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1. Introduction

Since the concept of fuzzy sets was firstly introduced by Zadeh in 1965 [23], it has been studied extensively from many

different aspects of the theory and applications, such as fuzzy topology, fuzzy analysis, fuzzy decision making and fuzzy

logic, information science and so on. It’s well known that the concept of the Stieltjes integral for fuzzy-number-valued

functions was originally introduced by Nanda [12] in 1989. Nonetheless, as Wu et al. [18] pointed out that the existence

of supremum and infimum for a finite set of fuzzy numbers wasn’t easy at first thought. That is, Nanda’s concept of fuzzy

Riemann-Stieltjes (FRS) integral in [12] was incorrect. In 1998, Wu [17] introduced the notion of (FRS) integral by means

of the representation theorem of fuzzy-number-valued functions, whose membership function could be obtained by solving

a nonlinear programming problem, but it’s difficult to calculate and extend to the higher-dimensional space. In 2006, Ren

et al. proposed the notion of two types of (FRS) integral for fuzzy-number-valued functions [14, 15] and showed that a

continuous fuzzy-number-valued function was (FRS) integrable with respect to a real-valued increasing function. Gong et

al. defined and discussed the (HS) integral for fuzzy-number-valued functions and proved two convergence theorems for

sequences of the (FHS) integrable functions in 2012 [4]. In this paper, the (HS) integral for n-dimensional fuzzy-number-

valued functions is defined and some basic properties of this integral are discussed. The paper is organized as follows, in

Section 2, we shall review the relevant concepts and properties of fuzzy-number-valued functions in En. Section 3 is devoted

to discussing (HS) integral for n-dimensional fuzzy-number-valued functions. In Section 4, we introduce some linearity

properties of (HS) integrability for n-dimensional fuzzy-number-valued functions. Section 5 proposes the characterization

theorems of (FHS) integral for n-dimensional fuzzy-number-valued functions. The final section provides Conclusions.
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2. Preliminaries

Definition 2.1 ([7, 9]). Let δ : [a, b] → R+ be a positive real-valued function. P = {[xi−1, xi]; ξi} is said to be a δ-fine

division, if the following conditions are satisfied:

(1). a = x0 < x1 < x2 < ... < xn = b;

(2). ξi ∈ [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi))(i = 1, 2, · · · , n).

For brevity, we write P = {[u, v]; ξ}, where [u, v] denotes a typical interval in P and ξ is the associated point of [u, v].

Definition 2.2 ([16]). A fuzzy-number-valued function F̃ : [a, b] → En is said to be Henstock (H) integrable to H̃ ∈ En if

for every ε > 0, there is a function δ(t) > 0 such that for any δ-fine division P = {[u, v]; ξ} of [a, b], we have

D
(∑

F̃ (ξ)(v − u), H̃
)
< ε, (1)

where the sum
∑

is understood to be over P and we write (FH)
b∫
a

F̃ (t)dt = H̃ , and F̃ (t) ∈ FH[a, b].

Definition 2.3 ([4]). Let α : [a, b] → R be an increasing function. A fuzzy-number-valued function f̃(t) is said to be fuzzy

Henstock-Stieltjes (FHS) integrable with respect to α on [a, b] if there exists a fuzzy number H̃ ∈ E1 such that for every

ε > 0, there is a function δ(t) > 0 such that for any δ-fine division P = {[ui, vi]; ξi}ni=1 we have

D
( n∑
i=1

f̃(ξi)[α(vi)− α(ui)], H̃
)
< ε. (2)

We write (FHS)
b∫
a

f̃(t)dα = H̃ , and (f̃ , α) ∈ FHS[a, b].

The symbol Pk(Rn) denotes the family of all nonempty compact convex subsets of Rn, define the addition and scalar

multiplication in Pk(Rn) as following, for A,B ∈ Pk(Rn), a ∈ R,

A+B =
{
x+ y | x ∈ A, y ∈ B

}
, aA =

{
ax | x ∈ A

}
.

For every A,B ∈ Pk(Rn), define the Hausdorff metric of A and B by the equation [19]

d(A,B) = max
{

sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖b− a‖

}
. (3)

Definition 2.4 ([5, 20]). X is a Banach space. Let z : [a, b] → X be a vector-valued function. z(t) is said to be abstract

(H) integrable to z0 on [a, b] if for every ε > 0 there is a function δ(ξ) > 0 such that for any δ-fine division P = {[u, v]; ξ}

of [a, b] we have ∥∥∑ z(ξ)(v − u)− z0
∥∥ < ε, (4)

where the sum
∑

is understood to be over P and ‖ · ‖ stands for the norm of X. We write (V H)
b∫
a

z(t)dt = z0 and

z(t) ∈ V H[a, b]. Here (V H) stands for the (H) integral for vector-valued functions.

Definition 2.5 ([6]). For A ∈ Pk(Rn), x ∈ Sn−1, define the support function of A as σ(x,A) = sup
y∈A
〈y, x〉, where Sn−1 is

the unit sphere of Rn, i.e., Sn−1 = {x ∈ Rn : ‖x‖ = 1}, 〈·, ·〉 is the inner product in Rn.

Definition 2.6 ([19]). En is said to be a fuzzy number space if En = {u : Rn → [0, 1] : u satisfies (1)-(4) below}:
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(1). u is normal, i.e., there exists an x0 ∈ Rn such that u(x0) = 1;

(2). u is a convex fuzzy set, i.e., u(rx+ (1− r)y) > min(u(x), u(y)), x, y ∈ Rn, r ∈ [0, 1];

(3). u is upper semi-continuous;

(4). [u]0 = {x ∈ Rn : u(x) > 0} is compact, for 0 < r ≤ 1, denote [u]r = {x : x ∈ Rn and u(x) > r}, [u]0 =
⋃
r∈(0,1][u]r.

