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Abstract: The harmonic index H(G) of a graph G is defined as the sum of the weights
2

d(u) + d(v)
of all edges uv of G, where d(u)

denotes the degree of the vertex u in G. In this work, we obtain harmonic index of bridge and chain graphs. Using these

results, harmonic index of chemical graphs are computed.
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1. Introduction

For a graph G, the harmonic index is defined as H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
where d(u) is the degree of the vertex u in G.

As far as we know, this index first appeared in [9]. In 2012, Zhong reintroduced this index as harmonic index and found the

minimum and maximum values of the harmonic index for simple connected graphs and trees [14]. To know more about this

index refer [1–3, 6–8, 10, 12, 14–16]. Some topological indices of bridge and chain graphs have been computed, previously

[4, 11, 13]. In this work, we obtain harmonic index of bridge and chain graphs. Using these results, harmonic index of

chemical graphs are computed.

In this paper, we consider connected finite graphs without loops or multiple edges. For a graph G = (V (G), E(G)), the

degree of a vertex v of G is the number of edges adjacent to v and it is denoted by dG(v) or simply d(v). The set of

neighbours of v is denoted by NG(v). For other notations in graph theory, may be consulted[5].

1.1. Preliminaries

We can recall the definitions of bridge and chain graphs.

Definition 1.1. Let {Gi}ki=1 be a set of finite pairwise disjoint graphs with distinct vertices ui, vi ∈ V (Gi) such that ui and

vi are not adjacent in Gi. The bridge graph B1 = B1(G1, G2, ..., Gk;u1, v1, u2, v2, u3, v3, ..., uk, vk) of {Gi}ki=1 with respect

to the vertices {ui, vi}ki=1 is the graph obtained from the graphs G1, G2, ..., Gk by connecting the vertices vi and ui+1 by an

edge for all i = 1, 2, ..., k − 1 as shown in the Figure 1.

∗ E-mail: jermaths@gmail.com
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v1 u2 v2 u3 v3 uk vku1

. . .

G1 G2 G3 Gk

Figure 1. The bridge graph B1 = B1(G1, G2, ..., Gk;u1, v1, u2, v2, ..., uk, vk)

Definition 1.2. Let {Gi}ki=1 be a set of finite pairwise disjoint graphs with distinct vertices ui, vi ∈ V (Gi) such that ui and

vi are adjacent in Gi. The bridge graph B2 = B2(G1, G2, ..., Gk;u1, v1, u2, v2, u3, v3, ..., uk, vk) of {Gi}ki=1 with respect to the

vertices {ui, vi}ki=1 is the graph obtained from the graphs G1, G2, ..., Gk by connecting the vertices vi and ui+1 by an edge for

all i = 1, 2, ..., k − 1 as shown in the Figure 2.

v1 u2 v2 u3 v3 uk vku1

. . .

G1 G2 G3 Gk

Figure 2. The bridge graph B2 = B2(G1, G2, ..., Gk;u1, v1, u2, v2, ..., uk, vk)

Definition 1.3. Let {Gi}ki=1 be a set of finite pairwise disjoint graphs with vertices vi ∈ V (Gi). The bridge graph B3 =

B3(G1, G2, ..., Gk; v1, v2, v3, ..., vk) of {Gi}ki=1 with respect to the vertices {vi}ki=1 is the graph obtained from the graphs

G1, G2, ..., Gk by connecting the vertices vi and vi+1 by an edge for all i = 1, 2, ..., k − 1 as shown in the Figure 3.

. . .

G1 G2 G3 GkG4

v1 v2 v3 v4 vk

Figure 3. B3 = B3(G1, G2, ..., Gk; v1, v2, v3, ..., vk)

Definition 1.4. Let {Gi}ki=1 be a set of finite pairwise disjoint graphs with distinct vertices ui, vi ∈ V (Gi) such that ui and

vi are not adjacent in Gi. The chain graph C1 = C1(G1, G2, ..., Gk;u1, v1, u2, v2, u3, v3, ..., uk, vk) of {Gi}ki=1 with respect

to the vertices {ui, vi}ki=1 is the graph obtained from the graphs G1, G2, ..., Gk by identifying the vertices vi and ui+1 for all

i = 1, 2, ..., k − 1 as shown in the Figure 4.

