ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Estimates on Initial Coefficients of Certain Subclasses of bi-univalent Functions Associated with the Class $\mathcal{P}_m(\beta)$

Research Article

Prem Pratap Vyas¹ and Shashi Kant^{1*}

Department of Mathematics, Government Dungar College, Bikaner, India.

Abstract: In this paper, we introduce and investigate certain new subclasses of the function class Σ of bi-univalent function defined

in the open unit disk, which are associated with the class $\mathcal{P}_m(\beta)$. We find estimates on the Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ for functions in these subclasses. Several known and new consequences of these results are also pointed out

in the form of corollaries.

MSC: 30C45.

Keywords: Analytic and Univalent functions, Bi-Univalent functions, Coefficient estimates.

© JS Publication.

1. Introduction

Let \mathcal{A} denote the class of analytic functions in the unit disk $\mathbb{U}=\{z\in\mathbb{C}:|z|<1\}$ that have the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in \mathbb{U})$$
 (1)

and let S be the class of all functions from A which are univalent in \mathbb{U} . The Koebe-one quarter theorem [6] states that the image of \mathbb{U} under every function f from S contains a disk of radius $\frac{1}{4}$. Thus, every such univalent function has an inverse f^{-1} which satisfies

$$f^{-1}(f(z)) = z \ (z \in \mathbb{U}) \text{ and } f(f^{-1}(w)) = w \ (|w| < r_0(f), \ r_0(f) > 1/4).$$

In fact, the inverse function f^{-1} is given by

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2 a_3 + a_4)w^4 + \dots = g(w).$$
(2)

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U} and let Σ denotes the class of bi-univalent functions defined in the unit disk \mathbb{U} . The class Σ of bi-univalent function was first investigated by Lewin [9] and it was shown that $|a_2| < 1.15$. Brannan and Clunie [2] improved Lewin's result and conjectured that $|a_2| \leq \sqrt{2}$. Later, Netanyahu [10] showed that $\max |a_2| = \frac{4}{3}$. Subsequently, Brannan and Taha [3] also introduced certain subclasses of bi-univalent class Σ and obtained estimate for there initial coefficients. Many researchers [1, 4, 5, 12, 14, 15] have recently introduced and investigated several interesting subclass of the bi-univalent function class Σ and they have found non-sharp estimates on the first two Taylor-MacLaurin coefficient $|a_2|$ and $|a_3|$.

^{*} E-mail: drskant.2007@yahoo.com

Definition 1.1 ([11]). Let $\mathcal{P}_m(\beta)$ with $m \ge 2$ and $0 \le \beta < 1$ denote the class of univalent analytic functions p, normalized with p(0)=1 and satisfying

$$\int_0^{2\pi} \left| \frac{Rep(z) - \beta}{1 - \beta} \right| d\theta \le n\pi,$$

where $z = re^{i\theta}$. For $\beta = 0$, we denote $\mathcal{P}_m = \mathcal{P}_m(0)$, hence the class \mathcal{P}_m represents the class of functions p(z), analytic in \mathbb{U} , normalized with p(0)=1 and having the representation

$$p(z) = \int_0^{2\pi} \frac{1 - ze^{\iota t}}{1 + ze^{\iota t}} d\mu(t),$$

where μ is a real-valued function with bounded variation which satisfies

$$\int_{0}^{2\pi} d\mu(t) = 2\pi \quad and \quad \int_{0}^{2\pi} |d\mu(t)| \le m, \quad m \ge 2.$$

Note that $\mathcal{P} = \mathcal{P}_2$ is the well known class of caratheodory function. i.e. the normalized functions with positive real part in the open unit disc \mathbb{U} . Motivated by the earlier work of Bulboaca *et al.* [4], Altinkaya *et al.* [1], Goswami *et al.* [8], Peng *et al.* [13], Deniz [5], we introduce here certain new subclasses of the function class Σ of complex order $\gamma \in \mathbb{C} \setminus \{0\}$ associated with the class $\mathcal{P}_m(\beta)$ and find estimates on the coefficients $|a_2|$ and $|a_3|$ for the function that belong to these new subclasses.

