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Abstract: In this paper, we establish some sufficient conditions for the oscillation of all solutions of first order neutral difference

equation of the form

∆[r(n)(x(n) + px(n− τ))] + q(n)x(n− σ) = 0, n ≥ n0; (∗)

where {r(n)}, {q(n)} are sequences of positive real numbers, p is a real number, and τ and σ are positive integers. The
results proved improve and generalize some of existing results in the literature. Some examples are inserted to illustrate

our results.
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1. Introduction

A neutral delay difference equation is a difference equation in which the highest order difference of the unknown sequence

appears in the equation both with and without delays. Recently, increasing numbers of investigations have been carried out

in studying the oscillation of neutral delay difference equation, see for example [1–5]. Consider the first order neutral delay

difference equation of the form

∆[r(n)(x(n) + px(n− τ))] + q(n)x(n− σ) = 0, n ≥ n0; (1)

where ∆ is the forward difference operator defined by ∆x(n) = x(n + 1) − x(n), {r(n)}∞n=n0
, {q(n)}∞n=n0

are sequences

of positive real numbers, p is a real number, and τ and σ are positive integers. The oscillatory solutions of (1) have

been investigated by a number of researchers and some sufficient conditions for the oscillatory and nonoscillatory solutions

have been investigated, see [6–10]. Let us choose a positive integer n∗ = max {τ, σ}. By a solution of (1) on N(n0) =

{n0, n0 + 1, ...}, we mean a real sequence {x(n)} which is defined on n ≥ n0 − n∗ and which satisfies (1) for n ∈ N(n0).

A solution {x(n)} of (1) on N(n0) is said to be oscillatory if for every positive integers N0 > n0 there exists n ≥ N0 such

that x(n)x(n+ 1) ≤ 0, otherwise {x(n)} is said to be nonoscillatory. The main objective of this article is to give some new

sufficient conditions for the oscillatory solutions of (1). We present some of the well known Lemmas, which will be needed
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in the proof of our main results. They may also have further applications in the analysis. The Lemma 1.1 and 1.2 are the

discrete analogues of the Lemmas 1.5.1 and 1.5.3 respectively in [3].

Lemma 1.1. Let {f(n)} and {g(n)} be sequences of real numbers such that f(n) = g(n) + µg(n− c); n ≥ n0 + max {0, c},

where µ ∈ R, µ 6= 1 and c is a positive integer Assume that lim
n→∞

f(n) = l ∈ R exists and lim inf
n→∞

g(n) = a ∈ R. Then

l = (1 + µ)a.

Lemma 1.2. Let 0 ≤ λ < 1, c be a positive integer, n0 ∈ N and {x(n)} be a sequence of positive real numbers and assume

that for every ε > 0 there exists a nε ≥ n0 such that x(n) ≤ (λ+ ε)x(n− c) + ε for n ≥ nε. Then lim
n→∞

x(n) = 0.

Lemma 1.3. Assume that p 6= 1, r(n) = 1 and
∞∑

n=n0

q(n) =∞. (2)

Let {x(n)} be an eventually positive solution of the neutral delay difference equation (1). Set

z(n) = x(n) + px(n− τ). (3)

Then the following statements hold.

(a) {z(n)} is decreasing sequence and either

lim
n→∞

z(n) = −∞ or (4)

lim
n→∞

z(n) = 0. (5)

(b) The following statements are equivalent:

(i) (4) holds;

(ii) p < −1;

(iii)

lim
n→∞

x(n) =∞. (6)

(c) The following statements are equivalent:

(i) (5) holds;

(ii) p > −1;

(iii)

lim
n→∞

x(n) = 0. (7)

Proof. From (1) and (3) we obtain

∆z(n) = −q(n)x(n− σ) (8)

and so eventually ∆z(n) ≤ 0. Hence either (4) holds or

lim
n→∞

z(n) ≡ l ∈ R. (9)
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If (9) holds, then by summing (8) from n1 to ∞, with n1, sufficiently large, we find

l − z(n1) = −
∞∑

s=n1

q(s)x(s− σ). (10)

In view of (2) this implies that lim inf
n→∞

x(n) = 0 and so by Lemma 1.1, l = (1 + p)0 = 0. The proof of (a) is complete.

Now we turn to the proofs of (b) and (c). First assume that (4) holds. Then p must be negative and {x(n)} is unbounded.

Therefore there exists a n∗ ≥ n0 such that z(n∗) < 0 and

x(n∗) ≥ max
s≤n∗

x(s) > 0.

Then

0 > z(n∗) = x(n∗) + px(n− τ) ≥ x(n∗)(1 + p)

which implies that p < −1. Also z(n) = x(n) + px(n − τ) > px(n − τ) and (4) implies that lim
n→∞

x(n) = ∞. Now assume

that (5) holds. If p ≥ 0, then from (3), it follows that limn→∞ x(n) = 0. Next assume that p ∈ (−1, 0). Then by Lemma

1.2, lim
n→∞

x(n) = 0.

