ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Common Fixed Points of Two Pairs of Selfmaps Satisfying (E.A)-property in b-metric Spaces Using a New Control Function

Research Article

Venkata Ravindranadh Babu Gutti¹ and Dula Tolera Mosissa¹*

1 Department of Mathematics, Andhra University, Visakhapatnam, India.

Abstract: In this paper, we apply the (E.A)-property to prove the existence and uniqueness of common fixed points of four selfmaps

in the setting b-metric spaces using a new control function. We provide an example in support of our results. Our results

generalize the fixed point results of Ozturk and Radenovic [11].

MSC: 2010, 47H10, 54H25

Keywords: b-metric space, common fixed point, b-(E. A)-property, weakly compatible.

© JS Publication.

1. Introduction and Preliminaries

In 1993, Stefan Czerwik [4] introduced the concept of b-metric spaces which is a generalization of metric space and generalized the Banach contraction principle in the context of complete b-metric spaces. Afterwards, many mathematicians studied fixed point theorems for single-valued and multi-valued mappings in b-metric spaces. In 2002, Aamari and Moutawakil [1] introduced the notion of property (E.A). Different authors apply this concept to prove the existence of common fixed points (see [2], [9], [11] [12]). We now mention some well-known notations, definitions and primary known results in the literature that will be needed in the sequel.

Definition 1.1 ([4]). Let X be a non-empty set. A function $d: X \times X \to [0, \infty)$ is said to be a b-metric if the following conditions are satisfied;

(1). $0 \le d(x,y)$ for all $x,y \in X$ and d(x,y) = 0 if and only if x = y,

(2). d(x,y) = d(y,x) for all $x, y \in X$,

(3). there exists $s \ge 1$ such that $d(x,z) \le s [d(x,y) + d(y,z)]$ for all $x,y,z \in X$.

In this case, the pair (X,d) is called a b-metric space with coefficient s.

Every metric space is a b-metric space with s = 1. In general, every b-metric space is not a metric space.

Definition 1.2 ([3]). Let (X, d) be a b-metric space.

^{*} E-mail: dulamosissa@qmail.com

- (1). A sequence $\{x_n\}$ in X is called b-convergent if there exists $x \in X$ such that $d(x_n, x) \to 0$ as $n \to \infty$. In this case, we write $\lim_{n\to\infty} x_n = x$.
- (2). A sequence $\{x_n\}$ in X is called b-Cauchy if $d(x_n, x_m) \to 0$ as $n, m \to \infty$.
- (3). The b-metric space (X,d) is b-complete if every b-Cauchy sequence in X is b-convergent.
- (4). Let $Y \subset X$. Then Y is called b-closed if and only if for each sequence $\{x_n\}$ in Y which b-converges to an element x, we have $x \in Y$.

Remark 1.3. A b-metric need not be a continuous function. For more details, we refer [5].

Lemma 1.4 ([5]). Let (X, d) be a b-metric space with $s \ge 1$.

- (1). If a sequence $\{x_n\} \subset X$ is a b- convergent sequence, then it admits a unique limit.
- (2). Every b-convergent sequence in X is b-Cauchy.

Definition 1.5 ([8]). Let f and g be selfmaps on a metric space (X,d). If fx = gx = w for some $x \in X$, then x is called a coincidence point of f and g and the set of all coincidence points of f and g is denoted by C(f,g), and w is called point of coincidence of f and g.

Definition 1.6 ([6]). A pair (f,g) of selfmaps on a metric space (X,d) is said to be compatible if $\lim_{n\to\infty} d(gfx_n, fgx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = z$ for some z in X.

Definition 1.7. A pair (f,g) of selfmaps on a metric space (X,d) is said to be noncompatible if there exists at least one sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = z$ for some z in X but $\lim_{n\to\infty} d(gfx_n, fgx_n)$ is either non-zero or does not exist.

Definition 1.8 ([1]). A pair (f,g) of selfmaps on a metric space (X,d) is said to be satisfy (E.A)-property if there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = z$ for some z in X.