Definition 1.2. For $\alpha \geq 1, \gamma \geq 0$ and $0 \leq \beta < 1$, a function $f \in \Sigma$ given by (1) is said to be in class $\mathcal{R}_{\Sigma}(\tau, \alpha, \gamma; \beta)$, if the following two conditions are satisfied:

$$1 + \frac{1}{\tau}[(1 - \alpha)\frac{f(z)}{z} + \alpha f'(z) + \gamma z f''(z) - 1] \in \mathcal{P}_{m}(\beta) \text{ and}$$

$$1 + \frac{1}{\tau}[(1 - \alpha)\frac{g(w)}{w} + \alpha g'(w) + \gamma w g''(w) - 1] \in \mathcal{P}_{m}(\beta),$$
(3)

where $\tau \in \mathbb{C} \setminus \{0\}$, the function $g = f^{-1}$ is given by (2), and $z, w \in \mathbb{U}$.

Definition 1.3. For $0 \le \lambda \le 1$ and $0 \le \beta < 1$, a function $f \in \Sigma$ given by (1) is said to be in class $\mathcal{S}_{\Sigma}(\lambda, \tau; \beta)$, if the following two conditions are satisfied:

$$1 + \frac{1}{\tau} \left[\frac{zf'(z) + \lambda z^2 f''(z)}{\lambda z f'(z) + (1 - \lambda) f(z)} - 1 \right] \in \mathcal{P}_m(\beta) \quad and$$

$$1 + \frac{1}{\tau} \left[\frac{wg'(w) + \lambda w^2 g''(w)}{\lambda wg'(w) + (1 - \lambda) g(w)} - 1 \right] \in \mathcal{P}_m(\beta), \tag{4}$$

where $\tau \in \mathbb{C} \setminus \{0\}$, the function $g = f^{-1}$ is given by (2), and $z, w \in \mathbb{U}$.

In order to derive our main results, we shall need the following lemma:

Lemma 1.4. Let the function $\phi(z) = 1 + h_1 z + h_2 z^2 + \dots$; $z \in \mathbb{U}$ such that $\phi \in \mathcal{P}_m(\beta)$ then, $|h_n| \leq m(1-\beta)$; $n \geq 1$.

2. Main Results

We begin by finding the estimates on the coefficients $|a_2|$ and $|a_3|$ for functions belonging to the class $\mathcal{R}_{\Sigma}(\tau, \alpha, \gamma; \beta)$. Supposing that the functions $p, q \in \mathcal{P}_m(\beta)$, with

$$p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k \quad (z \in \mathbb{U}), \text{ and}$$
 (5)

$$q(z) = 1 + \sum_{k=1}^{\infty} q_k z^k \ (z \in \mathbb{U}).$$
 (6)

From Lemma 1.4 it follows that

$$|p_k| \le m(1-\beta)$$
, and (7)

$$|q_k| \le m(1-\beta) \quad \text{for all } k \ge 1. \tag{8}$$

Theorem 2.1. If $f \in \mathcal{R}_{\Sigma}(\tau, \alpha, \gamma; \beta)$, then

$$|a_2| \le \min\left\{\sqrt{\frac{m|\tau|(1-\beta)}{1+2\alpha+6\gamma}}, \frac{m|\tau|(1-\beta)}{1+\alpha+2\gamma}\right\} \quad and \tag{9}$$

$$|a_3| \le \frac{m|\tau|(1-\beta)}{1+2\alpha+6\gamma}.\tag{10}$$

Since $f \in \mathcal{R}_{\Sigma}(\tau, \alpha, \gamma; \beta)$, from the definition relations (3) it follows that

$$1 + \frac{1}{\tau} [(1 - \alpha) \frac{f(z)}{z} + \alpha f'(z) + \gamma z f''(z) - 1] = 1 + \frac{1}{\tau} [(1 + \alpha + 2\gamma) a_2 z + (1 + 2\alpha + 6\gamma) a_3 z^2 + \dots] = p(z)$$
(11)

and

$$1 + \frac{1}{\tau} [(1 - \alpha) \frac{g(w)}{w} + \alpha g'(w) + \gamma w g''(w) - 1] = 1 + \frac{1}{\tau} [-(1 + \alpha + 2\gamma)a_2 w + (1 + 2\alpha + 6\gamma)(2a_2^2 - a_3)w^2 + \dots] = q(w)$$
(12)

where $p, q \in \mathcal{P}_m(\beta)$, and are of the form (5) and (6), respectively. Now equating the coefficients of z and z^2 in (11), we get

$$\frac{1}{\pi}(1 + \alpha + 2\gamma)a_2 = p_1 \tag{13}$$

$$\frac{1}{\tau}(1+\alpha+2\gamma)a_2 = p_1$$

$$\frac{1}{\tau}(1+2\alpha+6\gamma)a_3 = p_2.$$
(13)

