International Journal of Mathematics And its Applications

Estimates on Initial Coefficients of Certain Subclasses of bi-univalent Functions Associated with the Class $\mathcal{P}_{m}(\beta)$

Prem Pratap Vyas ${ }^{1}$ and Shashi Kant ${ }^{1 *}$
Department of Mathematics, Government Dungar College, Bikaner, India.

Abstract

In this paper, we introduce and investigate certain new subclasses of the function class Σ of bi-univalent function defined in the open unit disk, which are associated with the class $\mathcal{P}_{m}(\beta)$. We find estimates on the Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these subclasses. Several known and new consequences of these results are also pointed out in the form of corollaries.

MSC: $\quad 30 C 45$.
Keywords: Analytic and Univalent functions, Bi-Univalent functions, Coefficient estimates.
(C) JS Publication.

1. Introduction

Let \mathcal{A} denote the class of analytic functions in the unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ that have the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{U}) \tag{1}
\end{equation*}
$$

and let \mathcal{S} be the class of all functions from \mathcal{A} which are univalent in \mathbb{U}. The Koebe-one quarter theorem [6] states that the image of \mathbb{U} under every function f from \mathcal{S} contains a disk of radius $\frac{1}{4}$. Thus, every such univalent function has an inverse f^{-1} which satisfies

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U}) \text { and } f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f), r_{0}(f) \geq 1 / 4\right) .
$$

In fact, the inverse function f^{-1} is given by

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots=g(w) . \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U} and let Σ denotes the class of bi-univalent functions defined in the unit disk \mathbb{U}. The class Σ of bi-univalent function was first investigated by Lewin [9] and it was shown that $\left|a_{2}\right|<1.15$. Brannan and Clunie [2] improved Lewin's result and conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Later, Netanyahu [10] showed that $\max \left|a_{2}\right|=\frac{4}{3}$. Subsequently, Brannan and Taha [3] also introduced certain subclasses of bi-univalent class Σ and obtained estimate for there initial coefficients. Many researchers $[1,4,5,12,14,15]$ have recently introduced and investigated several interesting subclass of the bi-univalent function class Σ and they have found non-sharp estimates on the first two Taylor-MacLaurin coefficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

[^0]Definition 1.1 ([11]). Let $\mathcal{P}_{m}(\beta)$ with $m \geq 2$ and $0 \leq \beta<1$ denote the class of univalent analytic functions p, normalized with $p(0)=1$ and satisfying

$$
\int_{0}^{2 \pi}\left|\frac{\operatorname{Rep}(z)-\beta}{1-\beta}\right| d \theta \leq n \pi
$$

where $z=r e^{\iota \theta}$. For $\beta=0$, we denote $\mathcal{P}_{m}=\mathcal{P}_{m}(0)$, hence the class \mathcal{P}_{m} represents the class of functions $p(z)$, analytic in \mathbb{U}, normalized with $p(0)=1$ and having the representation

$$
p(z)=\int_{0}^{2 \pi} \frac{1-z e^{\iota t}}{1+z e^{\iota t}} d \mu(t)
$$

where μ is a real-valued function with bounded variation which satisfies

$$
\int_{0}^{2 \pi} d \mu(t)=2 \pi \quad \text { and } \quad \int_{0}^{2 \pi}|d \mu(t)| \leq m, \quad m \geq 2
$$

Note that $\mathcal{P}=\mathcal{P}_{2}$ is the well known class of caratheodory function. i.e. the normalized functions with positive real part in the open unit disc \mathbb{U}. Motivated by the earlier work of Bulboaca et al. [4], Altinkaya et al. [1], Goswami et al. [8], Peng et al. [13], Deniz [5], we introduce here certain new subclasses of the function class Σ of complex order $\gamma \in \mathbb{C} \backslash\{0\}$ associated with the class $\mathcal{P}_{m}(\beta)$ and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the function that belong to these new subclasses.

Definition 1.2. For $\alpha \geq 1, \gamma \geq 0$ and $0 \leq \beta<1$, a function $f \in \Sigma$ given by (1) is said to be in class $\mathcal{R}_{\Sigma}(\tau, \alpha, \gamma ; \beta)$, if the following two conditions are satisfied:

$$
\begin{align*}
& 1+\frac{1}{\tau}\left[(1-\alpha) \frac{f(z)}{z}+\alpha f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-1\right] \in \mathcal{P}_{m}(\beta) \text { and } \\
& 1+\frac{1}{\tau}\left[(1-\alpha) \frac{g(w)}{w}+\alpha g^{\prime}(w)+\gamma w g^{\prime \prime}(w)-1\right] \in \mathcal{P}_{m}(\beta) \tag{3}
\end{align*}
$$

