with $f X \subset T X$ and $g X \subset S X$. Assume that there exist $\psi \in \Psi$ and $k \in[0,1)$ such that

$$
\begin{equation*}
\psi(s d(f x, g y)) \leq\left(\psi\left(M_{s}(x, y)\right)\right)^{k} \text { for all } x, y \in X, \tag{9}
\end{equation*}
$$

where $M_{s}(x, y)=\max \left\{d(S x, T y), d(S x, f x), d(T y, g y), \frac{d(S x, g y)+d(T y, f x)}{2 s}\right\}$. Suppose that one of the pairs (f, S) and (g, T) satisfies the b-(E.A)-property and that one of the subspaces $f X, g X, S X$ and $T X$ is b-closed in X. Then the pairs (f, S) and (g, T) have a point of coincidence in X. Moreover, if the pairs (f, S) and (g, T) are weakly compatible, then f, g, S and T have a unique common fixed point.

Proof. We first assume that the pair (f, S) satisfies the b-(E. A)-property. So there exists a sequence $\left\{x_{n}\right\}$ in X satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} S x_{n}=q \text { for some } q \in X . \tag{10}
\end{equation*}
$$

As $f X \subset T X$, there exists a sequence $\left\{y_{n}\right\}$ in X such that $f x_{n}=T y_{n}$, and hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T y_{n}=q . \tag{11}
\end{equation*}
$$

Now, we show that $\lim _{n \rightarrow \infty} g y_{n}=q$. Suppose that $\limsup _{n \rightarrow \infty} d\left(f x_{n}, g y_{n}\right)>0$. From (9), we have

$$
\begin{equation*}
\psi\left(s d\left(f x_{n}, g y_{n}\right)\right) \leq\left(\psi\left(M_{s}\left(x_{n}, y_{n}\right)\right)\right)^{k} \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{s}\left(x_{n}, y_{n}\right) & =\max \left\{d\left(S x_{n}, T y_{n}\right), d\left(S x_{n}, f x_{n}\right), d\left(T y_{n}, g y_{n}\right), \frac{d\left(S x_{n}, g y_{n}\right)+d\left(T y_{n}, f x_{n}\right)}{2 s}\right\} \\
& =\max \left\{d\left(S x_{n}, f x_{n}\right), d\left(S x_{n}, f x_{n}\right), d\left(f x_{n}, g y_{n}\right), \frac{d\left(S x_{n}, g y_{n}\right)+d\left(f x_{n}, f x_{n}\right)}{2 s}\right\} \\
& \leq \max \left\{d\left(S x_{n}, f x_{n}\right), d\left(f x_{n}, g y_{n}\right), \frac{s\left[d\left(S x_{n}, f y_{n}\right)+d\left(f x_{n}, g y_{n}\right)\right]}{2 s}\right\} .
\end{aligned}
$$

On taking limit supremum as $n \rightarrow \infty$ in the above inequality we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty} M_{s}\left(x_{n}, y_{n}\right) & =\max \left\{0,0, \limsup _{n \rightarrow \infty} d\left(f x_{n}, g y_{n}\right), \frac{\limsup _{n \rightarrow \infty} d\left(f x_{n}, g y_{n}\right)}{2}\right\} \tag{13}\\
& =\underset{n \rightarrow \infty}{\limsup } d\left(f x_{n}, g y_{n}\right)
\end{align*}
$$