Similarly from (12), we have

$$-\frac{1}{\tau}(1+\alpha+2\gamma)a_2 = q_1 \tag{15}$$

$$\frac{1}{\pi}(1+2\alpha+6\gamma)(2a_2^2-a_3)=q_2. \tag{16}$$

From (13) and (15), it follows that

$$a_2 = \frac{\tau p_1}{1 + \alpha + 2\gamma} = \frac{-\tau q_1}{1 + \alpha + 2\gamma} \tag{17}$$

and (14), (16) yields

$$a_2^2 = \frac{\tau(p_2 + q_2)}{2(1 + 2\alpha + 6\gamma)}. (18)$$

Now, (17) and (18) gives the bound on $|a_2|$ as asserted in (9), by applying Lemma 1.4. Further computation (13) to (18) leads to

$$a_3 = \frac{\tau p_2}{(1 + 2\alpha + 6\gamma)},\tag{19}$$

thus we obtain the bound on $|a_3|$ as asserted in (10), by applying Lemma 1.4.

For $\alpha = 1$, $\gamma = 0$ and $\alpha = 1$, $\gamma = 1$ the above Theorem 2.1 reduces in the following corollaries respectively:

Corollary 2.2. If $1 + \frac{1}{\tau}[f'(z) - 1] \in \mathcal{P}_m(\beta)$ and $1 + \frac{1}{\tau}[g'(w) - 1] \in \mathcal{P}_m(\beta)$, then $|a_2| \leq min\left\{\sqrt{\frac{m|\tau|(1-\beta)}{3}}, \frac{m|\tau|(1-\beta)}{2}\right\}$ and $|a_3| \leq \frac{m|\tau|(1-\beta)}{3}$.

Corollary 2.3. If $1 + \frac{1}{\tau}[f'(z) + zf''(z) - 1] \in \mathcal{P}_m(\beta)$ and $1 + \frac{1}{\tau}[g'(w) + wg''(w) - 1] \in \mathcal{P}_m(\beta)$, then $|a_2| \leq min\left\{\frac{\sqrt{m|\tau|(1-\beta)}}{3}, \frac{m|\tau|(1-\beta)}{4}\right\}$ and $|a_3| \leq \frac{m|\tau|(1-\beta)}{9}$.

Remark 2.1.

- (1). Putting $\tau = 1, \gamma = 0$ and m=2 in Theorem 2.1, we obtain improvement result corresponding to the result given in Theorem 3.2 by Frasin and Aouf [7].
- (2). Putting $\tau = 1$, and m=2 in corollary 2.1, we get result given in Theorem 2 by Srivastava et. al [14].

Theorem 2.4. If $f \in S_{\Sigma}(\lambda, \tau; \beta)$, then

$$|a_2| \le \min\left\{\sqrt{\frac{m|\tau|(1-\beta)}{1+2\lambda-\lambda^2}}, \frac{m|\tau|(1-\beta)}{1+\lambda}\right\} \quad and \tag{20}$$

$$|a_3| \le \frac{m|\tau|(1-\beta)}{1+2\lambda-\lambda^2}. (21)$$

Proof. Since $f \in \mathcal{S}_{\Sigma}(\lambda, \tau; \beta)$, from the definition relations (4) it follows that

$$1 + \frac{1}{\tau} \left[\frac{zf'(z) + \lambda z^2 f''(z)}{\lambda zf'(z) + (1 - \lambda)f(z)} - 1 \right] = 1 + \frac{1}{\tau} \left[(1 + \lambda)a_2 z + \left\{ 2(1 + 2\lambda)a_3 - (1 + \lambda)^2 a_2^2 \right\} z^2 - \dots \right] = p(z)$$
(22)

and

$$1 + \frac{1}{\tau} \left[\frac{wg'(w) + \lambda w^2 g''(w)}{\lambda wg'(w) + (1 - \lambda)g(w)} - 1 \right] = 1 + \frac{1}{\tau} \left[-(1 + \lambda)a_2w + \left\{ 2(1 + 2\lambda)(2a_2^2 - a_3) - (1 + \lambda)^2 a_2^2 \right\} w^2 + \dots \right] = q(w)$$
(23)

where $p, q \in \mathcal{P}_m(\beta)$, and are of the form (5) and (6), respectively. Now equating the coefficient of z and z^2 in (2.18), we get

$$\frac{1}{\tau}(1+\lambda)a_2 = p_1\tag{24}$$

$$\frac{1}{\tau} \{ 2(1+2\lambda)a_3 - (1+\lambda)^2 a_2^2 \} = p_2.$$
 (25)