Lemma 2.7 ([19]). If u, v ∈ En, k ∈ R, for any r ∈ [0, 1], we have

[u+ v]r = [u]r + [v]r, [ku]r = k[u]r. (5)

Lemma 2.8 ((fuzzy number representation theorem) [8, 13, 19]). If u ∈ En, then

(1). [u]r is a nonempty compact convex subset of Rn, then [u]r ∈ Pk(Rn) for any r ∈ [0, 1];

(2). [u]r2 ⊆ [u]r1 , whenever 0 ≤ r1 ≤ r2 ≤ 1;

(3). If {rm} is a nondecreasing sequence converging to r ∈ (0, 1], then
∞⋂
m=1

[u]rm = [u]r.

Conversely, if {[A]r ⊆ Rn : r ∈ [0, 1]} satisfying the above (1)-(3), then there exists a unique u ∈ En such that [u]r = [A]r,

r ∈ (0, 1], [u]0 =
⋃
r∈(0,1][u]r ⊆ A0.

Lemma 2.9 ([2, 19]). Given u, v ∈ En the distance D : En × En → [0,+∞) between u and v is defined by the equation

D(u, v) = sup
r∈[0,1]

d([u]r, [v]r), then

(1). (En, D) is a complete metric space;

(2). D(u+ w, v + w) = D(u, v);

(3). D(u+ v, w + e) 6 D(u,w) +D(v, e);

(4). D(ku, kv) = |k|D(u, v), k ∈ R;

(5). D(u+ v, 0̃) 6 D(u, 0̃) +D(v, 0̃);

(6). D(u+ v, w) 6 D(u,w) +D(v, 0̃).

Where u, v, w, e, 0̃ ∈ En, 0̃ = X({0}).

Let Sn−1 be the unit sphere of Rn, i.e., Sn−1 = {x ∈ Rn| ‖x‖ = 1}, here ‖·‖ denote the standard norm of the Euclidean space

Rn, 〈·, ·〉 be the inner product in Rn, i.e., 〈x, y〉 =
n∑
i=1

xiyi for any x = (x1, x2, · · ·, xn) ∈ Rn and y = (y1, y2, · · ·, yn) ∈ Rn.

Then for any r ∈ [0, 1] and x ∈ Sn−1, the support function of u is defined by

u∗(r, x) = sup
a∈[u]r

〈a, x〉. (6)

Lemma 2.10 ([1, 11, 19, 22]). Suppose u ∈ En, then

(1). u∗(r, x+ y) ≤ u∗(r, x) + u∗(r, y);

(2). u∗(r, x) ≤ supa∈[u]r ‖ a ‖, i.e., u∗(r, x) is bounded on Sn−1 for each fixed r ∈ [0, 1];

(3). u∗(r, x) is nonincreasing and left continuous in r ∈ [0, 1], right continuous at r = 0, for each fixed x ∈ Sn−1;
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(4). u∗(r, x) is Lipschitz continuous in x

|u∗(r, x)− u∗(r, y)| ≤ ( sup
a∈[u]r

‖a‖)‖x− y‖;

(5). if u, v ∈ En, r ∈ [0, 1], then

d([u]r, [v]r) = sup
x∈Sn−1

|u∗(r, x)− v∗(r, x)|;

(6). (u+ v)∗(r, x) = u∗(r, x) + v∗(r, x);

(7). (ku)∗(r, x) = ku∗(r, x), k ≥ 0;

(8). −u∗(r,−x) ≤ u∗(r, x).

Lemma 2.11 ([21]). Let Ar ∈ Pk(Rn), {Arm} ⊂ Pk(Rn), rm is nondecreasing convergent to r, Arm ⊃ Arm+1 ⊃ Ar (m =

1, 2, · · · ), if σ(x,Arm) convergent to σ(x,Ar) for any x ∈ Sn−1, then Ar =
∞⋂
m=1

Arm .

Lemma 2.12 ([3]). If A,B ∈ Pk(Rn), then d(A,B) = sup
x∈Sn−1

∣∣σ(x,A)− σ(x,B)
∣∣.

3. The Henstock-Stieltjes Integral for n-dimensional Fuzzy-Number-
Valued Functions

In this section, we shall give the definition of the Henstock-Stieltjes (HS) integral for n-dimensional fuzzy-number-valued

functions and investigate some of their properties.

Definition 3.1. Let α : [a, b] → R be an increasing function. A fuzzy-number-valued function F̃ : [a, b] → En is said to

be fuzzy Henstock-Stieltjes (FHS) integrable with respect to α on [a, b], if there exists Ã ∈ En, for every ε > 0, there is a

function δ(t) > 0, such that for any δ-fine division P = {[u, v], ξ} of [a, b], we have

D
(∑

(P )

F̃ (ξ)[α(v)− α(u)], Ã
)
< ε. (7)

We write (FHS)
b∫
a

F̃ (t)dα = Ã.

Remark 3.2. Let α : [a, b] → R be an increasing function. If a fuzzy-number-valued function F̃ : [a, b] → En is (FHS)

integrable with respect to α on [a, b], then there exists a unique integral value.

Theorem 3.3. Let α : [a, b] → R be an increasing function. A fuzzy-number-valued function F̃ : [a, b] → En is (FHS)

integrable with respect to α on [a, b] if and only if F ∗(t)(r, x) is (RHS) integrable with respect to α on [a, b] uniformly for

any r ∈ [0, 1] and x ∈ Sn−1, we have

(
(FHS)

b∫
a

F̃ (t)dα

)∗
(r, x) = (RHS)

b∫
a

F ∗(t)(r, x)dα. (8)

Uniformly for any r ∈ [0, 1].

174



Muawya Elsheikh Hamid, Luoshan Xu and Zengtai Gong

Proof. Since the real valued function F ∗(t)(r, x) is (RHS) integrable with respect to α on [a, b] uniformly for any r ∈ [0, 1]

and x ∈ Sn−1, then there is a(r, x) ∈ R, for every ε > 0, there is a function δ(t) > 0 (independently to r), such that for any

δ-fine division P = {[u, v], ξ} of [a, b], we have

∣∣∑
(P )

F ∗(ξ)(r, x)[α(v)− α(u)]− a(r, x)
∣∣ < ε. (9)

Uniformly for any r ∈ [0, 1].