Definition 1.5. Let {Gi}ki=1 be a set of finite pairwise disjoint graphs with distinct vertices ui, vi ∈ V (Gi) such that ui

and vi are adjacent in Gi. The chain graph C2 = C2(G1, G2, ..., Gk;u1, v1, u2, v2, u3, v3, ..., uk, vk) of {Gi}ki=1 with respect

to the vertices {ui, vi}ki=1 is the graph obtained from the graphs G1, G2, ..., Gk by identifying the vertices vi and ui+1 for all

i = 1, 2, ..., k − 1 as shown in the Figure 5.

2. Harmonic Index of Bridge Graphs

In this section, we compute harmonic index of three bridge graphs, namely, B1, B2 and B3.
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G1 G2 G3 GkG4

. . .

Figure 4. The chain graph C1 = C1(G1, G2, ..., Gk;u1, v1, u2, v2, ..., uk, vk)

G1 G2 G3 GkG4

. . .

Figure 5. The chain graph C2 = C2(G1, G2, ..., Gk;u1, v1, u2, v2, ..., uk, vk)

Theorem 2.1. The harmonic index of the bridge graph B1, k ≥ 2 is given by

H(B1) =

k∑
i=1

H(Gi)− 2

{ k−1∑
i=1

∑
w∈N(vi)

1

[d(vi) + d(w)][d(vi) + d(w) + 1]

+

k∑
i=2

∑
w∈N(ui)

1

[d(ui) + d(w)][d(ui) + d(w) + 1]
−

k−1∑
i=1

1

d(vi) + d(ui+1) + 2

}

Proof. By the definition of harmonic index, H(B1) is equal to the sum of
2

dB1(x) + dB1(y)
, where the summation is taken

over all edges xy ∈ E(B1). From the definition of the bridge graph B1, E(B1) = E(G1)∪E(G2)∪ ...∪E(Gk)∪{viui+1; 1 ≤

i ≤ k − 1}. In order to compute H(B1), we partition our sum into four sums as follows.

The first sum S1 is taken over all edges xy ∈ E(G1).

S1 = H(G1)−
∑

w∈N(v1)

2

d(v1) + d(w)
+

∑
w∈N(v1)

2

d(v1) + d(w) + 1

= H(G1)− 2
∑

w∈N(v1)

1

[d(v1) + d(w)][d(v1) + d(w) + 1]

The second sum S2 is taken over all edges xy ∈ E(Gk).

S2 = H(Gk)−
∑

w∈N(uk)

2

d(uk) + d(w)
+

∑
w∈N(uk)

2

d(uk) + d(w) + 1

= H(Gk)− 2
∑

w∈N(uk)

1

[d(uk) + d(w)][d(uk) + d(w) + 1]

The third sum S3 is taken over all edges xy ∈ E(Gi) for all i = 2, 3, ..., k − 1.

S3 =

k−1∑
i=2

H(Gi)−
k−1∑
i=2

∑
w∈N(ui)

2

[d(ui) + d(w)]
−

k−1∑
i=2

∑
w∈N(vi)

2

[d(vi) + d(w)]

+

k−1∑
i=2

∑
w∈N(ui)

2

[d(ui) + d(w) + 1]
+

k−1∑
i=2

∑
w∈N(vi)

2

[d(vi) + d(w) + 1]

=

k−1∑
i=2

H(Gi)− 2

k−1∑
i=2

{ ∑
w∈N(ui)

1

[d(ui) + d(w)][d(ui) + d(w) + 1]

+
∑

w∈N(vi)

1

[d(vi) + d(w)][d(vi) + d(w) + 1]

}

The last sum S4 is taken over all edges viui+1 for all i = 1, 2, ..., k − 1.

S4 =

k−1∑
i=1

2

d(vi) + d(ui+1) + 2

Now H(B1) is obtained by adding S1, S2, S3, S4.
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Suppose that u and v are two vertices of a graph G and let Gi = G, vi = v and ui = u for all i = 1, 2, ..., k.

