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1. Introduction

Let R denote the real line and R+, the set of nonnegative real numbers. Let C(R+, R) denote the class of real-valued

functions defined and continuous on R+. Given a measurable space (Ω, A) and a measurable function x : Ω → C(R+, R),

we consider the initial value problem of nonlinear second order ordinary random differential equations (RDE)

x′′(t, ω) + k(t, ω)x(t, ω) = f(t, x(t, ω), ω) a. e. t ∈ R+

x(0, ω) = q(ω) , x′(0, ω) = 0. (1)

for all ω ∈ Ω, where k : R+ × Ω → R+, q : Ω → R and f : R+ × R × Ω → R. By a random solution of the RDE (1).

We mean a measurable function x : Ω → AC(R+, R) that satisfies the equations in (1), where AC(R+, R) is the space of

absolutely continuous real-valued functions defined on R+. The initial value problem of random differential equations have

been discussed in the literature for existence theorems on bounded intervals, however, the study of such random equations

has not been studied on unbounded intervals of the real line for any aspects of the random solutions. Some results appear

in Itoh [10], Bharucha-Reid [1] and Dhage [6]. Therefore, nonlinear random differential equations on unbounded intervals

need to pay attention to the existence as well as the different characterizations of the random solutions. The present paper

discuss the existence and attractivity results for random differential equations (1) on the right half R+ of the real line R.

The classical fixed point theory, in particular, random version of Schauder’s fixed point theorem will be employed to prove

the main result of this paper. This results generalize the stability results of Burton and Furumochi [2] in some sense.

∗ E-mail: dspalimkar@rediffmail.com
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2. Auxiliary Results

The following theorem is used in the study of nonlinear discontinuous random differential equations.

Theorem 2.1 (Itoh [10]). . Let X be a non-empty, closed convex bounded subset of the separable Banach space E and

let Q : Ω × X → X be a compact and continuous random operator. Then the random equation Q(ω)x = x has a random

solution, that is there is a measurable function ξ : Ω→ X such that Q(ω)ξ(ω) = ξ(ω) for all ω ∈ Ω.

Theorem 2.2 (Carathodory). Let Q : Ω × E → E be a mapping such that Q(·, x) is measurable for all x ∈ E and Q(ω, ·)

is continuous for all ω ∈ Ω. Then the map (ω, x)→ Q(ω, x) is jointly measurable.

3. Characterizations of Random Solutions

The random solutions of RDE (1) in the Banach space BC(R+, R) of real-valued functions defined,continuous and bounded

on R+ with supremum norm ‖·‖ defined by ‖x‖ = sup
x∈R+

|x(t)|. By L1(R+, R) we denote the space of Lebesgue Measurable

real-valued functions defined on R+. By ‖·‖L1 .e denote the usual norm in L1(R+, R) defined by ‖x‖L1 =
∞∫
0

|x(t)|dt. In order

to introduce the further concepts used in this paper, let us denote E = BC(R+, R) and S be a non-empty subset of E. Let

Q : Ω× E → E be a mapping and consider the following random equation

Q(ω)x(t) = x(t, ω) (2)

for t ∈ R+ and ω ∈ Ω. A measurable function x : Ω → E is called a random solution of random Equation (2) if it satisfies

(2) on R+. Herewith, we gives different characterizations of the random solutions for random Equation (2) onR+.

Definition 3.1. We say that random solutions of the random Equation (2)are locally attractive on R+ if there exit a closed

ball B̄r(x0) in the space BC(R+, R) for some x0 ∈ BC(R+, R) and for some real number r > 0, such that for arbitrary

random solutions x = x(t, ω) and y = y(t, ω) of random Equation (2) belonging to B̄r(x0) ∩ S we have that

lim
t→∞

(x(t, ω)− y(t, ω)) = 0 (3)

for all ω ∈ Ω. In this case when the limit (3) is uniform with respect to the set B̄r(x0) ∩ S, that is, when for each ε > 0

there exist a T > 0 such that for all t ≥ T ,

|x(t, ω)− y(t, ω)| ≤ ε (4)

for all ω ∈ Ω and for all x, y ∈ B̄r(x0) ∩ S being the random solutions of (2), I will say that the random solutions are

uniformly locally attractive on R+.