We can proof the set
{
y ∈ Rn|〈y, x〉 ≤ (RHS)

b∫
a

F ∗(t)(r, x)dα, x ∈ Sn−1
}

=
{
y ∈ Rn|〈y, x〉 ≤ a(r, x), x ∈ Sn−1

}
satisfy

the condition of (the fuzzy number representation theorem) Lemma 2.8 for any r ∈ [0, 1], that is, it determines a unique of

fuzzy number Ã ∈ En.

(a) The set
{
y ∈ Rn|〈y, x〉 ≤ a(r, x), x ∈ Sn−1

}
is nonempty set. Let b, c ∈

{
y ∈ Rn|〈y, x〉 ≤ a(r, x), x ∈ Sn−1

}
, then for

any x ∈ Sn−1, we have

〈b, x〉 ≤ a(r, x), 〈c, x〉 ≤ a(r, x). (10)

So for any s ∈ [0, 1], 〈sb + (1 − s)c, x〉 = s〈b, x〉 + (1 − s)〈c, x〉 ≤ a(r, x), such that
{
y ∈ Rn|〈y, x〉 ≤ a(r, x), x ∈ Sn−1

}
is a convex subsets of Rn. Let {am}∞m=1 ⊂

{
y ∈ Rn|〈y, x〉 ≤ a(r, x), x ∈ Sn−1

}
, then for each x ∈ Sn−1, 〈am, x〉 ≤

a(r, x) = (RHS)
b∫
a

F ∗(t)(r, x)dα ≤ (RHS)
b∫
a

F ∗(t)(0, x)dα, i.e. 〈am, x〉 is bounded. So for any x ∈ Sn−1, 〈am, x〉 there exist

convergent subsequence 〈amk , x〉. Let lim
k→∞

〈amk , x〉 = bx, then bx ≤ a(r, x), apparently,

〈 lim
k→∞

amk , x〉 = lim
k→∞

〈amk , x〉 = bx ≤ a(r, x), (11)

i.e. lim
k→∞

amk ∈
{
y ∈ Rn|〈y, x〉 ≤ a(r, x), x ∈ Sn−1

}
. So,

{
y ∈ Rn|〈y, x〉 ≤ a(r, x), x ∈ Sn−1

}
is a compact set on Rn .

(b) Since F̃ ∈ En and by using Lemma 2.8 (2), for any r1, r2 ∈ [0, 1], Fr1(t) ⊃ Fr2(t), whenever 0 ≤ r1 ≤ r2 ≤ 1. Then for

any x ∈ Sn−1, we have

F ∗(t)(r1, x) = sup
b∈Fr1

(t)

〈b, x〉 ≥ sup
c∈Fr2

(t)

〈c, x〉 = F ∗(t)(r2, x),

so, (RHS)
b∫
a

F ∗(t)(r1, x)dα ≥ (RHS)
b∫
a

F ∗(t)(r2, x)dα, i.e. a(r1, x) ≥ a(r2, x). Thus

{
y ∈ Rn|〈y, x〉 ≤ a(r1, x), x ∈ Sn−1} ⊃ {y ∈ Rn|〈y, x〉 ≤ a(r2, x), x ∈ Sn−1}.

(c) Since F̃ ∈ En and by using Lemma 2.10 (3), if a positive sequence {rm} is nondecreasing convergent to r, for any

r ∈ (0, 1], we have

lim
m→∞

F ∗(t)(rm, x) = F ∗(t)(r, x). (12)

By using Lemma 2.10 (2), for any x ∈ Sn−1,

|F ∗(t)(rm, x)| ≤ sup
a∈F0(t)

‖a‖. (13)

By the (RH) integral-dominated convergence theorem [9, 10], for any x ∈ Sn−1, we have

lim
m→∞

(RHS)

b∫
a

F ∗(t)(rm, x)dα = (RHS)

b∫
a

F ∗(t)(r, x)dα, (14)
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i.e. lim
m→∞

a(rm, x) = a(r, x). Let Mrm =
{
y ∈ Rn|〈y, x〉 ≤ a(rm, x), x ∈ Sn−1

}
, Mr =

{
y ∈ Rn|〈y, x〉 ≤ a(r, x), x ∈ Sn−1

}
.

Combining (a), (b) we have Mrm and Mr is nonempty compact convex sets on Rn and there Mrm ⊃ Mrm+1 ⊃ Mr (m =

1, 2, · · · ). Then by Mrm and Mr is a compact, obviously we have

σ(x,Mrm) = sup
y∈Mrm

〈y, x〉 = a(rm, x), σ(x,Mr) = sup
y∈Mr

〈y, x〉 = a(r, x),

it is clear Mrm and Mr satisfy the condition of the Lemma 2.11, therefore we have
∞⋂
m=1

Mrm = Mr, such that

∞⋂
m=1

{
y ∈ Rn|〈y, x〉 ≤ a(rm, x), x ∈ Sn−1} =

{
y ∈ Rn|〈y, x〉 ≤ a(r, x), x ∈ Sn−1}.

Summary, the set {y ∈ Rn|〈y, x〉 ≤ a(r, x), x ∈ Sn−1} it determines a unique of fuzzy number, denoted by Ã, it is clear

A∗(r, x) = a(r, x). Then by Lemma 2.9 and Lemma 2.10 (5), (6), (7) it follows that

D
(∑

(P )

F̃ (ξ)[α(v)− α(u)], Ã
)

= sup
r∈[0,1]

d
([∑

(P )

F̃ (ξ)[α(v)− α(u)]
]r
, [Ã]r

)
= sup
r∈[0,1]

sup
x∈Sn−1

∣∣(∑
(P )

F̃ (ξ)[α(v)− α(u)]
)∗

(r, x)−A∗(r, x)
∣∣

= sup
r∈[0,1]

sup
x∈Sn−1

∣∣∑
(P )

F ∗(ξ)(r, x)[α(v)− α(u)]− a(r, x)
∣∣

= sup
x∈Sn−1

sup
r∈[0,1]

∣∣∑
(P )

F ∗(ξ)(r, x)[α(v)− α(u)]− a(r, x)
∣∣ ≤ ε. (15)

Theorem 3.4. Let α : [a, b] → R be an increasing function such that α ∈ C1[a, b] and a fuzzy-number-valued function

F̃ (t) = 0̃ almost everywhere on [a, b], then (F̃ , α) ∈ FHS[a, b] and
b∫
a

F̃ (t)dα = 0̃.