Definition 1.9 ([10]). A pair (f,g) of selfmaps on a b-metric space (X,d) is said to be satisfy b-(E.A)-property if there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = z$ for some z in X.

Definition 1.10 ([7]). A pair (f,g) of selfmaps on a set X is said to be weakly compatible if fgx = gfx whenever fx = gx for any x in X.

We denote $\Psi = \{ \psi : [0, \infty) \to [1, \infty) | \psi \text{ is continuous, nondecreasing on } [0, \infty) \text{ and } \psi(t) = 1 \text{ if and only if } t = 0 \}.$

Example 1.11. The following functions $\psi:[0,\infty)\to[1,\infty)$ are elements of $\Psi.$ For $t\in[0,\infty)$ and $a\in(1,\infty)$

- (1). $\psi(t) = t + 1$,
- (2). $\psi(t) = a^t$,
- (3). $\psi(t) = a^{\sqrt{t}}.$

Very recently, Ozturk and Radenovic [11] obtained the following result in b-metric spaces.

Theorem 1.12 ([11]). Let (X,d) be a b-metric space with coefficient s > 1 and $f,g,S,T:X \to X$ be selfmappings of X with $fX \subset TX$ and $gX \subset SX$ such that

$$s^{\epsilon}d(fx,gy) \le M_s(x,y)$$
 for all $x,y \in X$, (1)

where $\epsilon > 1$ is a constant and

 $M(x,y) = \max\{d(Sx,Ty),d(Sx,fx),d(Ty,gy),\frac{d(Sx,gy)+d(Ty,fx)}{2s}\}\}$. Suppose one of the pairs (f,S) and (g,T) satisfy the b-(E.A)-property and that of one of the subspaces fX,gX,SX and TX is b-closed in X. Then the pairs (f,S) and (g,T) have a point of coincidence in X. Moreover, if the pairs (f,S) and (g,T) are weakly compatible, then f,g,S and T have a unique common fixed point.

In Section 2, we prove our main results in which we study the existence of common fixed points of two pairs of selfmaps satisfying b-(E.A)-property in b-metric spaces. In Section 3, we provide corollaries and an example in support of our results. Our results generalize the results of Ozturk and Radenovic [11].

2. Main Results

Proposition 2.1. Let (X,d) be a b-metric space with coefficient $s \ge 1$. Let $f,g,S,T:X \to X$ be selfmaps of X with $fX \subset TX$ and $gX \subset SX$. Assume that there exist $\psi \in \Psi$ and $k \in [0,1)$ such that

$$\psi(sd(fx,gy)) \le (\psi(M_s(x,y)))^k \text{ for all } x,y \in X,$$
(2)

where $M_s(x,y) = \max\{d(Sx,Ty), d(Sx,fx), d(Ty,gy), \frac{d(Sx,gy)+d(Ty,fx)}{2s}\}$. Suppose that the pairs (f,S) and (g,T) are weakly compatible. Then $F(f,S) \neq \emptyset$ if and only if $F(g,T) \neq \emptyset$, where F(f,S) and F(g,T) are the set of all common fixed points of the pairs (f,S) and (g,T) respectively. In this case, if $g \in F(f,S)$ then $g \in F(g,T)$ and $g \in F(g,T)$ and $g \in F(g,T)$ then $g \in F(g,T)$ and $g \in F(g,T)$ then $g \in F(g,T)$ and $g \in F(g,T)$ and $g \in F(g,T)$ then $g \in F(g,T)$ then $g \in F(g,T)$ and $g \in F(g,T)$ then $g \in$