Corollary 2.2. If u and v are not adjacent in G, then

H(B1) = kH(G)− 2(k − 1)

{ ∑
w∈NG(u)

1

[d(u) + d(w)][d(u) + d(w) + 1]

+
∑

w∈NG(v)

1

[d(v) + d(w)][d(v) + d(w) + 1]
− 1

d(u) + d(v) + 2

}

Theorem 2.3. The harmonic index of the bridge graph B2, k ≥ 3 is given by

H(B2) =

k∑
i=1

H(Gi)− 2

{ k−1∑
i=1

∑
w∈N(vi)−{ui}

1

[d(vi) + d(w)][d(vi) + d(w) + 1]

+

k∑
i=2

∑
w∈N(ui)−{vi}

1

[d(ui) + d(w)][d(ui) + d(w) + 1]

+
∑
i=1,k

1

[d(ui) + d(vi)][d(ui) + d(vi) + 1]

+

k−1∑
i=2

2

[d(ui) + d(vi)][d(ui) + d(vi) + 2]
−

k−1∑
i=1

1

d(vi) + d(ui+1) + 2

}

Proof. By the definition of harmonic index, H(B2) is equal to the sum of
2

dB2(x) + dB2(y)
, where the summation is taken

over all edges xy ∈ E(B2). From the definition of the bridge graph B2, E(B2) = E(G1)∪E(G2)∪ ...∪E(Gk)∪{viui+1; 1 ≤

i ≤ k − 1}. In order to compute H(B2), we partition our sum into four sums as follows.

The first sum S1 is taken over all edges xy ∈ E(G1).

S1 = H(G1)− 2
∑

w∈N(v1)

1

[d(v1) + d(w)][d(v1) + d(w) + 1]

The second sum S2 is taken over all edges xy ∈ E(Gk).

S2 = H(Gk)− 2
∑

w∈N(uk)

1

[d(uk) + d(w)][d(uk) + d(w) + 1]

The third sum S3 is taken over all edges xy ∈ E(Gi) for all i = 2, 3, ..., k − 1.

S3 =

k−1∑
i=2

H(Gi)− 2

k−1∑
i=2

{ ∑
w∈N(ui)−{vi}

1

[d(ui) + d(w)][d(ui) + d(w) + 1]

+
∑

w∈N(vi)−{ui}

1

[d(vi) + d(w)][d(vi) + d(w) + 1]

+
2

[d(ui) + d(vi)][d(ui) + d(vi) + 2]

}

The last sum S4 is taken over all edges viui+1 for all i = 1, 2, ..., k − 1.

S4 =

k−1∑
i=1

2

d(vi) + d(ui+1) + 2

Now H(B2) is obtained by adding S1, S2, S3, S4.

Suppose that u and v are two vertices of a graph G and let Gi = G, vi = v and ui = u for all i = 1, 2, ..., k.
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Corollary 2.4. If u and v are adjacent in G, then

H(B2) = kH(G)− 2(k − 1)

{ ∑
w∈N(u)−{v}

1

[d(u) + d(w)][d(u) + d(w) + 1]

+
∑

w∈N(v)−{u}

1

[d(v) + d(w)][d(v) + d(w) + 1]
− 1

d(u) + d(v) + 2

}

− 4

d(u) + d(v)

[
1

d(u) + d(v) + 1
+

k − 2

d(u) + d(v) + 2

]
Theorem 2.5. The harmonic index of the bridge graph B3, k ≥ 3 is given by

H(B3) =

k∑
i=1

H(Gi)− 2

{ ∑
i=1,k

∑
w∈N(vi)

1

[d(vi) + d(w)][d(vi) + d(w) + 1]

+

k−1∑
i=2

∑
w∈N(vi)

2

[d(vi) + d(w)][d(vi) + d(w) + 2]

−
∑

i=1,k−1

1

[d(vi) + d(vi+1) + 3]
−

k−2∑
i=2

1

[d(vi) + d(vi+1) + 4]

}

Proof. By the definition of harmonic index, H(B3) is equal to the sum of
2

dB3(x) + dB3(y)
, where the summation is taken

over all edges xy ∈ E(B3). From the definition of the bridge graph B3, E(B3) = E(G1)∪E(G2)∪ ...∪E(Gk)∪ {vivi+1; 1 ≤

i ≤ k − 1}. In order to compute H(B3), we partition our sum into four sums as follows.