Definition 3.2. I say that random solutions of the random equation (2) are globally attractive on R+, if for arbitrary

random solutions x = x(t, ω) and y = y(t, ω) of the random equation (2) belonging to S the condition (3) is satisfied. In the

case when (3) is satisfied uniformly with respect to the set S in E, that is, for ε > 0 there exists a T > 0 such that t ≥ T ,

the inequality (4) holds for all x, y ∈ S being the random solutions for the random equation (2), I will say that the random

solutions of the random equation (2) are uniformly globally attractive on R+.

Definition 3.3. Let c ∈ R be fixed. A line y(t, ω) = c for all c ∈ R+ and ω ∈ Ω, is called an attractor f or the random

solution x : Ω→ E to the random equation (2) if lim
t→∞

[(x(t, ω)− c)] = 0 for all ω ∈ Ω. In this case the random solution x of

the random equation (2) is said to be be asymptotic to the line y = c and the line is an asymptote for the random solution

x on R+.
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Definition 3.4. The random solutions for the random equation (2) are said to be locally asymptotically attractive if there

exists a closed ball
−
Br(x0) in E for some x0 ∈ E and for some real number r > 0, such that for any two random solutions

x = x(t, ω) and y = y(t, ω) to the random equation (2) belonging to
−
Br(x0) ∩ S there is a line which is a common attractor

to them onR+. When x and y are uniformly locally attractive and there is a line as a common attractor, I will say that the

random solutions of the random equation (2) are uniformly locally attractive on R+.

Definition 3.5. The random solutions for the random equation (2) are said to be globally asymptotically attractive if for

any two globally attractive solutions x and y of (2) there is a line which is a common attractor to them on R+. Furthermore,

if the random solutions for the random equation (2) are uniformly globally attractive then they are called uniformly globally

asymptotically attractive on R+.

4. Attractivity Results

We need the following definition in the sequel

Definition 4.1. A function f : R+ ×R× Ω→ R is called random Carathodory if (i) the map ω → f(t, x, ω) is measurable

for all t ∈ R+ and x ∈ R and (ii) the map (t, x) → f(t, x, ω) is jointly continuous for all ω ∈ Ω. Furthermore, a random

Carathodory function f : R+ × R × Ω→ R is called random L1-Carathodory, if there exists a function h ∈ L1(R+, R) such

that |f(t, x, ω)| 6 h(t) a. e. t ∈ R+, for all ω ∈ Ω and x ∈ R. The function h is the growth function of f on R+ ×R× Ω.

Consider the following set of hypotheses:

(A0) The function k : R+ ×R→ R is measurable and bounded.

(A1) The function q : Ω→ Ris measurable and bounded. Moreover,

ess sup
ω∈Ω
|q(ω)| = c1

for some real number c1 > 0.

(A2) The function f is randomL1-Carathodory with growth function h on R+. Moreover,

lim
t→∞

t∫
0

(t− s)h ds

where h = [f(s, x (s, ω), ω)− k(s, ω)x(s, ω)] for allω ∈ Ω.

Remark 4.2. If the hypothesis (H2) holds, then the function w : R+ × Ω→ R+ defined by

w(t, ω) =

t∫
0

(t− s) [f(s, x (s, ω), ω)− k(s, ω)x(s, ω)] ds

is continuous and the number

w = sup
t>0

w(t, ω) = sup
t>0

t∫
0

(t− s) [f(s, x (s, ω), ω)− k(s, ω)x(s, ω)] ds

exists for all ω ∈ Ω. See for example, Dhage [5], Burton and Furumochi [2].
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5. Main Result

Theorem 5.1. Assume that the hypotheses (A0) to (A2) hold. Then the RDE(1) admits a random solution. Moreover,

random solutions are uniformly globally asymptotically attractive to the zero random solution on R+.

Proof. Now RDE(1) is equivalent to the random equation

x(t, ω) = q(ω) +

∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds (5)

for all t ∈ R+ and ω ∈ Ω. Set E = BC(R+, R). For a given function x : Ω→ E, define a mapping Q on Ω× E by

Q(ω)x(t, ω) = q(ω) +

∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds (6)

for all t ∈ R+ and ω ∈ Ω. For the sake of convenience, We write Q(ω)x(t, ω) = Q(ω)x(t) omitting the double appearance

of ω merge it into Q(ω). Clearly, Q defines a mapping Q : Ω × E → E. To see this, let x ∈ E be arbitrary. Then for each

ω ∈ Ω, the continuity of map t→ Q(ω)x(t) follows from the fact that the indefinite integral

∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

are continuous functions of t on R+. Next, We show that the function Q(ω)x : R+ → R is bounded for each ω ∈ Ω. Now

by hypotheses (A1) and (A2),

|Q(ω)x(t)| ≤ |q(ω)|+
∣∣∣∣∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

∣∣∣∣ ≤ c1 +W (7)

for all ω ∈ Ω. As a result, Q : Ω × E → E. Define a closed ball B̄r(0) in the Banach space E centered at origin of radius

r = c1 +W from (7), |Q(ω)x| ≤ c1 +W for all ω ∈ Ω and x ∈ E. Hence Q : Ω× E → B̄r(0), and in particular, Q defines a

map Q : Ω× B̄r(0)→ B̄r(0). Now we show that Q satisfies all the conditions of Theorem 2.1 with X = B̄r(0).