Proof. First we assume that $F(f,S) \neq \emptyset$. Let $q \in F(f,S)$, then q = fq = Sq. Now, we show that $q \in F(g,T)$. Since $fX \subset TX$ there exists $r \in X$ such that q = fq = Tr, then we have Sq = fq = Tr = q. We now show that gr = q. Suppose that $gr \neq q$. From (2) we have

$$\psi(sd(q,qr)) = \psi(sd(fq,qr)) \le (\psi(M_s(q,r)))^k, \tag{3}$$

where

$$M_{s}(q,r) = \max\{d(Sq,Tr), d(Sq,fq), d(Tr,gr), \frac{d(Sq,gr) + d(Tr,fq)}{2s}\}$$

$$= \max\{d(q,q), d(q,q), d(q,gr), \frac{d(q,gr) + d(q,q)}{2s}\}$$

$$= \max\{0, 0, d(q,gr), \frac{d(q,gr)}{2s}\}$$

$$= d(q,gr). \tag{4}$$

Now, from (3) using (4) we have

$$\psi(sd(q,gr)) = \psi(sd(fq,gr)) \le (\psi(M_s(q,r)))^k = (\psi(d(q,gr)))^k < \psi(d(q,gr)),$$

a contradiction. Hence gr = q. Therefore gr = Tr = q. Since g and T are weakly compatible, we have gq = Tq. We now show that gq = q. Suppose $gq \neq q$. From (2) we have

$$\psi(sd(q,gq)) = \psi(sd(fq,gq)) \le (\psi(M_s(q,q)))^k, \tag{5}$$

where

$$M_{s}(q,q) = \max\{d(Sq,Tq), d(Sq,fq), d(Tq,gq), \frac{d(Sq,gq) + d(Tq,fq)}{2s}\}$$

$$= \max\{d(q,gq), d(q,q), d(gq,gq), \frac{d(q,gq) + d(gq,q)}{2s}\}$$

$$= \max\{d(q,gq), 0, 0, \frac{d(q,gq)}{s}\}$$

$$= d(q,gq).$$
(6)

From (5) and using (6), we have

$$\psi(sd(q,gq)) = \psi(sd(fq,gq)) \le (\psi(M_s(q,q)))^k = (\psi(d(q,gq)))^k < \psi(d(q,gq)),$$

a contradiction. Hence gq = q. Therefore Tq = gq = q and hence $F(g,T) \neq \emptyset$.

Conversely, we assume that $F(g,T) \neq \emptyset$. Let $u \in F(g,T)$ i.e., gu = Tu = u. On using similar steps as above we can show that $u \in F(f,S)$ and hence $F(f,S) \neq \emptyset$. We now show that f,g,S and T have a unique common fixed point. Let u and q be common fixed points of f,g,S and T. Suppose that $u \neq q$. From (2), we have

$$\psi(sd(u,q)) = \psi(sd(fu,gq)) \le (\psi(M_s(u,q)))^k \tag{7}$$

where

$$M_{s}(u,q) = \max\{d(Su,Tq), d(Su,fu), d(Tq,gq), \frac{d(Su,gq) + d(Tq,fu)}{2}\}$$

$$= \max\{d(u,q), d(u,u), d(q,q), \frac{d(u,q) + d(q,u)}{2s}\}$$

$$= \max\{d(u,q), 0, 0, \frac{d(u,q)}{s}\}$$

$$= d(u,q).$$
(8)

From (7) and using (8), we have

$$\psi(sd(u,q)) = \psi(sd(fu,qq)) < (\psi(M_s(u,q)))^k = (\psi(d(u,q)))^k < \psi(d(u,q)),$$

a contradiction. Hence u = q. Therefore S, f, g and T have a unique common fixed point.

The main results of this paper is the following.

Theorem 2.2. Let (X,d) be a b-metric space with coefficient $s \ge 1$. Let $f,g,S,T:X \to X$ be selfmaps of X with $fX \subset TX$ and $gX \subset SX$. Assume that there exist $\psi \in \Psi$ and $k \in [0,1)$ such that

$$\psi(sd(fx,gy)) \le (\psi(M_s(x,y)))^k \text{ for all } x,y \in X,$$
(9)

where $M_s(x,y) = max\{d(Sx,Ty),d(Sx,fx),d(Ty,gy),\frac{d(Sx,gy)+d(Ty,fx)}{2s}\}$. Suppose that one of the pairs (f,S) and (g,T) satisfies the b-(E.A)-property and that one of the subspaces fX,gX,SX and TX is b-closed in X. Then the pairs (f,S) and (g,T) have a point of coincidence in X. Moreover, if the pairs (f,S) and (g,T) are weakly compatible, then f,g,S and T have a unique common fixed point.

