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Abstract: In this paper, we consider a class of second order neutral difference equation of the form

∆ (r(n)∆(x(n)− p(n)x(n+ τ))) + q(n)x(n+ σ) = 0, n ≥ n0 (∗)

where r(n) is a sequence of positive real numbers, {p(n)} and {q(n)} are sequence of nonnegative real numbers, and τ and

σ are integers. We discuss the oscillatory properties of the equation (∗) relating oscillation of these equations to existence
of positive solutions to associated first order neutral inequalities.
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1. Introduction

In this paper, we discuss the oscillatory behavior of second order neutral difference equation of the form

∆ (r(n)∆(x(n)− p(n)x(n+ τ))) + q(n)x(n+ σ) = 0; n ≥ n0 (1)

where ∆ is the forward difference operator defined by ∆x(n) = x(n + 1) − x(n). Throughout the paper the following

conditions are assumed to be hold:

(C1) {r(n)} is a sequence of positive real numbers;

(C2) {p(n)} is a sequence of nonnegative real numbers and there exist constants p0 and p1 such that 0 ≤ p0 ≤ p(n) ≤ p1 < 1;

(C3) {q(n)} is a sequence of nonnetaive real numbers and q(n) is not identically zero for all n sufficiently large;

(C4) τ and σ are integers.

(C5) lim
n→∞

R(n) <∞, where R(n) =
n−1∑
s=n0

1
r(s)

.
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If {x(n)} is a solution of (1) then its associated sequence {z(n)} is defined by

z(n) = x(n)− p(n)x(n+ τ). (2)

By a solution of (1), we mean a real sequence {x(n)} which is defined for n∗ ≥ min {n0, n0 + τ, n0 + σ} and satisfies (1)

for n ≥ n∗. We consider only such solution which are nontrivial for all large n. A solution {x(n)} of (1) is said to

be nonoscillatory if the terms x(n) of the sequence are eventually positive or eventually negative. Otherwise it is called

oscillatory. In the last few decades there has been an increasing interest in the study of qualitative properties of solutions of

neutral difference equations, in particular second order difference equations; see, for example [4, 7–10] and the references cited

therein. For the general background of difference equations one can refer to [1, 2]. In [6], we derived sufficient conditions for

oscillation of all solutions of the equation (1) where p(n) ≤ 0. Our aim in this paper is to derive sufficient conditions under

which every solution of (1) is either oscillatory or tends to zero when τ ≤ 0 and to derive sufficient condition under which

every bounded solutions (1) is oscillatory when τ ≥ 0. Our established results are discrete analogues of some well-known

results due to [5]. In the sequel, for our convenience, when we write a fractional inequality without mentioning its domain

of validity we assume that it holds for all sufficiently large values of n. To prove our main results we start with the following

lemmas.

Lemma 1.1 ([3]). Assume that τ ≤ 0. If {x(n)} is eventually positive solution of (1) such that lim sup
n→∞

x(n) > 0, then

z(n) > 0, eventually, where z(n) is defined by (2).

Lemma 1.2. Assuem that τ ≥ 0. Let {x(n)} be a bounded and eventually positive solution of (1) and {z(n)} be its associated

sequence defined by (2). Then z(n) > 0 eventually.

Proof. From (1) and (2), we have

∆(r(n)∆z(n)) ≤ 0, (3)

which implies that ∆z(n) > 0 or ∆z(n) < 0. In either case we have z(n) > 0 or z(n) < 0 eventually. If z(n) < 0 then

x(n) < p(n)x(n+ τ) ≤ p1x(n+ τ) and have x(n+ kτ) >

(
1

p1

)k
x(n).

This implies that x(n)→ +∞ as n→∞, which contradicts our assumption that {x(n)} is bounded. We use the following

notations for our convenience.

y(n) = −v(n) = r(n)∆z(n) and δ(n) =

∞∑
s=n

1

r(s)
.

2. Main Results

In this section we establish sufficient conditions for oscillation of solution to (1).

Theorem 2.1. Let n1 be large enough. Suppose that there exist two integers α and β such that α ≤ σ ≤ β, τ ≤ 0 and

q(n) ≥ q(n+ τ), eventually. If the first order neutral difference inequalities

∆(y(n)− p0y(n+ τ)) + q(n)(R(n+ α)−R(n1))y(n+ α) ≤ 0 and (4)

∆(w(n)− p0w(n+ τ))− q(n)δ(n+ β)w(n+ β) ≥ 0 (5)

has no positive solutions, then every solutions of (1) is either oscillatory or tends to zero.
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Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive solution of

(1) such that lim sup
n→∞

x(n) > 0. Then by Lemma 1.1, z(n) > 0, eventually where {z(n)} is defined by (2). From (1) and