Firstly, We show that Q is a random operator on Ω × B̄r(0) in to B̄r(0). By hypothesis (H2), the map ω → f(t, x, ω)

is measurable by the Caratheodory theorem. Since a continuous function is measurable, so the t → [f(s, x(s, ω), ω) −

k(s, ω)x(s, ω)] is measurable in ω for all t ∈ R+ and x ∈ R. Since the integral is a limit of the finite sum of measurable

functions, We have that the function ω →
∫ t

0
(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds is measurable. Similarly, the map

ω → q(ω) +

∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

is measurable for all t ∈ R+.Consequently, the map ω → Q(ω)x is measurable for all x ∈ E and that Q is a random operator

on Ω× B̄r(0).

Secondly, We show that the random operator Q(ω) is continuous on B̄r(0). By hypothesis (A2),

lim
t→∞

w(t, ω) = lim
t→∞

∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds = 0,

there is a real number T > 0 such that w(t) < ε
4

for all t ≥ T . We show that the continuity of the random operator Q(ω)

in the following two cases:
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Case I: Let t ∈ [0, T ] and let {xn} be a sequence of points in B̄r(0) such that xn → x as n→∞. Then, by the dominated

convergence theorem,

lim
n→∞

Q(ω)xn(t) = lim
n→∞

(
q(ω) +

∫ t

0

(t− s)[f(s, xn(s, ω), ω)− k(s, ω)xn(s, ω)]ds

)
lim

n→∞
Q(ω)xn(t) = q(ω) + lim

n→∞

(∫ t

0

(t− s)[f(s, xn(s, ω), ω)− k(s, ω)xn(s, ω)]ds

)
lim

n→∞
Q(ω)xn(t) = q(ω) +

(∫ t

0

(t− s) lim
n→∞

[f(s, xn(s, ω), ω)− k(s, ω)xn(s, ω)]ds

)
= q(ω) +

(∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)
= Q(ω)x(t)

for all t ∈ [0, T ] and ω ∈ Ω.

Case II: Suppose that t ≥ T . Then we have

|Q(ω)xn(t)−Q(ω)x(t)|

=

∣∣∣∣(∫ t

0

(t− s)[f(s, xn(s, ω), ω)− k(s, ω)xn(s, ω)]ds

)
−
(∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)∣∣∣∣
≤
∣∣∣∣(∫ t

0

(t− s)[f(s, xn(s, ω), ω)− k(s, ω)xn(s, ω)]ds

)∣∣∣∣+

∣∣∣∣(∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)∣∣∣∣
≤ 2ω(t) < ε

for all t ≥ T and ω ∈ Ω. Since ε is arbitrary, one has lim
n→∞

Q(ω)xn(t) = Q(ω)x(t) all t ≥ T and ω ∈ Ω. Now combining

the Case I with Case II, We conclude that Q(ω) is a point-wise continuous random operator on B̄r(0) into itself. Further,

it is shown below that the family of functions {Q(ω)xn} is an equi-continuous set in E for a fixed ω ∈ Ω. Hence, the above

convergence is uniform on R+ and consequently, Q(ω) is a continuous random operator on B̄r(0) into itself. Next, We show

that Q(ω) is a compact random operator on B̄r(0). Let ω ∈ Ω be fixed and consider a sequence {Q(ω)xn} of points in B̄r(0).

To finish, it is enough to show that the sequence {Q(ω)xn} has a Cauchy subsequence for each ω ∈ Ω. Clearly {Q(ω)xn} is

a uniformly bounded subset of B̄r(0). We show that it is an equi-continuous sequence of functions on R+.