Proof. If F̃ : [a, b]→ En is (FHS) integrable with respect to α on [a, b], then F ∗(t)(r, x) is (RHS) integrable with respect

to α on [a, b] uniformly for any r ∈ [0, 1] and x ∈ Sn−1. Since α ∈ C1[a, b], there exists a number G > 0 such that |α′(t)| ≤ G,

for all t ∈ [a, b]. By the mean value theorem, there exists ξi ∈ [ui, vi] such that

α(vi)− α(ui) = α′(ξi)(vi − ui) ≤ G(vi − ui). (16)

Let E = {t|F̃ (t) 6= 0̃} and for each positive integer n, set E =
⋃
En ⊂ [a, b], where En = {t|n − 1 ≤ |F ∗(t)(r, x)| < n},

n = 1, 2, · · · for every ε > 0 and a positive integer n, choose an open set Wn such that En ⊂Wn and µ(Wn) < ε
nG2n

. Define

δ(t) on [a, b] by

δ(t) =

 1, t ∈ [a, b]\E,

δ(t), such that (t− δ(t), t+ δ(t)) ⊂Wn, t ∈ En, n = 1, 2, · · ·

For any δ-fine division P = {[ui, vi], ξi} and r ∈ [0, 1], x ∈ Sn−1, we have

∣∣∑F ∗(ξ)(r, x)[α(v)− α(u)]
∣∣ =

∞∑
n=1

∣∣ ∑
ξni∈En

F ∗(ξni)(r, x)[α(vni)− α(uni)]
∣∣

=
∞∑
n=1

∣∣ ∑
ξni∈En

F ∗(ξni)(r, x)α′(ξ′ni)(vni − uni)
∣∣

<
∞∑
n=1

nGµ(Wn)

<
∞∑
n=1

ε2−n

= ε.

Uniformly for any r ∈ [0, 1].
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Theorem 3.5. Let α : [a, b] → R be an increasing function. A fuzzy-number-valued function F̃ : [a, b] → En is (FHS)

integrable with respect to α on [a, b] if and only if for every ε > 0, there is a function δ(t) > 0, such that for any two δ-fine

divisions P1 = {[u1, v1], ξ1} and P2 = {[u2, v2], ξ2}, we have

D
(∑
(P1)

F̃ (ξ1)[α(v1)− α(u1)],
∑
(P2)

F̃ (ξ2)[α(v2)− α(u2)]
)
< ε. (17)

Proof. If F̃ : [a, b]→ En is (FHS) integrable with respect to α on [a, b], then F ∗(t)(r, x) is (RHS) integrable with respect

to α on [a, b] uniformly for any r ∈ [0, 1] and x ∈ Sn−1. Suppose first that F̃ (t) is (FHS) integrable with respect to α on

[a, b] and ε > 0, there is a function δ(t) > 0 on [a, b] such that

∣∣∑
(P1)

F ∗(ξ1)(r, x)[α(v1)−α(u1)]−(RHS)

b∫
a

F ∗(t1)(r, x)dα
∣∣ < ε

2
,
∣∣∑
(P2)

F ∗(ξ2)(r, x)[α(v2)−α(u2)]−(RHS)

b∫
a

F ∗(t2)(r, x)dα
∣∣ < ε

2
.

Whenever P1 and P2 are two δ-fine divisions of [a, b]. Then

∣∣∑
(P1)

F ∗(ξ1)(r, x)[α(v1)− α(u1)]−
∑
(P2)

F ∗(ξ2)(r, x)[α(v2)− α(u2)]
∣∣

≤
∣∣∑
(P1)

F ∗(ξ1)(r, x)[α(v1)− α(u1)]− (RHS)

b∫
a

F ∗(t1)(r, x)dα
∣∣

+
∣∣∑
(P2)

F ∗(ξ2)(r, x)[α(v2)− α(u2)]− (RHS)

b∫
a

F ∗(t2)(r, x)dα
∣∣

<
ε

2
+
ε

2

= ε.

Hence, the Cauchy criterion is satisfied.

Conversely, suppose that the Cauchy criterion is satisfied. For each positive integer n, choose δn(t) > 0 on [a, b] such that

∣∣∑
(P1)

F ∗(ξ1)(r, x)[α(v1)− α(u1)]−
∑
(P2)

F ∗(ξ2)(r, x)[α(v2)− α(u2)]
∣∣ < 1

n
. (18)

Whenever P1 and P2 are two δ-fine divisions of [a, b]. We may assume that the sequence {δn(t)} is non-increasing. For every

n, let Pn be a δn-fine division of [a, b]. The sequence {F ∗(ξn)(r, x)[α(vn)− α(un)]} is a Cauchy sequence since

m > n ≥ N implies
∣∣ ∑
(Pm)

F ∗(ξm)(r, x)[α(vm)− α(um)]−
∑
(Pn)

F ∗(ξn)(r, x)[α(vn)− α(un)]
∣∣ < 1

N
.

Let M be the limit of this sequence and ε > 0. Choose a positive integer N such that

1

N
<
ε

2
and

∣∣ ∑
(Pn)

F ∗(ξn)(r, x)[α(vn)− α(un)]−M
∣∣ < ε

2
for all n ≤ N.

Let P be a δN -fine division of [a, b] and compute

∣∣ ∑
(P )

F ∗(ξ)(r, x)[α(v)− α(u)]−M
∣∣ ≤ ∣∣ ∑

(P )

F ∗(ξ)(r, x)[α(v)− α(u)]−
∑

(PN )

F ∗(ξN )(r, x)[α(vN )− α(uN )]
∣∣

+
∣∣ ∑
(PN )

F ∗(ξN )(r, x)[α(vN )− α(uN )]−M
∣∣

< 1
N

+ ε
2

< ε.
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Theorem 3.6. Let α : [a, b]→ R be an increasing function. Let F̃ : [a, b]→ En be a fuzzy-number-valued function. If F̃ (t)

is (FHS) integrable with respect to α on [a, b], then F̃ (t) is (FHS) integrable with respect to α on every subinterval of [a, b].