On taking limits supremum as $n \rightarrow \infty$ in (12) and using (13), we have

$$
\begin{aligned}
\psi\left(s \limsup _{n \rightarrow \infty} d\left(f x_{n}, g y_{n}\right)\right) & =\limsup _{n \rightarrow \infty} \psi\left(s d\left(f x_{n}, g y_{n}\right)\right) \leq \limsup _{n \rightarrow \infty}\left(\psi\left(M_{s}\left(x_{n}, y_{n}\right)\right)\right)^{k} \\
& =\left(\psi\left(\limsup _{n \rightarrow \infty} d\left(f x_{n}, g y_{n}\right)\right)\right)^{k}<\psi\left(\limsup _{n \rightarrow \infty} d\left(f x_{n}, g y_{n}\right)\right),
\end{aligned}
$$

a contradiction. Hence $\limsup _{n \rightarrow \infty}\left(f x_{n}, g y_{n}\right)=0$, which implies that $\lim _{n \rightarrow \infty}\left(f x_{n}, g y_{n}\right)=0$. Now, we have

$$
\begin{equation*}
d\left(q, g y_{n}\right) \leq s\left[d\left(q, f x_{n}\right)+d\left(f x_{n}, g y_{n}\right)\right] . \tag{14}
\end{equation*}
$$

On taking limits as $n \rightarrow \infty$ in (14), we have

$$
\begin{equation*}
0 \leq \lim _{n \rightarrow \infty} d\left(g y_{n}, q\right) \leq s \lim _{n \rightarrow \infty}\left[d\left(q, f x_{n}\right)+d\left(f x_{n}, g y_{n}\right)\right]=0 . \tag{15}
\end{equation*}
$$

Therefore $\lim _{n \rightarrow \infty} d\left(q, g y_{n}\right)=0$.
Case (i): Assume that $T X$ is a b-closed subset of X.
In this case $q \in T X$ and hence we can choose $r \in X$ such that $T r=q$. Now we show that $g r=q$. Now, we have

$$
\begin{equation*}
d(q, g r) \leq s\left[d\left(q, f x_{n}\right)+d\left(f x_{n}, g r\right)\right] . \tag{16}
\end{equation*}
$$

On taking limit supremum as $n \rightarrow \infty$ in (16), we have

$$
\begin{equation*}
d(q, g r) \leq s \limsup _{n \rightarrow \infty} d\left(f x_{n}, g r\right) . \tag{17}
\end{equation*}
$$

Suppose $d(q, g r)>0$. From (9), we have

$$
\begin{equation*}
\psi\left(s d\left(f x_{n}, g r\right)\right) \leq\left(\psi\left(M_{s}\left(x_{n}, r\right)\right)\right)^{k} \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{s}\left(x_{n}, r\right) & =\max \left\{d\left(S x_{n}, T r\right), d\left(S x_{n}, f x_{n}\right), d(T r, g r), \frac{d\left(S x_{n}, g r\right)+d\left(T r, f x_{n}\right)}{2 s}\right\} \\
& \leq \max \left\{d\left(S x_{n}, q\right), d\left(S x_{n}, f x_{n}\right), d(q, g r), \frac{s\left[d\left(S x_{n}, q\right)+d(q, g r)\right]+d\left(q, f x_{n}\right)}{2 s}\right\} .
\end{aligned}
$$

On taking limit supremum as $n \rightarrow \infty$ in the above inequality we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} M_{s}\left(x_{n}, r\right) \leq \max \left\{0,0, d(q, g r), \frac{d(q, g r)}{2}\right\}=d(q, g r) . \tag{19}
\end{equation*}
$$

On taking limits supremum as $n \rightarrow \infty$ in (18) and using (17) and (19), we have

$$
\begin{aligned}
\psi(d(q, g r)) \leq \psi\left(s \limsup _{n \rightarrow \infty} d\left(f x_{n}, g r\right)\right) & =\limsup _{n \rightarrow \infty} \psi\left(s d\left(f x_{n}, g r\right)\right) \\
& \leq \limsup _{n \rightarrow \infty}\left(\psi\left(M_{s}\left(x_{n}, r\right)\right)\right)^{k}=\left(\psi\left(\limsup _{n \rightarrow \infty} M_{s}\left(x_{n}, r\right)\right)\right)^{k} \\
& \leq(\psi(d(q, g r)))^{k}<\psi(d(q, g r)),
\end{aligned}
$$

a contradiction. Hence $d(q, g r)=0$. Therefore $g r=q$, i.e., $g r=T r=q$ and hence r is a coincidence point of g and T. Since $q=g r$ and $g X \subset S X$, we have $q \in S X$ and hence there exists $z \in X$ such that $S z=q=g r$.