The first sum S1 is taken over all edges xy ∈ E(G1).

S1 = H(G1)− 2
∑

w∈N(v1)

1

[d(v1) + d(w)][d(v1) + d(w) + 1]

The second sum S2 is taken over all edges xy ∈ E(Gk).

S2 = H(Gk)− 2
∑

w∈N(vk)

1

[d(vk) + d(w)][d(vk) + d(w) + 1]

The third sum S3 is taken over all edges xy ∈ E(Gi) for all i = 2, 3, ..., k − 1.

S3 =

k−1∑
i=2

H(Gi)− 2

k−1∑
i=2

∑
w∈N(vi)

2

[d(vi) + d(w)][d(vi) + d(w) + 2]

}

The last sum S4 is taken over all edges vivi+1 for all i = 1, 2, ..., k − 1.

S4 =
2

d(v1) + d(v2) + 3
+

k−2∑
i=2

2

d(vi) + d(vi+1) + 4
+

2

d(vk−1) + d(vk) + 3

=
∑

i=1,k−1

2

d(vi) + d(vi+1) + 3
+

k−2∑
i=2

2

d(vi) + d(vi+1) + 4

Now H(B3) is obtained by adding S1, S2, S3, S4.

Suppose that v is a vertex of a graph G and let Gi = G, vi = v for all i = 1, 2, ..., k.

Corollary 2.6. If v is a vertex of a graph G, then

H(B3) = kH(G)− 4

{ ∑
w∈N(v)

1

[d(v) + d(w)][d(v) + d(w) + 1]

+ (k − 2)
∑

w∈N(v)

1

[d(v) + d(w)][d(v) + d(w) + 2]
− 1

2d(v) + 3

− (k − 3)
1

4[d(v) + 2]

}
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Note that the formulae given in Theorems 2.3 and 2.5 do not hold for the case k = 2. Since B1(G1, G2;u1, v1, u2, v2) ≡

B2(G1, G2;u1, v1, u2, v2) ≡ B3(G1, G2; v1, v2), we can apply Theorem 2.1 to compute the harmonic index of bridge graphs

consisting of two components.

3. Harmonic Index of Chain Graphs

In this section, we compute harmonic index of two chain graphs, namely, C1 and C2.

Theorem 3.1. The harmonic index of the chain graph C1, k ≥ 2 is given by

H(C1) =

k∑
i=1

H(Gi)− 2

{ k−1∑
i=1

∑
w∈N(vi)

d(ui+1)

[d(vi) + d(w)][d(vi) + d(ui+1) + d(w)]

+

k∑
i=2

∑
w∈N(ui)

d(vi−1)

[d(ui) + d(w)][d(ui) + d(vi−1) + d(w)]

}

Proof. By the definition of harmonic index, H(C1) is equal to the sum of
2

dC1(x) + dC1(y)
, where the summation is taken

over all edges xy ∈ E(C1). From the definition of the bridge graph C1, E(C1) = E(G1) ∪ E(G2) ∪ ... ∪ E(Gk). In order to

compute H(C1), we partition our sum into three sums as follows.

The first sum S1 is taken over all edges xy ∈ E(G1).

S1 = H(G1)− 2
∑

w∈N(v1)

d(u2)

[d(v1) + d(w)][d(v1) + d(u2) + d(w)]

The second sum S2 is taken over all edges xy ∈ E(Gk).

S2 = H(Gk)− 2
∑

w∈N(uk)

d(vk−1)

[d(uk) + d(w)][d(uk) + d(vk−1) + d(w)]

The third sum S3 is taken over all edges xy ∈ E(Gi) for all i = 2, 3, ..., k − 1.