Proof. If F̃ : [a, b]→ En is (FHS) integrable with respect to α on [a, b], then F ∗(t)(r, x) is (RHS) integrable with respect

to α on [a, b] uniformly for any r ∈ [0, 1] and x ∈ Sn−1. Let [c, d] ⊆ [a, b] and let ε > 0. Choose a positive function δ on [a, b]

such that ∣∣∑
(P1)

F ∗(ξ1)(r, x)[α(v1)− α(u1)]−
∑
(P2)

F ∗(ξ2)(r, x)[α(v2)− α(u2)]
∣∣ < ε. (19)

Whenever P1 and P2 are two δ-fine divisions of [a, b]. Fix δ-fine division Pa of [a, c] and Pb of [d, b]. Let P ′1 and P ′2 be δ-fine

divisions of [c, d] and define P1 = Pa ∪ P ′1 ∪ Pb and P2 = Pa ∪ P ′2 ∪ Pb. Then P1 and P2 are two δ-fine divisions of [a, b] and

∣∣∑
(P ′1)

F ∗(ξ′1)(r, x)[α(v′1)− α(u′1)]−
∑
(P ′2)

F ∗(ξ′2)(r, x)[α(v′2)− α(u′2)]
∣∣

=
∣∣∑
(P1)

F ∗(ξ1)(r, x)[α(v1)− α(u1)]−
∑
(P2)

F ∗(ξ2)(r, x)[α(v2)− α(u2)]
∣∣ < ε. (20)

4. Linearity Properties of (HS) Integrability for n-dimensional Fuzzy-
Number-Valued Functions

In this section, we introduce some linearity properties of (HS) integrability for n-dimensional fuzzy-number-valued functions.

Definition 4.1. Let α : [a, b] → R be an increasin function. Let F̃ , G̃ : [a, b] → En be a fuzzy-number-valued functions.

We say that F̃ (t) = G̃(t) almost everywhere on [a, b], if F ∗(t)(r, x) − G∗(t)(r, x) = 0 almost everywhere on [a, b] for any

r ∈ [0, 1] and x ∈ Sn−1.

Theorem 4.2. Let α : [a, b] → R be an increasing function. Let F̃ : [a, b] → En and let c ∈ (a, b). If F̃ (t) is (FHS)

integrable with respect to α on each of the intervals [a, c] and [c, b], then F̃ (t) is (FHS) integrable with respect to α on [a, b]

and

(FHS)

b∫
a

F̃ (t)dα = (FHS)

c∫
a

F̃ (t)dα+ (FHS)

b∫
c

F̃ (t)dα. (21)

Proof. If F̃ : [a, b]→ En is (FHS) integrable with respect to α on [a, b], then F ∗(t)(r, x) is (RHS) integrable with respect

to α on [a, b] uniformly for any r ∈ [0, 1] and x ∈ Sn−1. Let ε > 0. By hypothesis, there exists a positive function δ1 on

[a, c] such that ∣∣∑
(P )

F ∗(ξ)(r, x)[α(v)− α(u)]−
c∫
a

F ∗(t)(r, x)dα
∣∣ < ε

2
. (22)

Whenever P is δ1-fine division of [a, c], and there exists a positive function δ2 on [c, b] such that

∣∣∑
(P )

F ∗(ξ)(r, x)[α(v)− α(u)]−
b∫
c

F ∗(t)(r, x)dα
∣∣ < ε

2
. (23)

Whenever P is δ2-fine division of [c, b]. Define δ on [a, b] by

δ(t) =


min{δ1(t), c− t}, if a ≤ t < c;

min{δ1(c), δ2(c)}, if t = c;

min{δ2(t), t− c}, if c < t ≤ b.
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Let P be δ-fine division of [a, b] that each division occurs only once. Note that P must be of the form Pa∪(c, [u, v])∪Pb where

δ-fine division Pa are less than c and δ-fine division Pb are grater than c. Let P1 = Pa ∪ (c, [u, c]) and let P2 = Pb ∪ (c, [c, v]).

Then P1 is δ1-fine division of [a, c] and P2 is δ2-fine division of [c, b]. Since

∣∣∑
(P )

F ∗(ξ)(r, x)[α(v)− α(u)]
∣∣ =

∣∣∑
(P1)

F ∗(ξ1)(r, x)[α(v1)− α(u1)]
∣∣+
∣∣∑
(P2)

F ∗(ξ2)(r, x)[α(v2)− α(u2)]
∣∣. (24)

We obtain

∣∣∑
(P )

F ∗(ξ)(r, x)[α(v)− α(u)]−
c∫
a

F ∗(t)(r, x)dα−
b∫
c

F ∗(t)(r, x)dα
∣∣ ≤ ∣∣∑

(P1)

F ∗(ξ1)(r, x)[α(v1)− α(u1)]

−
c∫
a

F ∗(t1)(r, x)dα
∣∣+
∣∣∑
(P2)

F ∗(ξ2)(r, x)[α(v2)− α(u2)]−
b∫
c

F ∗(t2)(r, x)dα
∣∣ < ε. (25)

Theorem 4.3. Let α : [a, b] → R be an increasing function. Let F̃ , G̃ : [a, b] → En be (FHS) integrable with respect to α

on [a, b], then

(FHS)

b∫
a

(
F̃ (t) + G̃(t)

)
dα = (FHS)

b∫
a

F̃ (t)dα+ (FHS)

b∫
a

G̃(t)dα. (26)

Proof. If F̃ , G̃ are (FHS) integrable with respect to α on [a, b], then F ∗(t)(r, x), G∗(t)(r, x) are (RHS) integrable

with respect to α on [a, b] uniformly for any r ∈ [0, 1] and x ∈ Sn−1. Let (RHS)
b∫
a

F ∗(t)(r, x)dα = A∗(r, x) and

(RHS)
b∫
a

G∗(t)(r, x)dα = B∗(r, x). Then for every ε > 0, there is a function δ(t) > 0, such that for any δ1-fine divi-

sion P1 = {[u1, v1], ξ1} of [a, b], we have

∣∣∑
(P1)