where $\tau \in \mathbb{C} \backslash\{0\}$, the function $g=f^{-1}$ is given by (2), and $z, w \in \mathbb{U}$.
Definition 1.3. For $0 \leq \lambda \leq 1$ and $0 \leq \beta<1$, a function $f \in \Sigma$ given by (1) is said to be in class $\mathcal{S}_{\Sigma}(\lambda, \tau ; \beta)$, if the following two conditions are satisfied:

$$
\begin{align*}
& 1+\frac{1}{\tau}\left[\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right] \in \mathcal{P}_{m}(\beta) \text { and } \\
& 1+\frac{1}{\tau}\left[\frac{w g^{\prime}(w)+\lambda w^{2} g^{\prime \prime}(w)}{\lambda w g^{\prime}(w)+(1-\lambda) g(w)}-1\right] \in \mathcal{P}_{m}(\beta), \tag{4}
\end{align*}
$$

where $\tau \in \mathbb{C} \backslash\{0\}$, the function $g=f^{-1}$ is given by (2), and $z, w \in \mathbb{U}$.
In order to derive our main results, we shall need the following lemma:
Lemma 1.4. Let the function $\phi(z)=1+h_{1} z+h_{2} z^{2}+\ldots ; z \in \mathbb{U}$ such that $\phi \in \mathcal{P}_{m}(\beta)$ then, $\left|h_{n}\right| \leq m(1-\beta) ; n \geq 1$.

2. Main Results

We begin by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions belonging to the class $\mathcal{R}_{\Sigma}(\tau, \alpha, \gamma ; \beta)$. Supposing that the functions $p, q \in \mathcal{P}_{m}(\beta)$, with

$$
\begin{align*}
& p(z)=1+\sum_{k=1}^{\infty} p_{k} z^{k} \quad(z \in \mathbb{U}), \text { and } \tag{5}\\
& q(z)=1+\sum_{k=1}^{\infty} q_{k} z^{k} \quad(z \in \mathbb{U}) . \tag{6}
\end{align*}
$$

From Lemma 1.4 it follows that

$$
\begin{align*}
& \left|p_{k}\right| \leq m(1-\beta), \quad \text { and } \tag{7}\\
& \left|q_{k}\right| \leq m(1-\beta) \quad \text { for all } k \geq 1 . \tag{8}
\end{align*}
$$

Theorem 2.1. If $f \in \mathcal{R}_{\Sigma}(\tau, \alpha, \gamma ; \beta)$, then

$$
\begin{align*}
& \left|a_{2}\right| \leq \min \left\{\sqrt{\frac{m|\tau|(1-\beta)}{1+2 \alpha+6 \gamma}}, \frac{m|\tau|(1-\beta)}{1+\alpha+2 \gamma}\right\} \text { and } \tag{9}\\
& \left|a_{3}\right| \leq \frac{m|\tau|(1-\beta)}{1+2 \alpha+6 \gamma} . \tag{10}
\end{align*}
$$

Proof. Since $f \in \mathcal{R}_{\Sigma}(\tau, \alpha, \gamma ; \beta)$, from the definition relations (3) it follows that

$$
\begin{align*}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{f(z)}{z}+\alpha f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-1\right] & = \\
1+\frac{1}{\tau}\left[(1+\alpha+2 \gamma) a_{2} z+(1+2 \alpha+6 \gamma) a_{3} z^{2}+\ldots\right] & =p(z) \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
1+\frac{1}{\tau}\left[(1-\alpha) \frac{g(w)}{w}+\alpha g^{\prime}(w)+\gamma w g^{\prime \prime}(w)-1\right] & = \\
1+\frac{1}{\tau}\left[-(1+\alpha+2 \gamma) a_{2} w+(1+2 \alpha+6 \gamma)\left(2 a_{2}^{2}-a_{3}\right) w^{2}+\ldots\right] & =q(w) \tag{12}
\end{align*}
$$

where $p, q \in \mathcal{P}_{m}(\beta)$, and are of the form (5) and (6), respectively. Now equating the coefficients of z and z^{2} in (11), we get

$$
\begin{align*}
\frac{1}{\tau}(1+\alpha+2 \gamma) a_{2} & =p_{1} \tag{13}\\
\frac{1}{\tau}(1+2 \alpha+6 \gamma) a_{3} & =p_{2} \tag{14}
\end{align*}
$$

Similarly from (12), we have

$$
\begin{align*}
-\frac{1}{\tau}(1+\alpha+2 \gamma) a_{2} & =q_{1} \tag{15}\\
\frac{1}{\tau}(1+2 \alpha+6 \gamma)\left(2 a_{2}^{2}-a_{3}\right) & =q_{2} . \tag{16}
\end{align*}
$$