Similarly for (23), gives

$$\frac{1}{\tau}\{-(1+\lambda)a_2\} = q_1\tag{26}$$

and

$$\frac{1}{\pi} \{ 2(1+2\lambda)(2a_2^2 - a_3) - (1+\lambda)^2 a_2^2 \} = q_2.$$
(27)

From (24) and (26), it follows that

$$a_2 = \frac{\tau p_1}{1+\lambda} = \frac{-\tau q_1}{1+\lambda} \tag{28}$$

and (25), (27) yields

$$a_2^2 = \frac{(p_2 + q_2)\tau}{2(1 + 2\lambda - \lambda^2)}. (29)$$

we readily get the estimate given in (20) by applying Lemma 1.1. Now further computation (24) to (29) leads to

$$a_3 = \frac{\tau}{4(1+\lambda)} [(3+6\lambda - \lambda^2)p_2 + (1+2\lambda - \lambda^2)q_2]$$
(30)

and thus we obtain the bound on $|a_3|$ as asserted in (21), by applying Lemma 1.1.

For $\lambda = 0$ and $\lambda = 1$, the above Theorem 2.2 reduces in the following corollaries respectively:

Corollary 2.5. If
$$1 + \frac{1}{\tau} \left[\frac{zf'(z)}{f(z)} - 1 \right] \in \mathcal{P}_m(\beta)$$
 and $1 + \frac{1}{\tau} \left[\frac{wg'(w)}{w(w)} - 1 \right] \in \mathcal{P}_m(\beta)$, then $|a_2| \leq \min \left\{ \sqrt{m|\tau|(1-\beta)}, \ m|\tau|(1-\beta) \right\}$ and $|a_3| \leq m|\tau|(1-\beta)$.

Corollary 2.6. If
$$1 + \frac{1}{\tau} \left[1 + \frac{zf''(z)}{f'(z)} \right] \in \mathcal{P}_m(\beta)$$
 and $1 + \frac{1}{\tau} \left[1 + \frac{wg''(w)}{g'(w)} \right] \in \mathcal{P}_m(\beta)$, then $|a_2| \leq min \left\{ \sqrt{\frac{m|\tau|(1-\beta)}{2}}, \frac{m|\tau|(1-\beta)}{2} \right\}$ and $|a_3| \leq \frac{m|\tau|(1-\beta)}{2}$.

Remark 2.7.

- (1). Putting $\tau = 1$ and m=2 in corollary 2.3, we obtain the improvement of result corresponding result given by Brannan and Taha [3].
- (2). Putting $\tau = (1 \delta)e^{-\iota\lambda}\cos\lambda$, m=2 and $\beta = 0$ in corollary 2.3, we get the result for bi- λ -spirallike univalent function of order δ

References

- [1] S.Altinkaya and S.Yalcin, Coefficient problem for certain subclasses of bi-univalent functions defined by convolution, Mathematica Moravica, 20(2)(2016), 15-21.
- [2] D.A.Brannan and J.G.Clunie, Aspects of Contemporary Complex Analysis, Academic Press London, (1980).
- [3] D.A.Brannan and T.S.Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31(2)(1986), 70-77.
- [4] T.Bulboaca and G.Murugusundaramoorthy, Estimate for initial MacLaurin coefficients of certain subclasses of biunivalent functions of complex order associated with the Hohlov operator, arXiv:1607.08285v1 [math.CV], (2016).
- [5] E.Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2(1)(2013), 49-60.
- [6] P.L.Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften, 259, SpringerVerlag, New York, Berlin, Heidelbery and Tokyo, (1983).
- [7] B.A.Frasin and M.K.Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
- [8] P.Goswami, B.S.Alkahtani and T.Bulboaca, Estimate for initial MacLaurin coefficients of certain sub-classes of biunivalent functions, arXiv:1503.04644v1 [math.CV], (2015).
- [9] M.Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
- [10] E.Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Ration. Mech. Anal., 32(1969), 100-112.
- [11] K.Padmanabhan and R.Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(1975), 311-323.
- [12] T.Panigarhi and G.Murugusundaramoorthy, Coefficient bounds for bi-univalent functions analytic functions associated with Hohlov operator, Proc. Jangjeon Math. Soc., 16(1)(2013), 91-100.
- [13] G.Peng, G.Murugusundaramoorthy and T.Janani, Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator, J. Complex Anal., 2014(2014), Article ID 693908.
- [14] H.M.Srivastava, A.K.Mishra and P.Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
- [15] H.M.Srivastava, G.Murugusundaramoorthy and N.Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Global Journal of Mathematical Analysis, 1(2)(2013), 67-73.