Now, we show that $S z=f z$. Suppose $S z \neq f z$. By (9), we have

$$
\begin{equation*}
\psi(s d(f z, q))=\psi(s d(f z, g r)) \leq\left(\psi\left(M_{s}(z, r)\right)\right)^{k} \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
M_{s}(z, r) & =\max \left\{d(S z, T r), d(S z, f z), d(T r, g r), \frac{d(S z, g r)+d(T r, f z)}{2 s}\right\} \\
& =\max \left\{0, d(q, f z), 0, \frac{d(q, f z)}{2 s}\right\}=d(f z . q) . \tag{21}
\end{align*}
$$

From (20) and using (21), we have

$$
\psi(s d(f z, q))=\psi(d(f z, g r)) \leq\left(\psi\left(M_{s}(z, r)\right)\right)^{k}=(\psi(d(f z, q)))^{k}<\psi(d(f z, q))
$$

a contradiction. Hence $f z=S z=q$, so that z is a coincidence point of f and S. Since the pairs (f, S) and (g, T) are weakly compatible, we have $f q=S q$ and $T q=g q$ so that q is also a coincidence point of (f, S) and (g, T). Now, we show that q is a common fixed point of f, g, S and T. Suppose $f q \neq q$. From (9), we have

$$
\begin{equation*}
\psi(s d(f q, q))=\psi(s d(f q, g r)) \leq\left(\psi\left(M_{s}(q, r)\right)\right)^{k}, \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
M_{s}(q, r) & =\max \left\{d(S q, T r), d(S q, f q), d(T r, g r), \frac{d(S q, g r)+d(T r, f q)}{2 s}\right\} \\
& =\max \left\{d(f q, q), 0,0, \frac{d(q, f q)}{s}\right\} \\
& =d(f q, q) \tag{23}
\end{align*}
$$

From (22) and using (23), we have

$$
\psi(s d(f q, q))=\psi(s d(f q, g r)) \leq\left(\psi\left(M_{s}(q, r)\right)\right)^{k}=(\psi(d(f q, q)))^{k}<\psi(d(f q, q))
$$

a contradiction. Hence $f q=q$. Therefore $S q=f q=q$, so that q is common fixed point of f and S and hence $F(f, S) \neq \emptyset$. By Proposition 2.1, we have $F(g, T) \neq \emptyset$ and $q \in F(g, T)$ and q is the unique common fixed point of f, g, S and T.

Case (ii) : Suppose $f X$ is b-closed.
In this case, we have $q \in f X$ and since $f X \subset T X$, we choose $r \in X$ such that $q=T r$. Hence the proof follows as in Case (i). Case (iii) : $S X$ is b-closed.

We follow the argument similar to the case (i), and get the conclusion.
Case (iv): Suppose $g X$ is b-closed.
As in case (ii), we get the conclusion.
For the case of (g, T) satisfies the $b-(E . A)$-property, we follow the argument similar to the case (f, S) satisfies the b-(E.A)property. This complete the proof of the theorem.

3. Corollaries and Examples

Corollary 3.1. Let (X, d) be a b-metric space with coefficient $s \geq 1$. Let $f, g, S, T: X \rightarrow X$ be selfmaps of X with $f X \subset T X$ and $g X \subset S X$ such that

$$
\begin{equation*}
\left.\operatorname{sd}(f x, g y)) \leq k M_{s}(x, y)\right) \text { for all } x, y \in X, \tag{24}
\end{equation*}
$$

where $M_{s}(x, y)=\max \left\{d(S x, T y), d(S x, f x), d(T y, g y), \frac{d(S x, g y)+d(T y, f x)}{2 s}\right\}$ and $0 \leq k<1$. Suppose that one of the pairs (f, S) and (g, T) satisfies the b-(E.A)-property and that of one of the subspaces $f X, g X, S X$ and $T X$ is b-closed in X. Then the pair (f, S) and (g, T) have a point of coincidence in X. Moreover, if the pairs (f, S) and (g, T) are weakly compatible, then f, g, S and T have a unique common fixed point.