(2), we have

∆ (r(n)∆z(n))− p0∆ (r(n+ τ)∆z(n+ τ)) + q(n)x(n+ σ)− p0q(n+ τ)x(n+ τ + σ) = 0

∆ (r(n)∆z(n))− p0∆ (r(n+ τ)∆z(n+ τ)) + q(n) (x(n+ τ)− p0x(n+ τ + σ)) ≤ 0 or

∆ (r(n)∆z(n))− p0∆ (r(n+ τ)∆z(n+ τ)) + q(n)z(n+ σ) ≤ 0 (6)

Equation (1) yields that, for some n1 large enough and for all n ≥ n1, either

∆z(n) > 0, ∆ (r(n)∆z(n)) < 0 or (7)

∆z(n) < 0, ∆ (r(n)∆z(n)) < 0. (8)

Assume that (7) holds. Inequality (6) and the fact that α ≤ σ yields that

∆ (r(n)∆z(n))− p0∆ (r(n+ τ)∆z(n+ τ)) + q(n)z(n+ α) ≤ 0. (9)

If follows from (7) that

z(n) ≥
n−1∑
s=n1

r(s)∆z(s)

r(s)
≥ r(n)∆z(n)

n−1∑
s=n1

1

r(s)
= y(n)(R(n)−R(n1)). (10)

Using (10) in (9), we see that {y(n)} is an eventually positive solution of the inequality (4), which contradiction to our

assumption that (4) has no positive solutions. Consider now the second case. It follows from (8) that

∆z(s) ≤ r(n)∆z(n)

r(s)
for all s ≥ n. (11)

Summing from n to l − 1 we have z(l) ≤ z(n) + r(n)∆z(n)
l−1∑
s−n

1
r(s)

. Taking limit l →∞, we get z(n) + r(n)∆z(n)δ(n) ≥ 0

or

z(n) ≥ −r(n)∆z(n)δ(n). (12)

Using (12) in (6) and the fact that σ ≤ β, we have

∆(r(n)∆z(n))− p0∆(r(n+ τ)∆z(n+ τ) + q(n)z(n+ β) ≤ 0. (13)

Then, y(n) < 0 and by virtue of (12) and (13), we have

∆(r(n)y(n)− p0y(n+ τ)− q(n)y(n+ β) ≤ 0 or

∆(u(n)− p0u(n+ τ))− q(n)u(n+ β) ≥ 0, (14)

which shows that {u(n)} is a positive solution of the inequality (5) which, according to our assumption, has no positive

solutions. This is a contradiction and this completes the proof.
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Theorem 2.2. Assume that τ ≥ 0 and
∞∑

n=n0

q(n) < ∞, q(n) ≥ q(n + τ), eventually and let n1 be large enough. Suppose

that there exist integers α and β such that α ≤ σ ≤ β. If the first order difference inequalities

∆g(n) + q(n)(R(n+ α)−R(n1))g(n+ α) ≤ 0 and (15)

∆h(n)− 1

1− p0
q(n)δ(n+ β)h(n+ β − τ) ≥ 0 (16)

have no positive solutions, then every bounded solution of (1) is oscillatory.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is a bounded and eventually positive

solution of (1). Then by Lemma 1.2 the sequence {z(n)} defined by (2) is eventually positive. As in the proof Theorem 2.1,

one arrive at the inequality (6). Equation (1) yields that for some n1 sufficiently large enough and for all n ≥ n1 either

∆z(n) > 0, ∆(r(n)∆z(n)) < 0, or (17)

∆z(n) < 0, ∆(r(n)∆z(n)) < 0. (18)

Assume first that (17) holds. By repeating the procedure as we followed in Theorem 2.1, we arrive at the inequality (4). Set

v(n) = y(n)− p0y(n+ τ). (19)

We can assert that {v(n)} is an eventually positive sequence. Otherwise, v(n) < 0 implies y(n)→ +∞ as n→∞ which is

a contradiction to the fact that {y(n)} is eventually positive and decreasing. Also,

v(n) ≤ y(n). (20)

Using (20) in (4), we see that {v(n)} is an eventually positive solution of (15), which contradicts our assumption. Consider

the second case. If follows from (18) as we have shown in Theorem 2.1, {u(n)} is positive increasing and satisfies (5). That

is ∆(u(n)− p0u(n+ τ))− q(n)δ(n+ β)u(n+ β) ≥ 0. Set

w(n) = u(n)− p0u(n+ τ). (21)

We claim that w(n) > 0, eventually. Otherwise w(n) < 0, which implies that u(n) → +∞ as n → ∞. On the other hand,

form equation (1), we have

∆u(n) = q(n)x(n+ σ). (22)

Since {x(n)} is bounded, then there exist M > 0 such that x(n) ≤ M for all sufficiently large values of n. Using this and

the assumption that
∞∑

n=n0

q(n) <∞, we have from the inequality (22) that lim
n→∞

u(n) <∞, which leads to a contradiction.