Finally if p < −1, then x(n) > −px(n−τ) ≥ x(n−τ) which shows that {x(n)} is bounded from below by a positive constant,

say m. Then (10) yields.

l − z(n1) +m

∞∑
s=n1

q(s) ≤ 0,

which is a contradiction. Therefore, if (5) hold, p > −1. On the basis of the above discussion, the proof of (b) and (c) follow

immediately.

Lemma 1.4. Assume that −1 < p < 0 and lim
n→∞

r(n) = r0 exists. Let {x(n)} be an eventually positive solution of (1) and

{z(n)} be its associated sequence defined by (3). Then z(n) > 0 eventually.

Proof. From (1) and (3) we have

∆(r(n)z(n)) < 0, eventually. (11)

This shows that {r(n)z(n)} is decreasing sequence. Assume the contrary. That is z(n) < 0 then x(n) < −px(n − τ). This

implies that x(n + kτ) < (−p)kx(n), and hence x(n) → 0 as n → ∞. Together with this we have lim
n→∞

z(n) = 0. Since

lim
n→∞

r(n) = r0 exists, we obtain

lim
n→∞

(r(n)z(n)) = 0.

This is a contradiction to the fact that {r(n)z(n)} decreasing and eventually negative sequence. This completes the proof.

Lemma 1.5 ([3]). Assume that k is a positive integer. Let {h(n)} be a sequence of nonnegative real numbers and suppose

that

lim inf
n→∞

n−1∑
s=n−k

h(s) >

(
k

k + 1

)k+1

. (12)

Then

(i). the delay difference inequality

∆x(n) + h(n)x(n− k) ≤ 0, n ≥ n0

has no eventually positive solution.
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(ii). the delay difference inequality

∆x(n) + h(n)x(n− k) ≥ 0, n ≥ n0

has no eventually negative solution.

Lemma 1.6 ([3]). Assume that k is a positive integer with k > 1. Let {h(n)} be a sequence of nonnegative real numbers

and suppose that

lim inf
n→∞

n+k−1∑
s=n+1

h(s) >

(
k − 1

k

)k
. (13)

Then

(i). the advanced difference inequality

∆x(n)− h(n)x(n+ k) ≤ 0, n ≥ n0

has no eventually negative solution.

(ii). the advanced difference inequality

∆x(n)− h(n)x(n+ k) ≥ 0, n ≥ n0

has no eventually positive solution.

2. Main Results

In this section, we give some new sufficient conditions for oscillations of all solutions of (1).

Theorem 2.1. Assume that r(n) ≡ r > 0 and p = −1 and (3) holds. Then every solution of (1) is oscillatory.

Proof. Assume the contrary. Without loss of generality that we may assume that {x(n)} is an eventually positive solution

of (1). Then there exists an integer n1 ≥ n0 such that x(n− σ) > 0 for all n ≥ n1 ≥ n0. Set

z(n) = x(n)− x(n− τ). (14)

Then from (1) we have

∆z(n) =
−q(n)x(n− σ)

r
< 0. (15)

Hence for all n ≥ n1, we have z(n) > 0 or ∆z(n) < 0. Let z(n) > 0. This implies that

∞∑
s=n1

q(s)x(s− σ) < rz(n1) <∞. (16)

On the other hand, z(n) > 0 gives x(n) > x(n− τ) and hence lim infn→∞ x(n) > 0. Thus, there exists a positive constant k

such that x(n) > k > 0. Then
∞∑

s=n+σ

q(s)x(s− σ) > k

∞∑
s=n+σ

q(s),

which leads to
∞∑

s=n+σ

q(s)x(s− σ) =∞.

This is a contradiction with (16). Therefore z(n) < 0, which implies that x(n) < x(n − τ). Then {x(n)} is bounded and

hence lim inf
n→∞

x(n) and lim inf
n→∞

z(n) exists. From Lemma 1.1, we get limn→∞ z(n) = 0. This contradicts the fact that

{z(n)} is a negative and monotonic decreasing sequence.
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Theorem 2.2. Assume that p 6= ±1, r(n) ≡ r > 0, and {q(n)} is a τ - periodic sequence of positive real numbers. Suppose

that one of the following conditions holds.

lim inf
n→∞

n−1∑
s=n−σ+τ

q(s)

r(1 + p)
>

(
σ − τ

σ − τ + 1

)σ−τ+1

, σ − τ ≥ 1 and 1 + p > 0 (17)

or

lim inf
n→∞

n+τ−σ−1∑
s=n+1

(
−q(s)
r(1 + p)

)
>

(
τ − σ − 1

τ − σ

)τ−σ
, τ − σ > 1 and 1 + p < 0. (18)

Then every solution of (1) is oscillatory.