Proof. The result follows from Theorem 2.2 by choosing $\psi(t)=e^{t}$ for all $t \geq 0$.

Remark 3.2. Since the inequality (1) is a spacial case of inequality (9) with $\psi(t)=e^{t}, t \geq 0$ and $k=\frac{\mathbf{s}}{\mathbf{s}^{\epsilon}}$, the conclusion of Theorem 1.12 follows from Theorem 2.2. Hence Theorem 1.12 is a corollary to Theorem 2.2

Corollary 3.3. Let (X, d) be a b-metric space with coefficient $s \geq 1$. Let $f, T: X \rightarrow X$ be selfmaps of X with $f X \subset T X$ and $g X \subset S X$ such that

$$
\begin{equation*}
\psi(s d(f x, f y)) \leq\left(\psi\left(M_{s}(x, y)\right)\right)^{k} \text { for all } x, y \in X, \tag{25}
\end{equation*}
$$

where $M_{s}(x, y)=\max \left\{d(T x, T y), d(T x, f x), d(T y, f y), \frac{d(T x, f y)+d(T y, f x)}{2 s}\right\}$ and $k \in[0,1)$. Suppose that the pair (f, T) satisfies the $b-(E . A)$-property and that of one of the subspaces $f X$ and $T X$ is b-closed in X. Then the pair (f, T) has a point of coincidence in X. Moreover, if the pair (f, T) is weakly compatible, then f and T have a unique common fixed point.

Proof. The result follows from Theorem 2.2 by choosing $f \equiv g$ and $S \equiv T$.

Example 3.4. Let $X=[0, \infty)$ with the usual metric. We define f, g, S and T on X by

$$
f x=\left\{\begin{array}{ll}
\frac{x}{3} & \text { if } x \in[0,3] \\
1 & \text { if } \in(3, \infty),
\end{array} \quad g x=\left\{\begin{array}{cc}
\frac{x}{5} & \text { if } x \in[0,3] \\
1 & \text { if } \in(3, \infty),
\end{array}\right.\right.
$$

$$
S x=\left\{\begin{array}{ll}
5 x & \text { if } x \in[0,3] \\
3 & \text { if } x \in(2, \infty),
\end{array} \quad T x= \begin{cases}3 x & \text { if } x \in[0,3] \\
3 & \text { if } x \in(3, \infty) .\end{cases}\right.
$$

Since $x=0$ is the only coincidence point of the pairs (f, S) and (g, T) and $f S(0)=S f(0)$ and $g T(0)=T g(0)$ and hence the pairs (f, S) and (g, T) are weakly compatible. We choose a sequence x_{n} with $x_{n}=\frac{1}{n}, n=1,2,3, \ldots$ with $\lim _{n \rightarrow \infty} f x_{n}=$ $\lim _{n \rightarrow \infty} S x_{n}=0$, hence the pair (f, S) satisfies the $b-(E . A)$-property. We now verify the inequality (9) with $\psi(t)=e^{t}, t \geq 0$ and $k=\frac{1}{2}$. Since $\psi(t)=e^{t}$ and $s=1, f, g, S$ and T satisfy the inequality (9) if and only if f, g, S and T satisfy the following inequality:

$$
\begin{equation*}
|f x-f y| \leq k M_{s}(x, y)=\frac{1}{2} M_{s}(x, y) . \tag{26}
\end{equation*}
$$