F ∗(ξ1)(r, x)[α(v1)− α(u1)]−A∗(r, x)
∣∣ < ε

2
. (27)

And for any δ2-fine division P2 = {[u2, v2], ξ2} of [a, b], we have

∣∣∑
(P2)

G∗(ξ2)[α(v2)− α(u2)]−B∗(r, x)
∣∣ < ε

2
. (28)

Define δ on [a, b] by δ(t) = min{δ(t1), δ(t2)}. Let P be a δ-fine division of [a, b]. Then

∣∣∑
(P )

(
F ∗(ξ) +G∗(ξ)

)
[α(v)− α(u)]−

(
A∗(r, x) +B∗(r, x)

)∣∣ ≤ ∣∣∑
(P1)

F ∗(ξ1)[α(v1)− α(u1)]−A∗(r, x)
∣∣

+
∣∣∑
(P2)

G∗(ξ2)[α(v2)− α(u2)]−B∗(r, x)
∣∣

<
ε

2
+
ε

2
= ε. (29)

Theorem 4.4. Let α : [a, b] → R be an increasing function. Let F̃ , G̃ : [a, b] → En be (FHS) integrable with respect to α

on [a, b] and if α ∈ C1[a, b]. If F̃ (t) = G̃(t) almost everywhere on [a, b], then

(FHS)

b∫
a

F̃ (t)dα = (FHS)

b∫
a

G̃(t)dα. (30)
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Proof. By Definition 4.1, if F̃ (t) = G̃(t) almost everywhere on [a, b], then F ∗(t)(r, x)−G∗(t)(r, x) = 0 almost everywhere

on [a, b] for any r ∈ [0, 1] and x ∈ Sn−1. By Theorem 3.3 and Theorem 3.4 F ∗(t)(r, x) − G∗(t)(r, x) is (RHS) integrable

with respect to α on [a, b] for any r ∈ [0, 1] and x ∈ Sn−1 such that

b∫
a

(
F ∗(t)(r, x)−G∗(t)(r, x)

)
dα = 0. (31)

By Theorem 4.3 the support function

G∗(t)(r, x) = F ∗(t)(r, x) +
[
G∗(t)(r, x)− F ∗(t)(r, x)

]
,

is (RHS) integrable with respect to α on [a, b] for any r ∈ [0, 1] and x ∈ Sn−1 such that

(RHS)

b∫
a

G∗(t)(r, x)dα = (RHS)

b∫
a

F ∗(t)(r, x)dα+(RHS)

b∫
a

[
G∗(t)(r, x)−F ∗(t)(r, x)

]
dα = (RHS)

b∫
a

F ∗(t)(r, x)dα. (32)

Theorem 4.5. (Saks-Henstock Lemma) Let α : [a, b] → R be an increasing function. Let F̃ : [a, b] → En be (FHS)

integrable with respect to α on [a, b]. Then for every ε > 0, there is a function δ(t) > 0, such that

D
(∑

(P )

F̃ (ξ)[α(v)− α(u)],

b∫
a

F̃ (t)dα
)
< ε, (33)

for each δ-fine division P = {[ui, vi]; ξi}ni=1 of [a, b]. Particulary, if P ′ = {[u′i, v′i]; ξ′i}mi=1 is an arbitrary δ-fine partial division

of [a, b], we have

D
(∑
(P ′)

F̃ (ξ′)[α(v′)− α(u′)],

m∑
i=1

b∫
a

F̃ (t)dα
)
≤ ε. (34)

Proof. If F̃ : [a, b]→ En is (FHS) integrable with respect to α on [a, b], then F ∗(t)(r, x) is (RHS) integrable with respect

to α on [a, b] uniformly for any r ∈ [0, 1] and x ∈ Sn−1. Assume P ′ = {[u′i, v′i]; ξ′i}mi=1 is an arbitrary δ-fine partial division

of [a, b], then the complement [a, b] \
m⋃
i=1

[ui, vi] can be expressed as a finite collection of closed subintervals and we denote

[a, b] \
m⋃
i=1

[ui, vi] =

k⋃
j=1

[u′j , v
′
j ]. (35)

Let η > 0 be arbitrary. From Theorem 3.6 we know
v′j∫
u′j

F ∗(t)(r, x)dα exists for each j = 1, 2, · · · k, then there exists δj on

[u′j , v
′
j ] such that if Pj is a δj-fine division of [u′j , v

′
j ], then

∣∣∑
(Pj)

F ∗(ξj)(r, x)[α(vj)− α(uj)]−

v′j∫
u′j

F ∗(t)(r, x)dα
∣∣ < η

k
. (36)

Assume that δj ⊂ δ for all t ∈ [a, b]. Let P0 = P ′ + P1 + P2 + · · ·+ Pk, obviously P0 is δ-fine division of [a, b], we have

∣∣∑
(P0)

F ∗(ξ0)(r, x)[α(v0)− α(u0)]−
b∫
a

F ∗(t)(r, x)dα
∣∣ =

∣∣∑
(P ′)

F ∗(ξ′)(r, x)[α(v′)− α(u′)]

+

k∑
j=1

∑
(Pj)

F ∗(ξj)(r, x)[α(vj)− α(uj)]−
b∫
a

F ∗(t)(r, x)dα| < ε. (37)
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Consequently, we obtain

∣∣∑
(P ′)

F ∗(ξ′)(r, x)[α(v′)− α(u′)]−
m∑
i=1

vi∫
ui

F ∗(t)(r, x)
)
dα
∣∣

=
∣∣∑
(P0)

F ∗(ξ0)(r, x)[α(v0)− α(u0)]−
k∑
j=1

∑
(Pj)

F ∗(ξj)(r, x)[α(vj)− α(uj)]−
( b∫
a

F ∗(t)(r, x)dα−
k∑
j=1

v′j∫
u′j

F ∗(t)(r, x)dα
)∣∣

≤
∣∣∑
(P0)