Proof. Assume the contrary. Without loss of generality, we may suppose that {x(n)} is an eventually positive solution of

(1). Set

z(n) = x(n) + px(n− τ) and

w(n) = z(n) + pz(n− τ).

Then by direct substitution, we can show that {z(n)} and {w(n)} are solutions of (1). Then

r∆z(n) + prz(n− τ) + q(n)z(n− σ) = 0, n ≥ n0 and (19)

r∆w(n) + prw(n− τ) + q(n)w(n− σ) = 0. (20)

By Lemma 1.3, {z(n)} is decreasing and either (4) or (5) holds. In either case we claim that

∆w(n− τ) ≤ ∆w(n) (21)

Indeed,

∆w(n) = −q(n)z(n− σ)

≥ −q(n)z(n− σ − τ)

= −q(n− τ)z(n− σ − τ)

= −∆w(n− τ).

Furthermore, it follows from Lemma 1.3 that as long as p 6= ±1, w(n) > 0. By using (21) in (20) we obtain

r(1 + p)∆w(n− τ) + q(n)w(n− σ) ≤ 0.

In view of the τ -periodicity of {q(n)} we find

∆w(n) +
q(n)

r(1 + p)
w(n− (σ − τ)) ≤ 0 if 1 + p > 0 (22)

or

∆w(n)−
(
−q(n)

r(1 + p)

)
w(n+ τ − σ) ≥ 0 if 1 + p < 0. (23)

In view of Lemmas 1.5 and 1.6 and the conditions (17) and (18), it is impossible for (22) and (23) to have eventually positive

solution. This contradicts the fact that w(n) > 0 eventually.
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Theorem 2.3. Assume that −1 < p < 0 and limn→∞ r(n) = r0 exists. Suppose that

lim inf
n→∞

n−1∑
s=n−σ

q(s)

r(s− σ)
>

(
σ

σ + 1

)σ+1

. (24)

Then every solution of (1) oscillates.

Proof. Assume the contrary. Without loss of generality, we may assume that {x(n)} is an eventually positive solution of

(1). Then there exists an integer n1 ≥ n0 such that x(n−τ) > 0 and x(n−σ) > 0 for all n ≥ n1. Set z(n) = x(n)+px(n−τ).

Then by Lemma 1.4, z(n) > 0 eventually. As x(n) > z(n), it follows from (1) that

∆(r(n)z(n)) + q(n)z(n− σ) ≤ 0, n ≥ n1. (25)

Let y(n) = r(n)z(n). Then (25) becomes

∆y(n) +
q(n)

r(n− σ)
y(n− σ) ≤ 0, n ≥ n1. (26)

In view of Lemma 1.5 and (24), it is impossible for (26) have an eventually positive solution. This contradicts the fact that

y(n) > 0 and the proof of Theorem 2.3 is completed.

3. Example

Example 3.1. Consider the following neutral delay difference equation

∆[x(n)− x(n− 2)] +
4

n− 4
x(n− 4) = 0; n ≥ 5. (27)

Clearly r(n) = 1, q(n) = 4
n−4

, τ = 2 and σ = 4. Clearly

∞∑
s=5

q(s) =∞.

Then by Theorem 2.1, every solution of (27) is oscillatory. One such solution of (27) is x(n) = n(−1)n.

Example 3.2. Consider the first order neutral difference equation

∆

[
r(x(n)− 1

2
x(n− 2))

]
+ q(n)x(n− 4) = 0; n = 5, 6, 7, . . . (28)

where r is positive real number, p = −1
2

, τ = 2, σ = 4 and

q(n) =


5r
4

if n is even;

5r
6

if n is odd.

Clearly σ ≥ τ + 1 and

lim inf
n→∞

n−1∑
s=n−σ+τ

q(s)

r(1 + p)
= lim inf

n→∞

n−1∑
s=n−2

q(s)

r(1 + p)

= lim inf
n→∞

2

r
[q(n− 2) + q(n− 1)]

=
2

r

[
5r

4
+

5r

6

]
=

25

6

>

(
σ − τ

σ − τ + 1

)σ−τ+1

=

(
2

3

)3

.
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Hence, by Theorem 2.2, every solution of (28) is oscillatory. One such solution is

x(n) =


2, n is even;

−3, n is odd.

Example 3.3. Consider the neutral delay difference equation

∆[
1

n
(x(n)− 1

2
x(n− 4))] +

1

2

(
1

n
+

1

n+ 1

)
x(n− 2) = 0; n ≥ 4. (29)

Clearly, r(n) = 1
n

, q(n) = 1
2

(
1
n

+ 1
n+1

)
, τ = 4 and σ = 2. We can see that limn→∞ r(n) = 0. Also,

lim inf
n→∞

n−1∑
s=n−2

q(s)

r(s− 2)
= 2 >

(
σ

σ + 1

)σ+1

=

(
2

3

)3

.

Hence by Theorem 2.3, every solution of (29) is oscillatory. One such solution of (29) is x(n) = (−1)n.
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