Using the fact that τ ≥ 0, we obtain

w(n) ≤ (1− p0)u(n+ τ). (23)

Substituting (23) in (21), we see that {w(n)} is a positive solution of (16), which leads to a contradiction. This completes

the proof.

Combining Theorem 2.2 with the oscillation results presented in Gyori et al. [2], we obtain the following result.
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Corollary 2.3. Assume that τ ≥ 0,
∞∑

n=n0

q(n) <∞. Suppose that there exist two integers α and β such that q(n) ≥ q(n+τ),

α ≤ 0, β > τ + 1 and α ≤ σ ≤ β. If for all sufficiently large n ≥ n0,

lim inf
n→∞

n−1∑
s=n+α

q(s) (R(s+ α)−R(n1)) >

(
α− 1

α

)α−1

and (24)

lim inf
n→∞

n+β−τ−1∑
s=n+1

q(s)δ(s+ β) > (1− p0)

(
β − τ − 1

β − τ

)β−τ
, (25)

then every bounded solution of (1) is oscillatory.

Proof. By [2], assumption (24) ensures that the delay difference inequality (15) has no positive solution. On the other

hand, by [2] condition (25) guarantees that the advanced difference inequality (16) has no positive solution. Application of

Theorem 2.2 yields the result.

Theorem 2.4. Assume that τ ≤ 0, q(n) ≥ q(n + τ) and let n1 be an integer large enough. Suppose that there exist two

integers α and β such that α ≤ σ ≤ β. If the first order difference inequalities

∆g(n) +
1

1− p0
q(n) (R(n+ α)−R(n1)) g(n+ α− τ) ≤ 0 and (26)

∆h(n)− q(n)δ(n+ β)h(n+ β) ≥ 0 (27)

have no positive solutions, then every solution of (1) is either oscillatory or tends to zero.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive solution of

(1) such that lim sup
n→∞

x(n) > 0. Then by Lemma 1.1, the sequence {z(n)} defined by (2) is eventually positive. As in the

proof of Theorem 2.1, we arrive at the inequality (6). Equation (1) yields that, for some n1 sufficiently large enough and for

all n ≥ n1 either

∆z(n) > 0, ∆ (r(n)∆z(n)) < 0, or (28)

∆z(n) < 0, ∆ (r(n)∆z(n)) < 0. (29)

Assume that (28) holds. As we proved in the Theorem 2.1, we deduce the inequality (4). Set

v(n) = y(n)− p0y(n+ τ). (30)

We claim that v(n) > 0, eventually. For, {y(n)} is eventually positive and decreasing sequence. Then lim
n→∞

y(n) = L ≥ 0.

From this and (30), we have lim
n→∞

v(n) = (1− p0)L ≥ 0, which implies that {v(n)} decreases to a limit and hence {v(n)} is

an eventually positive sequence. Also, from (30), we have

v(n) ≤ (1− p0)y(n+ τ). (31)

Using (31) in (4), we see that the inequality (26) has a positive solution {v(n)}, which contradicts our assumption. Consider

now the second case. It follows from (29) as we have shown in Theorem 2.1, {u(n)} is a positive increasing and satisfies (5).

That is,

∆ (u(n)− p0u(n+ τ))− q(n)δ(n+ β)u(n+ β) ≥ 0. (32)
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Set

w(n) = u(n)− p0u(n+ τ). (33)

We can assert that {w(n)} is an eventually positive sequence. Otherwise, w(n) < 0 implies that u(n) < p0u(n + τ) and

hence u(n)→ 0 as n→∞, which is a contradiction to the fact that {u(n)} is positive and increasing sequence. From (33),

we have w(n) ≤ u(n). Using the above inequality in (32), we have ∆w(n)− q(n)δ(n+ β)w(n+ β) ≥ 0. This shows that the

equation (27) has a positive solution {w(n)} which contradictions our assumption. The proof is complete.

Combining Theorem 2.4 with results in Gyori et al. [2], we obtain the following oscillation results.

Corollary 2.5. Assume that τ ≤ 0, q(n) ≥ q(n+τ) and let n1 be an integer large enough. Suppose that there exists integers

α and β such that α ≤ σ ≤ β, α ≤ τ and β > 1. If, for all sufficiently large n1 ≥ n0

lim inf
n→∞

n−1∑
s=n−τ+α

q(s) (R(s+ α)−R(n1)) > (1− p0)

(
τ − α

τ − α+ 1

)τ−α+1

, and (34)

lim inf
n→∞

n+β−1∑
s=n+1

q(s)δ(s+ β) >

(
β − 1

β

)β
, (35)

then every solution of (1) is either oscillatory or tends to zero.

Proof. By [2] condition (34) ensures that the difference inequality (26) has no positive solution. On the otherhand, it

follows from [2] that condition (35) guarantees that the difference inequality (27) has no positive solutions. Application of

Theorem 2.4 completes the proof.
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