Proof. We first assume that the pair (f, S) satisfies the b-(E. A)-property. So there exists a sequence $\{x_n\}$ in X satisfying

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} Sx_n = q \text{ for some } q \in X.$$
 (10)

As $fX \subset TX$, there exists a sequence $\{y_n\}$ in X such that $fx_n = Ty_n$, and hence

$$\lim_{n \to \infty} T y_n = q. \tag{11}$$

Now, we show that $\lim_{n\to\infty} gy_n = q$. Suppose that $\limsup_{n\to\infty} d(fx_n, gy_n) > 0$. From (9), we have

$$\psi(sd(fx_n, gy_n)) \le (\psi(M_s(x_n, y_n)))^k, \tag{12}$$

where

$$\begin{split} M_{s}(x_{n},y_{n}) &= \max\{d(Sx_{n},Ty_{n}), d(Sx_{n},fx_{n}), d(Ty_{n},gy_{n}), \frac{d(Sx_{n},gy_{n}) + d(Ty_{n},fx_{n})}{2s}\} \\ &= \max\{d(Sx_{n},fx_{n}), d(Sx_{n},fx_{n}), d(fx_{n},gy_{n}), \frac{d(Sx_{n},gy_{n}) + d(fx_{n},fx_{n})}{2s}\} \\ &\leq \max\{d(Sx_{n},fx_{n}), d(fx_{n},gy_{n}), \frac{s[d(Sx_{n},fy_{n}) + d(fx_{n},gy_{n})]}{2s}\}. \end{split}$$

On taking limit supremum as $n \to \infty$ in the above inequality we have

$$\limsup_{n \to \infty} M_s(x_n, y_n) = \max\{0, 0, \limsup_{n \to \infty} d(fx_n, gy_n), \frac{\limsup_{n \to \infty} d(fx_n, gy_n)}{2}\}$$

$$= \limsup_{n \to \infty} d(fx_n, gy_n).$$
(13)

On taking limits supremum as $n \to \infty$ in (12) and using (13), we have

$$\psi(s \limsup_{n \to \infty} d(fx_n, gy_n)) = \limsup_{n \to \infty} \psi(s d(fx_n, gy_n)) \le \limsup_{n \to \infty} (\psi(M_s(x_n, y_n)))^k$$
$$= (\psi(\limsup_{n \to \infty} d(fx_n, gy_n)))^k < \psi(\limsup_{n \to \infty} d(fx_n, gy_n)),$$

a contradiction. Hence $\limsup_{n\to\infty} (fx_n, gy_n) = 0$, which implies that $\lim_{n\to\infty} (fx_n, gy_n) = 0$. Now, we have

$$d(q, gy_n) \le s[d(q, fx_n) + d(fx_n, gy_n)]. \tag{14}$$

On taking limits as $n \to \infty$ in (14), we have

$$0 \le \lim_{n \to \infty} d(gy_n, q) \le s \lim_{n \to \infty} [d(q, fx_n) + d(fx_n, gy_n)] = 0.$$

$$(15)$$

Therefore $\lim_{n\to\infty} d(q, gy_n) = 0$.

 \underline{Case} (i): Assume that TX is a b-closed subset of X.