S3 =

k−1∑
i=2

H(Gi)− 2

k−1∑
i=2

{ ∑
w∈N(ui)

d(vi−1)

[d(ui) + d(w)][d(ui) + d(vi−1) + d(w)]

+
∑

w∈N(vi)

d(ui+1)

[d(vi) + d(w)][d(vi) + d(ui+1) + d(w)]

}

Now H(C1) is obtained by adding S1, S2, S3.

Suppose that u and v are two vertices of a graph G and let Gi = G, vi = v and ui = u for all i = 1, 2, ..., k.

Corollary 3.2. If u and v are not adjacent in G, then

H(C1) = kH(G)− 2(k − 1)

{ ∑
w∈N(u)

d(v)

[d(u) + d(w)][d(u) + d(v) + d(w)]

+
∑

w∈N(v)

d(u)

[d(v) + d(w)][d(v) + d(u) + d(w)]

}
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Theorem 3.3. The harmonic index of the bridge graph C2, k ≥ 3 is given by

H(C2) =

k∑
i=1

H(Gi)− 2

{ k−1∑
i=1

∑
w∈N(vi)−{ui}

d(ui+1)

[d(vi) + d(w)][d(vi) + d(ui+1) + d(w)]

+

k∑
i=2

∑
w∈N(ui)−{vi}

d(vi−1)

[d(ui) + d(w)][d(ui) + d(vi−1) + d(w)]

+

k−1∑
i=2

d(vi−1) + d(ui+1)

[d(ui) + d(vi)][d(ui) + d(vi−1) + d(vi) + d(ui+1)]

+
d(u2)

[d(v1) + d(u1)][d(v1) + d(u2) + d(u1)]

+
d(vk−1)

[d(uk) + d(vk)][d(uk) + d(vk−1) + d(vk)]

}

Proof. By the definition of harmonic index, H(C2) is equal to the sum of
2

dC2(x) + dC2(y)
, where the summation is taken

over all edges xy ∈ E(C2). From the definition of the bridge graph C2, E(C2) = E(G1) ∪ E(G2) ∪ ... ∪ E(Gk). In order to

compute H(C2), we partition our sum into three sums as follows.

The first sum S1 is taken over all edges xy ∈ E(G1).

S1 = H(G1)− 2
∑

w∈N(v1)

d(u2)

[d(v1) + d(w)][d(v1) + d(u2) + d(w)]

The second sum S2 is taken over all edges xy ∈ E(Gk).

S2 = H(Gk)− 2
∑

w∈N(uk)

d(vk−1)

[d(uk) + d(w)][d(uk) + d(vk−1) + d(w)]

The third sum S3 is taken over all edges xy ∈ E(Gi) for all i = 2, 3, ..., k − 1.

S3 =

k−1∑
i=2

H(Gi)−
k−1∑
i=2

∑
w∈N(ui)−{vi}

2

[d(ui) + d(w)]
−

k−1∑
i=2

∑
w∈N(vi)−{ui}

2

[d(vi) + d(w)]

−
k−1∑
i=2

2

d(ui) + d(vi)
+

k−1∑
i=2

∑
w∈N(ui)−{vi}

2

[d(ui) + d(vi−1) + d(w)]

+

k−1∑
i=2

∑
w∈N(vi)−{ui}

2

[d(vi) + d(ui+1) + d(w)]
+

k−1∑
i=2

2

[d(ui) + d(vi−1) + d(vi) + d(ui+1)]

=

k−1∑
i=2

H(Gi)− 2

k−1∑
i=2

{ ∑
w∈N(ui)−{vi}

d(vi−1)

[d(ui) + d(w)][d(ui) + d(vi−1) + d(w)]

+
∑

w∈N(vi)−{ui}

d(ui+1)

[d(vi) + d(w)][d(vi) + d(ui+1) + d(w)]

+

k−1∑
i=2

d(vi−1) + d(ui+1)

[d(ui) + d(vi)][d(ui) + d(vi−1) + d(vi) + d(ui+1)]

}

Now H(C2) is obtained by adding S1, S2, S3.

Suppose that u and v are two vertices of a graph G and let Gi = G, vi = v and ui = u for all i = 1, 2, ..., k.