Let ε > 0 be given. Since lim
t→∞

w(t, ω) = 0, there exists a real number T > 0 such for t < ε
4

for t ≥ T . We consider the

following three cases:

Case I: Let t1 , t2 ∈ [0, T ]. Then, we have

|Q(ω)xn(t1)−Q(ω)x(t2)|

=

∣∣∣∣(∫ t1

0

(t− s)[f(s, xn(s, ω), ω)− k(s, ω)xn(s, ω)]ds

)
−
(∫ t2

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)∣∣∣∣
=

∣∣∣∣(∫ t1

0

(t− s)[f(s, xn(s, ω), ω)− k(s, ω)xn(s, ω)]ds

)
+

(∫ t1

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)
−
(∫ t2

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)
−
(∫ t1

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)∣∣∣∣
≤
∣∣∣∣(∫ t1

0

(t− s)[f(s, xn(s, ω), ω)− k(s, ω)xn(s, ω)]ds

)
−
∫ t1

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

∣∣∣∣
+

∣∣∣∣(∫ t2

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)
−
∫ t1

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

∣∣∣∣
≤
∣∣∣∣(∫ T

0

(t− s)h(s)ds

)∣∣∣∣
+

∣∣∣∣(∫ t2

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)
−
∫ t1

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

∣∣∣∣
≤
∣∣∣∣(∫ T

0

(t− s)h(s)ds

)∣∣∣∣+

∣∣∣∣(∫ t1

t2

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)∣∣∣∣
≤ |p(t1)− p(t2)|
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p (t) =
∫ t

0
(t − s)h(s)ds Since the function p (t) is continuous on [0, T ], they are uniformly continuous there. Hence,

|Q(ω)xn(t1)−Q(ω)x(t2)| → 0 as t1 → t2 uniformly for all t1, t2 ∈ [0, T ] and for all n ∈ N .

Case II. If t1, t2 ∈ [T,∞], then

|Q(ω)xn(t1)−Q(ω)x(t2)|

=

∣∣∣∣(∫ t1

0

(t− s)[f(s, xn(s, ω), ω)− k(s, ω)xn(s, ω)]ds

)
−
(∫ t2

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)∣∣∣∣
≤
∣∣∣∣(∫ t1

0

(t− s)[f(s, xn(s, ω), ω)− k(s, ω)xn(s, ω)]ds

)∣∣∣∣+

∣∣∣∣(∫ t2

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)∣∣∣∣
≤ w(t1) + w(t2)

≤ ε

4
+
ε

4
< ε.

Since ε is arbitrary, one has |Q(ω)xn(t1)−Q(ω)x(t2)| → 0 as t1 → t2 uniformly for all n ∈ N .

Case III. If t1 < T < t2, then

|Q(ω)xn(t1)−Q(ω)xn(t2)| ≤ |Q(ω)xn(t1)−Q(ω)xn(T )|+ |Q(ω)xn(T )−Q(ω)xn(t2)|

As t1 → t2, t1 → T and t2 → T , and so

|Q(ω)xn(t1)−Q(ω)xn(T )| → 0

and

|Q(ω)xn(T )−Q(ω)xn(T )| → 0

as t1 → t2 uniformly for all n ∈ N . Hence

|Q(ω)xn(t1)−Q(ω)x(t2)| → 0 as t1 → t2

uniformly for all t1 < T and t2 > T and for all n ∈ N . Thus, in all three cases

|Q(ω)xn(t1)−Q(ω)xn(t2)| → 0 as t1 → t2

uniformly for all t1, t2 ∈ R+ and for all n ∈ N . This shows that {Q(ω)xn} is a equicontinuous sequence in X. Now an

application of Arzelá-Ascoli theorem yields that {Q(ω)xn} has a uniformly convergent subsequence on the compact subset

[0, T ] of R. Without loss of generality, call the subsequence to be the sequence itself. We show that {Q(ω)xn} is Cauchy in

X. Now shows that |Q(ω)xn(t)−Q(ω)x(t)| → 0 as n → ∞ for all t ∈ [0, T ]. Then for given ε > 0 there exist n0 ∈ N such

that

sup
0≤p≤T

∣∣∣∣(∫ p

0

(t− s)[f(s, xm(s, ω), ω)− k(s, ω)xm(s, ω)]− [f(s, xn(s, ω), ω)− k(s, ω)xn(s, ω)]ds

)∣∣∣∣ < ε

2

for all m,n ≥ n0. Therefore, if m,n ≥ n0, then we have

|Q(ω)xm −Q(ω)xn|

= sup
0≤p≤T


∣∣(∫ p

0
(t− s) [f(s, xm (s, ω), ω)− k(s, ω)xm(s, ω)]− [f(s, xn (s, ω), ω)− k(s, ω)xn(s, ω)] ds