In this case $q \in TX$ and hence we can choose $r \in X$ such that Tr = q. Now we show that gr = q. Now, we have

$$d(q, gr) \le s[d(q, fx_n) + d(fx_n, gr)]. \tag{16}$$

On taking limit supremum as $n \to \infty$ in (16), we have

$$d(q, gr) \le s \limsup_{n \to \infty} d(fx_n, gr). \tag{17}$$

Suppose d(q, gr) > 0. From (9), we have

$$\psi(sd(fx_n, gr)) \le (\psi(M_s(x_n, r)))^k, \tag{18}$$

where

$$\begin{split} M_s(x_n, r) &= \max\{d(Sx_n, Tr), d(Sx_n, fx_n), d(Tr, gr), \frac{d(Sx_n, gr) + d(Tr, fx_n)}{2s}\} \\ &\leq \max\{d(Sx_n, q), d(Sx_n, fx_n), d(q, gr), \frac{s[d(Sx_n, q) + d(q, gr)] + d(q, fx_n)}{2s}\}. \end{split}$$

On taking limit supremum as $n \to \infty$ in the above inequality we have

$$\limsup_{n \to \infty} M_s(x_n, r) \le \max\{0, 0, d(q, gr), \frac{d(q, gr)}{2}\} = d(q, gr).$$
(19)

On taking limits supremum as $n \to \infty$ in (18) and using (17) and (19), we have

$$\psi(d(q,gr)) \leq \psi(s \limsup_{n \to \infty} d(fx_n, gr)) = \limsup_{n \to \infty} \psi(sd(fx_n, gr))$$

$$\leq \limsup_{n \to \infty} (\psi(M_s(x_n, r)))^k = (\psi(\limsup_{n \to \infty} M_s(x_n, r)))^k$$

$$\leq (\psi(d(q, gr)))^k < \psi(d(q, gr)),$$

a contradiction. Hence d(q,gr)=0. Therefore gr=q, i.e., gr=Tr=q and hence r is a coincidence point of g and T. Since q=gr and $gX\subset SX$, we have $q\in SX$ and hence there exists $z\in X$ such that Sz=q=gr.

Now, we show that Sz = fz. Suppose $Sz \neq fz$. By (9), we have

$$\psi(sd(fz,q)) = \psi(sd(fz,gr)) \le (\psi(M_s(z,r)))^k, \tag{20}$$

where

$$M_{s}(z,r) = \max\{d(Sz,Tr), d(Sz,fz), d(Tr,gr), \frac{d(Sz,gr) + d(Tr,fz)}{2s}\}$$

$$= \max\{0, d(q,fz), 0, \frac{d(q,fz)}{2s}\} = d(fz,q).$$
(21)

From (20) and using (21), we have

$$\psi(sd(fz,q)) = \psi(d(fz,gr)) \le (\psi(M_s(z,r)))^k = (\psi(d(fz,q)))^k < \psi(d(fz,q)),$$

a contradiction. Hence fz = Sz = q, so that z is a coincidence point of f and S. Since the pairs (f, S) and (g, T) are weakly compatible, we have fq = Sq and Tq = gq so that q is also a coincidence point of (f, S) and (g, T). Now, we show that q is a common fixed point of f, g, S and T. Suppose $fq \neq q$. From (9), we have

$$\psi(sd(fq,q)) = \psi(sd(fq,gr)) \le (\psi(M_s(q,r)))^k, \tag{22}$$

where

$$M_{s}(q,r) = \max\{d(Sq,Tr), d(Sq,fq), d(Tr,gr), \frac{d(Sq,gr) + d(Tr,fq)}{2s}\}$$

$$= \max\{d(fq,q), 0, 0, \frac{d(q,fq)}{s}\}$$

$$= d(fq,q).$$
(23)

From (22) and using (23), we have

$$\psi(sd(fq,q)) = \psi(sd(fq,gr)) \le (\psi(M_s(q,r)))^k = (\psi(d(fq,q)))^k < \psi(d(fq,q)),$$

a contradiction. Hence fq = q. Therefore Sq = fq = q, so that q is common fixed point of f and S and hence $F(f,S) \neq \emptyset$. By Proposition 2.1, we have $F(g,T) \neq \emptyset$ and $g \in F(g,T)$ and q is the unique common fixed point of f,g,S and T.

Case (ii): Suppose fX is b-closed.

In this case, we have $q \in fX$ and since $fX \subset TX$, we choose $r \in X$ such that q = Tr. Hence the proof follows as in Case (i). <u>Case</u> (iii) : SX is b-closed.