F ∗(ξ0)(r, x)[α(v0)− α(u0)]−
b∫
a

F ∗(t)(r, x)dα
∣∣+

k∑
j=1

∣∣∑
(Pj)

F ∗(ξj)(r, x)[α(vj)− α(uj)]−

v′j∫
u′j

F ∗(t)(r, x)dα
∣∣

< ε+
kη

k

= ε+ η. (38)

5. The Characterization of (FHS) Integrability for n-dimensional
Fuzzy-Number-Valued Functions

Let C
(
I, C(Sn−1)

)
=
{
f |f : I → C(Sn−1)

}
, f is an left continuously abstract function and f has a right limit for any

t ∈ [0, 1), especially f is right continuous at t = 0. We can proof
(
C(I, C(Sn−1)), ‖ · ‖

)
is a Banach space, where I = [0, 1]

and C(Sn−1) is the space of all continuous function on Sn−1 . ‖f‖ = sup
r∈[0,1]

‖f(r)‖. [11, 19].

Lemma 5.1. [11, 19] For u ∈ En, denote j(u) : r → u∗(r, x) ∈ C(Sn−1), then j(u) ∈ C
(
I, C(Sn−1)

)
and:

(1). j(su+ tv) = sj(u) + tj(v), u, v ∈ En, s, t ≥ 0;

(2). ‖j(u)− j(v)‖ = D(u, v), u, v ∈ En;

(3). j(En) is closed set in C
(
I, C(Sn−1)

)
.

According to Lemma 5.1, the fuzzy number space En can be embedded into a Banach space
(
C(I, C(Sn−1)), ‖ · ‖

)
in the

same distance.

Theorem 5.2. Let α : [a, b] → R be an increasing function. If F̃ : [a, b] → En is fuzzy-number-valued function on [a, b],

then the following statements are equivalent:

(1). The fuzzy-number-valued function F̃ (t) is (FHS) integrable on [a, b];

(2). The set-valued function Fr(t) is (IHS) integrable on [a, b] uniformly for any r ∈ [0, 1];

(3). The vector-valued function j ◦ F̃ (t) is (V HS) integrable on [a, b], and (V HS)
b∫
a

j ◦ F̃ (t)dα ∈ j(En);

(4). The vector-valued function F ∗(t)(·, x) is (V HS) integrable on [a, b] for any x ∈ Sn−1;

(5). The real-valued function F ∗(t)(r, x) is (RHS) integrable on [a, b] uniformly for any r ∈ [0, 1] and x ∈ Sn−1.

Proof. (1) implies (2): Since F̃ (t) is (FHS) integrable with respect to α on [a, b], then there exists a fuzzy-number Ã ∈ En,

for every ε > 0, there is a function δ(t) > 0, such that for any δ-fine division P = {[u, v], ξ} of [a, b], we have

D
(∑

(P )

F̃ (ξ)[α(v)− α(u)], Ã
)
< ε. (39)
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And because, [Ã]r ∈ Pk(Rn) for any r ∈ [0, 1], then according to Lemma 2.7 and Lemma 2.9,

sup
r∈[0,1]

d
(∑

(P )

Fr(ξ)[α(v)− α(u)], [Ã]r
)

= sup
r∈[0,1]

d
([∑

(P )

F̃ (ξ)[α(v)− α(u)]
]r
, [Ã]r

)
= D

(∑
(P )

F̃ (ξ)[α(v)− α(u)], Ã
)
< ε.

Therefore, the set-valued function Fr(t) is (IHS) integrable on [a, b] uniformly for any r ∈ [0, 1].

(2) implies (5): Since the set-valued function Fr(t) is (IHS) integrable with respect to α on [a, b] uniformly for any r ∈ [0, 1],

then there exists Ir ∈ Pk(Rn), for every ε > 0, there is a function δ(t) > 0, such that for any δ-fine division P = {[u, v], ξ}

of [a, b], we have

d
(∑

(P )

Fr(ξ)[α(v)− α(u)], Ir
)
< ε. (40)

Uniformly for any r ∈ [0, 1]. And because, σ(x, Ir) ∈ R, for any r ∈ [0, 1] and x ∈ Sn−1, then by Lemma 2.7, Lemma 2.10

(6),(7), Definition 2.5 and Lemma 2.12, we have

∣∣∑
(P )

F ∗(ξ)(r, x)[α(v)− α(u)]− σ(x, Ir)
∣∣ =

∣∣(∑
(P )

F̃ (ξ)[α(v)− α(u)])∗(r, x)− σ(x, Ir)
∣∣

=
∣∣ sup
a∈
[ ∑

(P )

F̃ (ξ)[α(v)−α(u)]
]r〈a, x〉 − σ(x, Ir)

∣∣
=
∣∣σ(x,

[∑
(P )

F̃ (ξ)[α(v)− α(u)]
]r

)− σ(x, Ir)
∣∣

≤ sup
x∈Sn−1

∣∣σ(x,
[∑

(P )

F̃ (ξ)[α(v)− α(u)]
]r

)− σ(x, Ir)
∣∣

= d
([∑

(P )

F̃ (ξ)[α(v)− α(u)]
]r
, Ir
)

= d
(∑

(P )

Fr(ξ)[α(v)− α(u)], Ir
)
< ε. (41)

Uniformly for any r ∈ [0, 1]. That is the real-valued function F ∗(t)(r, x) is (RHS) integrable on [a, b] uniformly for any

r ∈ [0, 1] and x ∈ Sn−1.

(5) implies (1): See Theorem 3.3

Summary (1)⇔ (2)⇔ (5). In the following section, we shall prove that (5)⇒ (4)⇒ (3)⇒ (1).