)∣∣+
∣∣(∫ p

0
(t− s) [f(s, xm (s, ω), ω)− k(s, ω)xm(s, ω)] + [f(s, xn (s, ω), ω)− k(s, ω)xn(s, ω)] ds

)∣∣


≤ ε

2
+
ε

2
= ε
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This shows that {Q(ω)xn} ⊂ Q(ω)(B̄r(0)) ⊂ (B̄r(0)) is Cauchy. Since X is complete, {Q(ω)xn} converges to a point in X. As

Q(ω)(B̄r(0)) is closed, the sequence {Q(ω)xn} converges to a point in Q(ω)(B̄r(0)). Hence Q(ω)(B̄r(0)) is relatively compact

for each ω ∈ Ω and consequently Q is a continuous and compact random operator on Ω × (B̄r(0)). Now an application of

Theorem 2.1 to the operator Q(ω) on (B̄r(0)) yields that Q has a fixed point in (B̄r(0)) which further implies that the RDE

(1) random solution on R+.

Next, I show that the solutions are uniformly attractive on R+. Let x, y : Ω → B̄r(0) be any two random solutions to the

RDE (1) on R+ then for each ω ∈ Ω,

|x(t, ω)− y(t, ω)|

≤
∣∣∣∣(∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)
−
(∫ t

0

(t− s)[f(s, y(s, ω), ω)− k(s, ω)y(s, ω)]ds

)∣∣∣∣
≤
∣∣∣∣(∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)∣∣∣∣+

∣∣∣∣∫ t

0

(t− s)[f(s, y(s, ω), ω)− k(s, ω)y(s, ω)]ds

∣∣∣∣
≤ 2w(t)

for all t ∈ R+. Since lim
t→∞

w(t) = 0, there is a real number T > 0 such that w(t) < ε
2

for all t ≥ T . Therefore,

|x(t, ω)− y(t, ω)| ≤ ε for all t ≥ T and for all ω ∈ Ω. Hence all random solutions of the RDE (1) are uniformly globally

attractive on R+.

Finally, We prove that random solutions are asymptotically attractive to the line y=0 on Ω × R+. Let x : Ω → C(R+, R)

be a random solution of the RDE (1) on R+. Then, for each ω ∈ Ω,

x(t, ω) ≤
∣∣∣∣q(ω) +

(∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)∣∣∣∣
x(t, ω) ≤ |q(ω)|+

∣∣∣∣(∫ t

0

(t− s)[f(s, x(s, ω), ω)− k(s, ω)x(s, ω)]ds

)∣∣∣∣
≤ c1 + w(t)

for all ω ∈ Ω. Taking the limit superior in the above inequality as t tends to ∞ yields

lim
t→∞

sup |x(t, ω)| ≤ c1 + lim
t→∞

supw(t, ω) = 0

and so, lim
t→∞

|x(t, ω)| = 0 for all ω ∈ Ω. Therefore, for each ε > 0 there exit a real number T > 0 such that |x(t, ω)| < ε for

all t ≥ T and ω ∈ Ω). Hence, all random solutions of the RDE (1) are uniformly globally asymptotically attractive to the

zero random solution on R+.

6. Example

Let Ω = (−∞, 0) with the usual σ-algebra consisting of Lebesgue measurable subsets of (−∞, 0). Given a function x :

R+ × Ω→ C(R+, R), consider the following random differential equation as

x′(t, ω) + k(t, ω)x(t, ω) =
et cos ωtx(t, ω)

1 + x(t, ω)

x(0, ω) = 1, x′(0, ω) = 0 for all t ∈ R+ and ω ∈ Ω. Here, q(ω) = 1, k(t, ω) = −1 for all ω ∈ Ω. and f(t, x, ω) = et cos ωt x
1+|x| for

t ∈ R+, x ∈ R and ω ∈ (−∞, 0). obviously, the function f is random L1-Caratheodory with growth function

h(t) = et ≥
∣∣∣∣et cosωt x

1 + |x|

∣∣∣∣ = |f(t, x, ω)| .

Thus, both the hypotheses (A0) and (A2) of Theorem 4.1 are satisfied and hence the above RDE has a random solution and

all random solutions are uniformly globally asymptotically attractive to the zero random solution on R+.
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7. Conclusion

In this paper, we have been able to extend and generalize some known existence, attractivity or stability results of deter-

ministic nonlinear differential equations obtained in Burton and Furumochi [2] to indeterministic case of random differential

equations on unbounded intervals of real line.
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