We follow the argument similar to the case (i), and get the conclusion.

 \underline{Case} (iv): Suppose gX is b-closed.

As in case (ii), we get the conclusion.

For the case of (g,T) satisfies the b-(E.A)-property, we follow the argument similar to the case (f,S) satisfies the b-(E.A)-property. This complete the proof of the theorem.

3. Corollaries and Examples

Corollary 3.1. Let (X, d) be a b-metric space with coefficient $s \ge 1$. Let $f, g, S, T : X \to X$ be selfmaps of X with $fX \subset TX$ and $gX \subset SX$ such that

$$sd(fx, gy) \le kM_s(x, y)$$
 for all $x, y \in X$, (24)

where $M_s(x,y) = \max\{d(Sx,Ty),d(Sx,fx),d(Ty,gy),\frac{d(Sx,gy)+d(Ty,fx)}{2s}\}$ and $0 \le k < 1$. Suppose that one of the pairs (f,S) and (g,T) satisfies the b-(E.A)-property and that of one of the subspaces fX,gX,SX and TX is b-closed in X. Then the pair (f,S) and (g,T) have a point of coincidence in X. Moreover, if the pairs (f,S) and (g,T) are weakly compatible, then f,g,S and T have a unique common fixed point.

Proof. The result follows from Theorem 2.2 by choosing
$$\psi(t) = e^t$$
 for all $t \ge 0$.

Remark 3.2. Since the inequality (1) is a spacial case of inequality (9) with $\psi(t) = e^t, t \ge 0$ and $k = \frac{s}{s^c}$, the conclusion of Theorem 1.12 follows from Theorem 2.2. Hence Theorem 1.12 is a corollary to Theorem 2.2

Corollary 3.3. Let (X,d) be a b-metric space with coefficient $s \ge 1$. Let $f,T: X \to X$ be selfmaps of X with $fX \subset TX$ and $gX \subset SX$ such that

$$\psi(sd(fx, fy)) \le (\psi(M_s(x, y)))^k \text{ for all } x, y \in X,$$
(25)

where $M_s(x,y) = \max\{d(Tx,Ty), d(Tx,fx), d(Ty,fy), \frac{d(Tx,fy)+d(Ty,fx)}{2s}\}$ and $k \in [0,1)$. Suppose that the pair (f,T) satisfies the b-(E.A)-property and that of one of the subspaces fX and TX is b-closed in X. Then the pair (f,T) has a point of coincidence in X. Moreover, if the pair (f,T) is weakly compatible, then f and T have a unique common fixed point.

Proof. The result follows from Theorem 2.2 by choosing
$$f \equiv g$$
 and $S \equiv T$.

Example 3.4. Let $X = [0, \infty)$ with the usual metric. We define f, g, S and T on X by

$$fx = \begin{cases} \frac{x}{3} & \text{if } x \in [0,3] \\ 1 & \text{if } \in (3,\infty), \end{cases}$$

$$gx = \begin{cases} \frac{x}{5} & \text{if } x \in [0,3] \\ 1 & \text{if } \in (3,\infty), \end{cases}$$

$$Sx = \begin{cases} 5x & \text{if } x \in [0,3] \\ 3 & \text{if } x \in (2,\infty), \end{cases}$$

$$Tx = \begin{cases} 3x & \text{if } x \in [0,3] \\ 3 & \text{if } x \in (3,\infty). \end{cases}$$

Since x=0 is the only coincidence point of the pairs (f,S) and (g,T) and fS(0)=Sf(0) and gT(0)=Tg(0) and hence the pairs (f,S) and (g,T) are weakly compatible. We choose a sequence x_n with $x_n=\frac{1}{n}, n=1,2,3,...$ with $\lim_{n\to\infty}fx_n=\lim_{n\to\infty}Sx_n=0$, hence the pair (f,S) satisfies the b-(E.A)-property. We now verify the inequality (9) with $\psi(t)=e^t$, $t\geq 0$ and $k=\frac{1}{2}$. Since $\psi(t)=e^t$ and s=1, f,g,S and T satisfy the inequality (9) if and only if f,g,S and T satisfy the following inequality:

$$|fx - fy| \le kM_s(x, y) = \frac{1}{2}M_s(x, y).$$
 (26)

We have the following possible cases.