(5) implies (4): Since the real valued function F ∗(t)(r, x) is (RHS) integrable with respect to α on [a, b] uniformly for any

r ∈ [0, 1] and x ∈ Sn−1, then there is a(r, x) ∈ R, for every 0 < ε < 1, there is a function δ(t) > 0 (independently to r), such

that for any δ-fine division P = {[u, v], ξ} of [a, b], we have

∣∣∑
(P )

F ∗(ξ)(r, x)[α(v)− α(u)]− a(r, x)
∣∣ < ε. (42)

Uniformly for any r ∈ [0, 1]. In the following, we shall prove (RHS)
b∫
a

F ∗(t)(·, x)dα = a(·, x) ∈ C
(
I, C(Sn−1)

)
. Since

F̃ (t) ∈ En, then by using Lemma 2.10 (2), for any r ∈ [0, 1] and x ∈ Sn−1, we have

∣∣a(r, x)
∣∣ =

∣∣ b∫
a

F ∗(t)(r, x)dα
∣∣ ≤ ∣∣ b∫

a

F ∗(t)(0, x)dα
∣∣, (43)
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i.e. a(·, x) is bounded on [a, b]. According to the Lemma 2.10 (3), if a positive sequence {rm} is nondecreasing convergent

to r, for any r ∈ (0, 1] and x ∈ Sn−1, we have

lim
m→∞

F ∗(t)(rm, x) = F ∗(t)(r, x). (44)

By the (RH) integral-dominated convergence theorem [9, 10], for any x ∈ Sn−1, we have

lim
m→∞

(RHS)

b∫
a

F ∗(t)(rm, x)dα = (RHS)

b∫
a

F ∗(t)(r, x)dα, (45)

i.e. lim
m→∞

a(rm, x) = a(r, x). Therefore a(·, x) is left continuous. By using Lemma 2.10 (2),(3), it is clear the right limit value

of a(·, x) exists. Then according to Lemma 2.10 (3), similarly to the proof of the left continuity of a(·, x), we have a(·, x) is

right continuous at r = 0. Summary, a(·, x) ∈ C
(
I, C(Sn−1)

)
. Since

(
C(I, C(Sn−1)), ‖ · ‖

)
is Banach space in the sense of

the norm taking the supremum, so
∑
(P )

F ∗(ξ)(·, x)[α(v)− α(u)]− a(·, x) ∈ C
(
I, C(Sn−1)

)
. Then for any x ∈ Sn−1, we have

∥∥∑
(P )

F ∗(ξ)(·, x)[α(v)− α(u)]− a(·, x)
∥∥ = sup

r∈[0,1]

∣∣∑
(P )

F ∗(ξ)(r, x)[α(v)− α(u)]− a(r, x)
∣∣

≤ ε. (46)

It is clear (4) implies (3) by using Lemma 5.1

(3) implies (1): Since the vector-valued function j ◦ F̃ (t) is (V HS) integrable with respect to α on [a, b], and (V HS)
b∫
a

j ◦

F̃ (t)dα ∈ j(En), then there exists a fuzzy-number Ã ∈ En, for every ε > 0, there is a function δ(t) > 0, such that for any

δ-fine division P = {[u, v], ξ} of [a, b], we have

∥∥∑
(P )

j ◦ F̃ (ξ)[α(v)− α(u)]− j ◦ Ã
∥∥ < ε. (47)

According to Lemma 5.1, we have

D
(∑

(P )

F̃ (ξ)[α(v)− α(u)], Ã
)

=
∥∥j ◦ (∑

(P )

F̃ (ξ)[α(v)− α(u)]
)
− j ◦ Ã

∥∥
=
∥∥∑

(P )

j ◦ F̃ (ξ)[α(v)− α(u)]− j ◦ Ã
∥∥

< ε. (48)

Corollary 5.3. Let α : [a, b] → R be an increasing function. Let F̃ , G̃ : [a, b] → En be a fuzzy-number-valued function. If

F̃ , G̃ ∈ FHSα[a, b] and D
(
F̃ (t), G̃(t)

)
∈ LSα[a, b], then

D
(
(FHS)

b∫
a

F̃ (t)dα, (FHS)

b∫
a

G̃(t)dα
)
≤ (LS)

b∫
a

D
(
F̃ (t), G̃(t)

)
dα. (49)
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Proof. Since D
(
F̃ (t), G̃(t)

)
= sup
r∈[0,1]

sup
x∈Sn−1

∣∣F ∗(t)(r, x)−G∗(t)(r, x)
∣∣ is Lebesgue-Stieltjes integrable with respect to α on

[a, b] and F ∗(t)(r, x), G∗(t)(r, x) are (RHS) integrable for any r ∈ [0, 1] and x ∈ Sn−1. Hence

D
(
(FHS)

b∫
a

F̃ (t)dα, (FHS)

b∫
a

G̃(t)dα
)

= sup
r∈[0,1]

d
{[

(FHS)

b∫
a

F̃ (t)dα
]r
,
[
(FHS)

b∫
a

G̃(t)dα
]r}

= sup
r∈[0,1]

sup
x∈Sn−1

∣∣[(FHS)

b∫
a

F (t)
]∗

(r, x)dα−
[
(FHS)

b∫
a

G(t)
]∗

(r, x)dα
∣∣

= sup
r∈[0,1]

sup
x∈Sn−1

∣∣(RHS)

b∫
a

F (t)∗(r, x)dα− (RHS)

b∫
a

G(t)∗(r, x)dα
∣∣

≤ sup
r∈[0,1]

sup
x∈Sn−1

(RHS)

b∫
a

∣∣F (t)∗(r, x)−G(t)∗(r, x)
∣∣dα

= sup
r∈[0,1]

sup
x∈Sn−1

(LS)

b∫
a

∣∣F (t)∗(r, x)−G(t)∗(r, x)
∣∣dα

≤ sup
r∈[0,1]

(LS)

b∫
a

sup
x∈Sn−1

∣∣F (t)∗(r, x)−G(t)∗(r, x)
∣∣dα

≤ (LS)

b∫
a

sup
r∈[0,1]

d
([
F̃ (t)

]r
,
[
G̃(t)

]r)
dα = (LS)

b∫
a

D
(
F̃ (t), G̃(t)

)
dα. (50)

6. Conclusions

In this paper, the Henstock-Stieltjes (HS) integral for n-dimensional fuzzy-number-valued functions is defined and some

basic properties of this integral are discussed. Finally, by using the embedding theorem the fuzzy number space En can be

embedded into a concrete Banach space, and some characterized theorems for this integral are obtained.
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