From (13) and (15), it follows that

$$
\begin{equation*}
a_{2}=\frac{\tau p_{1}}{1+\alpha+2 \gamma}=\frac{-\tau q_{1}}{1+\alpha+2 \gamma} \tag{17}
\end{equation*}
$$

and (14), (16) yields

$$
\begin{equation*}
a_{2}^{2}=\frac{\tau\left(p_{2}+q_{2}\right)}{2(1+2 \alpha+6 \gamma)} \tag{18}
\end{equation*}
$$

Now, (17) and (18) gives the bound on $\left|a_{2}\right|$ as asserted in (9), by applying Lemma 1.4. Further computation (13) to (18) leads to

$$
\begin{equation*}
a_{3}=\frac{\tau p_{2}}{(1+2 \alpha+6 \gamma)}, \tag{19}
\end{equation*}
$$

thus we obtain the bound on $\left|a_{3}\right|$ as asserted in (10), by applying Lemma 1.4.

For $\alpha=1, \gamma=0$ and $\alpha=1, \gamma=1$ the above Theorem 2.1 reduces in the following corollaries respectively:

Corollary 2.2. If $1+\frac{1}{\tau}\left[f^{\prime}(z)-1\right] \in \mathcal{P}_{m}(\beta)$ and $1+\frac{1}{\tau}\left[g^{\prime}(w)-1\right] \in \mathcal{P}_{m}(\beta)$, then $\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{m|\tau|(1-\beta)}{3}}, \frac{m|\tau|(1-\beta)}{2}\right\}$ and $\left|a_{3}\right| \leq \frac{m|\tau|(1-\beta)}{3}$.

Corollary 2.3. If $1+\frac{1}{\tau}\left[f^{\prime}(z)+z f^{\prime \prime}(z)-1\right] \in \mathcal{P}_{m}(\beta)$ and $1+\frac{1}{\tau}\left[g^{\prime}(w)+w g^{\prime \prime}(w)-1\right] \in \mathcal{P}_{m}(\beta)$, then $\left|a_{2}\right| \leq$ $\min \left\{\frac{\sqrt{m|\tau|(1-\beta)}}{3}, \frac{m|\tau|(1-\beta)}{4}\right\}$ and $\left|a_{3}\right| \leq \frac{m|\tau|(1-\beta)}{9}$.

Remark 2.1.

(1). Putting $\tau=1, \gamma=0$ and $m=2$ in Theorem 2.1, we obtain improvement result corresponding to the result given in Theorem 3.2 by Frasin and Aouf [7].
(2). Putting $\tau=1$, and $m=2$ in corollary 2.1, we get result given in Theorem 2 by Srivastava et. al [14].

Theorem 2.4. If $f \in \mathcal{S}_{\Sigma}(\lambda, \tau ; \beta)$, then

$$
\begin{align*}
& \left|a_{2}\right| \leq \min \left\{\sqrt{\frac{m|\tau|(1-\beta)}{1+2 \lambda-\lambda^{2}}}, \frac{m|\tau|(1-\beta)}{1+\lambda}\right\} \text { and } \tag{20}\\
& \left|a_{3}\right| \leq \frac{m|\tau|(1-\beta)}{1+2 \lambda-\lambda^{2}} \tag{21}
\end{align*}
$$

Proof. Since $f \in \mathcal{S}_{\Sigma}(\lambda, \tau ; \beta)$, from the definition relations (4) it follows that

$$
\begin{align*}
1+\frac{1}{\tau}\left[\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right] & = \\
1+\frac{1}{\tau}\left[(1+\lambda) a_{2} z+\left\{2(1+2 \lambda) a_{3}-(1+\lambda)^{2} a_{2}^{2}\right\} z^{2}-\ldots\right] & =p(z) \tag{22}
\end{align*}
$$

and

$$
\begin{align*}
1+\frac{1}{\tau}\left[\frac{w g^{\prime}(w)+\lambda w^{2} g^{\prime \prime}(w)}{\lambda w g^{\prime}(w)+(1-\lambda) g(w)}-1\right] & = \\
1+\frac{1}{\tau}\left[-(1+\lambda) a_{2} w+\left\{2(1+2 \lambda)\left(2 a_{2}^{2}-a_{3}\right)-(1+\lambda)^{2} a_{2}^{2}\right\} w^{2}+\ldots\right] & =q(w) \tag{23}
\end{align*}
$$

where $p, q \in \mathcal{P}_{m}(\beta)$, and are of the form (5) and (6), respectively. Now equating the coefficient of z and z^{2} in (2.18), we get

$$
\begin{align*}
\frac{1}{\tau}(1+\lambda) a_{2} & =p_{1} \tag{24}\\
\frac{1}{\tau}\left\{2(1+2 \lambda) a_{3}-(1+\lambda)^{2} a_{2}^{2}\right\} & =p_{2} \tag{25}
\end{align*}
$$