Corollary 3.4. If u and v are adjacent in G, then

H(C2) = kH(G)− 2(k − 1)

{ ∑
w∈N(u)−{v}

d(v)

[d(u) + d(w)][d(u) + d(v) + d(w)]

+
∑

w∈N(v)−{u}

d(u)

[d(v) + d(w)][d(v) + d(u) + d(w)]

}
− 2

d(u) + d(v){
(k − 2)

2
+

d(u)

2d(u) + d(v)
+

d(v)

d(u) + 2d(v)

}
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Note that the formula given in Theorem 3.3 do not hold for the case k = 2. Since C1(G1, G2;u1, v1, u2, v2) ≡

C2(G1, G2;u1, v1, u2, v2), we can apply Theorem 3.1 to compute the harmonic index of chain graphs consisting of two

components.

4. Applications

In this section, we consider some simple molecular graphs and determine their harmonic index.

Two vertices u and v of a hexagon H are said to be in ortho-position if they are adjacent in H. If two vertices u and v are

at distance two, they are said to be in meta-position and if two vertices u and v are at distance three, they are said to be

in para-position. Examples of vertices in the above three types of positions are shown in Figure 6.

u

v

u u

v

v

Figure 6. Ortho-, meta- and para-positions of vertices in hexagon

An internal hexagon H in a polyphenyl chain is said to be an ortho-hexagon, mete-hexagon and para-hexagon, respectively

if two vertices of H incident with two edges which connect other two hexagons are in ortho-, meta- and para-position. A

polyphenyl chain of h hexagons is ortho− PPCh, denoted by Oh, if all its internal hexagons are ortho-hexagons. Similarly

we define meta−PPCh (denoted by Mh) and para−PPCh (denoted by Lh), (see Figure 7). The polyphenyl chains Mh and

. . .

. . .

. . .

Oh

Lh

Mh

hh-11 2 3

1

1

2

2

3

3

h-1

h-1

h

h

Figure 7. Ortho-, para- and meta-polyphenyl chanins with h hexagons

Lh can be viewed as the bridge graphs B1(C6, C6, ..., C6;u, v, u, v, ..., u, v) (h times) where C6 is the cycle on six vertices and

u and v are the vertices shown in Figure 6. Since H(C6) = 3, using Corollary 2.2 we obtain H(Mh) = H(Lh) =
44h + 1

15
.

The polyphenyl chains Oh can be viewed as the bridge graph B3(C6, C6, ..., C6; v, v, ..., v)(h times). Using Corollary 2.6,

H(Oh) =
1225h + 37

420
.

Consider the square comb lattice graph Cq(N) with open ends, where N = n2 is the number of vertices (see Figure 8).

This graph can be viewed as the bridge graph B3(Pn, Pn, ..., Pn; v, v, ..., v)(n times), where Pn is the path on n vertices

and v is its first vertex. Since H(Pn) = n
2
− 1

6
, by Corollary 2.6 H(Cq(N)) = (5n−1)n

10
for n ≥ 3 and H(Cq(N)) = 11

6
for n = 2.

Consider the spiro-chain of the cycle Cn for arbitrary n ≥ 3. The spiro-chains of C3, C4, C6 are shown in Figure 9.
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. . .

. . .

. . .

1

1 2 3 4 n-2 n-1 n

2

3

4

5

n

n-1

n-2

Figure 8. The square comb lattice graph with N = n2 vertices

We denote the spiro-chain containing d times the component Cn by Sd(Cn). Sd(Cn) can be viewed as the chain graph

. . .1 2 3 d-1 d

1

1

2

2

2

3

3

d-1

d-1

d

d
. . .

. . .

Figure 9. The spiro-chains of C3, C4 and C6

C1(Cn, Cn, ..., Cn;u, v, u, v, ..., u, v) (d times). Since H(Cn) = n
2

, by Corollary 3.2, H(Sd(Cn)) = (3n−4)d+4
6

;n ≥ 4.

Sd(C3) can be viewed as the chain graph C2(C3, C3, ..., C3;u, v, u, v, ..., u, v) (d times). Since H(C3) = 3
2
, by Corollary

3.4, H(Sd(C3)) = 11d+6
12

.
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