We have the following possible cases.
Case (i): $x, y \in[0,3]$.
In this case, $f(x)=\frac{x}{3}, \quad g y=\frac{y}{5}, \quad S x=5 x$ and $T y=3 y$, and hence $d(S x, T y)=|5 x-3 y|$. Now, we have

$$
d(f x, g y)=\left|\frac{x}{3}-\frac{y}{5}\right|=\frac{1}{15}|5 x-3 y| \leq \frac{1}{2}|5 x-3 y|=\frac{1}{2}|S x-T y| \leq \frac{1}{2} M_{s}(x, y)
$$

Case (ii): $x, y \in(3, \infty)$.
In this case, since $f(x)=g y=1$, the inequality (9) holds trivially.
Case (iii): $x \in[0,3], y \in(3, \infty)$.
In this case, $f(x)=\frac{x}{3}, \quad S(x)=5 x, \quad g y=1$ and $T y=3$ and hence $d(T y, g y)=|3-1|=2$. Now, we have $d(f x, g y)=$ $\left|\frac{x}{3}-1\right| \leq 1=\frac{1}{2} d(T y, g y) \leq \frac{1}{2} M_{s}(x, y)$.

Case (iv): $x \in(3, \infty), y \in[0,3]$.
In this case, $f x=1, \quad S x=3, \quad g y=\frac{y}{5}$ and $T y=3 y$ and hence $d(f x, S x)=|3-1|=2$. Now, we have $d(f x, g y)=\left|\frac{y}{5}-1\right| \leq$ $1=\frac{1}{2} d(f x, S x) \leq \frac{1}{2} M_{s}(x, y)$.

Hence from all the above cases f, g, S and T satisfy the inequality (9). Therefore f, g, S and T satisfy all the hypotheses of Theorem 2.2 and $x=0$ is the unique common fixed point of f, g, S and T. Here we observe that Theorem 1.12 is not applicable, since $s=1$. Hence Remark 3.2 suggests that Theorem 2.2 is a generalization of Theorem 1.12.

References

[1] M.Aamri and D.El.Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270(2002), 181-188.
[2] G.V.R.Babu and G.N.Alemayehu, A common fixed point theorem for weakly contractive mappings satisfying property (E.A), Applied Mathematics E-Notes, 24(6)(2012), 975-981.
[3] M.Boriceanu, M.Bota and A.Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math, 8(2)(2010), 367-377.
[4] S.Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
[5] N.Hussain, D.Doric, Z.Kadelburg and S.Radenovic, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., 2012(2012), 126.
[6] G.Jungck, Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci., 9(4)(1986), 771-779.
[7] G.Jungck and B.E.Rhoades, Fixed point for set-valued functions without continuity, Indian J. Pure and Appl. Math., 29(3)(1998), 227-238.
[8] G.Jungck and B.E.Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory., 7(2006), 287-296.
[9] S.Mudgal, Fixed Points Theorems for Weakly Compatible Maps along with Property (E.A.), International Journal of Computer Applications, 96(24)(2014), 0975-8887.
[10] V.Ozturk and D.Turkoglu, Common fixed point theorems for mappings satisfying (E.A)-property in b-metric spaces, J. Nonlinear Sci. Appl., 8(2015), 1127-1133.
[11] V.Ozturk and S.Radenovi, Some remarks on b-(E.A)-property in b-metric spaces, Springer Plus, 5(2016), 544.
[12] T.Nazir and M.Abbas, Common fixed points of two pairs of mappings satisfying (E.A)-property in partial metric spaces, Journal of Inequalities and Applications 2014(2014), 237.

[^0]: Abstract: In this paper, we apply the (E.A)-property to prove the existence and uniqueness of common fixed points of four selfmaps in the setting b-metric spaces using a new control function. We provide an example in support of our results. Our results generalize the fixed point results of Ozturk and Radenovic [11].

 MSC: $\quad 2010,47 \mathrm{H} 10,54 \mathrm{H} 25$

[^1]: * E-mail: dulamosissa@gmail.com