Similarly for (23), gives

$$
\begin{equation*}
\frac{1}{\tau}\left\{-(1+\lambda) a_{2}\right\}=q_{1} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\tau}\left\{2(1+2 \lambda)\left(2 a_{2}^{2}-a_{3}\right)-(1+\lambda)^{2} a_{2}^{2}\right\}=q_{2} \tag{27}
\end{equation*}
$$

From (24) and (26), it follows that

$$
\begin{equation*}
a_{2}=\frac{\tau p_{1}}{1+\lambda}=\frac{-\tau q_{1}}{1+\lambda} \tag{28}
\end{equation*}
$$

and (25), (27) yields

$$
\begin{equation*}
a_{2}^{2}=\frac{\left(p_{2}+q_{2}\right) \tau}{2\left(1+2 \lambda-\lambda^{2}\right)} . \tag{29}
\end{equation*}
$$

we readily get the estimate given in (20) by applying Lemma 1.1 . Now further computation (24) to (29) leads to

$$
\begin{equation*}
a_{3}=\frac{\tau}{4(1+\lambda)}\left[\left(3+6 \lambda-\lambda^{2}\right) p_{2}+\left(1+2 \lambda-\lambda^{2}\right) q_{2}\right] \tag{30}
\end{equation*}
$$

and thus we obtain the bound on $\left|a_{3}\right|$ as asserted in (21), by applying Lemma 1.1.

For $\lambda=0$ and $\lambda=1$, the above Theorem 2.2 reduces in the following corollaries respectively:
Corollary 2.5. If $1+\frac{1}{\tau}\left[\frac{z f^{\prime}(z)}{f(z)}-1\right] \in \mathcal{P}_{m}(\beta)$ and $1+\frac{1}{\tau}\left[\frac{w g^{\prime}(w)}{w(w)}-1\right] \in \mathcal{P}_{m}(\beta)$, then $\left|a_{2}\right| \quad \leq$ $\min \{\sqrt{m|\tau|(1-\beta)}, \quad m|\tau|(1-\beta)\}$ and $\left|a_{3}\right| \leq m|\tau|(1-\beta)$.

Corollary 2.6. If $1+\frac{1}{\tau}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right] \in \mathcal{P}_{m}(\beta)$ and $1+\frac{1}{\tau}\left[1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right] \in \mathcal{P}_{m}(\beta)$, then $\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{m|\tau|(1-\beta)}{2}}, \frac{m|\tau|(1-\beta)}{2}\right\}$ and $\left|a_{3}\right| \leq \frac{m|\tau|(1-\beta)}{2}$.

Remark 2.7

(1). Putting $\tau=1$ and $m=2$ in corollary 2.3, we obtain the improvement of result corresponding result given by Brannan and Taha [3].
(2). Putting $\tau=(1-\delta) e^{-\iota \lambda} \cos \lambda, m=2$ and $\beta=0$ in corollary 2.3, we get the result for bi- λ-spirallike univalent function of order δ.

References

[1] S.Altinkaya and S.Yalcin, Coefficient problem for certain subclasses of bi-univalent functions defined by convolution, Mathematica Moravica, 20(2)(2016), 15-21.
[2] D.A.Brannan and J.G.Clunie, Aspects of Contemporary Complex Analysis, Academic Press London, (1980).
[3] D.A.Brannan and T.S.Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31(2)(1986), 70-77.
[4] T.Bulboaca and G.Murugusundaramoorthy, Estimate for initial MacLaurin coefficients of certain subclasses of biunivalent functions of complex order associated with the Hohlov operater, arXiv:1607.08285v1 [math.CV], (2016).
[5] E.Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2(1)(2013), 49-60.
[6] P.L.Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften, 259, SpringerVerlag, New York, Berlin, Heidelbery and Tokyo, (1983).
[7] B.A.Frasin and M.K.Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
[8] P.Goswami, B.S.Alkahtani and T.Bulboaca, Estimate for initial MacLaurin coefficients of certain sub-classes of biunivalent functions, arXiv:1503.04644v1 [math.CV], (2015).
[9] M.Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
[10] E.Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Ration. Mech. Anal., 32(1969), 100-112.
[11] K.Padmanabhan and R.Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(1975), 311-323.
[12] T.Panigarhi and G.Murugusundaramoorthy, Coefficient bounds for bi-univalent functions analytic functions associated with Hohlov operator, Proc. Jangjeon Math. Soc., 16(1)(2013), 91-100.
[13] G.Peng, G.Murugusundaramoorthy and T.Janani, Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator, J. Complex Anal., 2014(2014), Article ID 693908.
[14] H.M.Srivastava, A.K.Mishra and P.Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
[15] H.M.Srivastava, G.Murugusundaramoorthy and N.Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Global Journal of Mathematical Analysis, 1(2)(2013), 67-73.

[^0]: * E-mail: drskant.2007@yahoo.com