<u>Case</u> (i): $x, y \in [0, 3]$.

In this case, $f(x) = \frac{x}{3}$, $gy = \frac{y}{5}$, Sx = 5x and Ty = 3y, and hence d(Sx, Ty) = |5x - 3y|. Now, we have

$$d(fx,gy) = \left|\frac{x}{3} - \frac{y}{5}\right| = \frac{1}{15}|5x - 3y| \le \frac{1}{2}|5x - 3y| = \frac{1}{2}|Sx - Ty| \le \frac{1}{2}M_s(x,y)$$

<u>Case</u> (ii): $x, y \in (3, \infty)$.

In this case, since f(x) = gy = 1, the inequality (9) holds trivially.

<u>Case</u> (iii): $x \in [0,3], y \in (3,\infty)$.

In this case, $f(x) = \frac{x}{3}$, S(x) = 5x, gy = 1 and Ty = 3 and hence d(Ty, gy) = |3 - 1| = 2. Now, we have $d(fx, gy) = |\frac{x}{3} - 1| \le 1 = \frac{1}{2}d(Ty, gy) \le \frac{1}{2}M_s(x, y)$.

<u>Case</u> (iv): $x \in (3, \infty), y \in [0, 3]$.

In this case, fx = 1, Sx = 3, $gy = \frac{y}{5}$ and Ty = 3y and hence d(fx, Sx) = |3 - 1| = 2. Now, we have $d(fx, gy) = |\frac{y}{5} - 1| \le 1 = \frac{1}{2}d(fx, Sx) \le \frac{1}{2}M_s(x, y)$.

Hence from all the above cases f, g, S and T satisfy the inequality (9). Therefore f, g, S and T satisfy all the hypotheses of Theorem 2.2 and x = 0 is the unique common fixed point of f, g, S and T. Here we observe that Theorem 1.12 is not applicable, since s = 1. Hence Remark 3.2 suggests that Theorem 2.2 is a generalization of Theorem 1.12.

References

- [1] M.Aamri and D.El.Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270(2002), 181-188.
- [2] G.V.R.Babu and G.N.Alemayehu, A common fixed point theorem for weakly contractive mappings satisfying property (E.A), Applied Mathematics E-Notes, 24(6)(2012), 975-981.
- [3] M.Boriceanu, M.Bota and A.Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math, 8(2)(2010), 367-377.
- [4] S.Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
- [5] N.Hussain, D.Doric, Z.Kadelburg and S.Radenovic, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., 2012(2012), 126.
- [6] G.Jungck, Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci., 9(4)(1986), 771-779.
- [7] G.Jungck and B.E.Rhoades, Fixed point for set-valued functions without continuity, Indian J. Pure and Appl. Math., 29(3)(1998), 227-238.
- [8] G.Jungck and B.E.Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory., 7(2006), 287-296.

- [9] S.Mudgal, Fixed Points Theorems for Weakly Compatible Maps along with Property (E.A.), International Journal of Computer Applications, 96(24)(2014), 0975-8887.
- [10] V.Ozturk and D.Turkoglu, Common fixed point theorems for mappings satisfying (E.A)-property in b-metric spaces, J. Nonlinear Sci. Appl., 8(2015), 1127-1133.
- $[11] \ \ V. Ozturk \ and \ S. Radenovi, \ Some \ remarks \ on \ b-(E.A)-property \ in \ b-metric \ spaces, \ Springer \ Plus, \ 5(2016), \ 544.$
- [12] T.Nazir and M.Abbas, Common fixed points of two pairs of mappings satisfying (E.A)-property in partial metric spaces, Journal of Inequalities and Applications 2014(2014), 237.