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1. Introduction

Let A be the class of functions f(z) analytic in the unit disk U = {z : |z| < 1} and let S denote a subclass of A consisting

of functions univalent in U and normalized by

f(z) = z +

∞∑
n=2

anz
n (1)

We denote the class of convex functions of order α by K(α), i.e.,

K(α) =

{
f ∈ S : Re

(
1 +

zf ′′

f ′

)
> α, z ∈ U

}

Definition 1.1 (Hadamard product or convolution). Given two functions f(z) and g(z), where f(z) is defined as in (1)

and g(z) is given by

g(z) = z +

∞∑
n=2

bnz
n

The Hadamard product (or convulation) f ∗ g of f(z) and g(z) is defined by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n = (g ∗ f)(z) (2)

Definition 1.2. Let f(z) and g(z) be analytic in the unit disk U . Then f(z) is said to be subordinate to g(z) in U and we

write f(z) ≺ g(z), z ∈ U .
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if there exists a Schwarz function ω(z), analytic in U with ω(0) = 0, |ω(z)| < 1 such that

f(z) = g(ω(z)), z ∈ U (3)

In particular, if the function g(z) in univalent in U , then f(z) is surbodinate to g(z) if

f(0) = g(0), f(U) ⊆ g(U) (4)

Definition 1.3. A sequence {Cn}∞n=1 of complex numbers is said to be a surbodinating factor sequence of f(z) if whenever

f(z) of the form (1) is analytic, univalent and convex in U , the surbodination is given by
∞∑
n=1

anCnz
n ≺ f(z) z ∈ U, a1 = 1.

We have the following theorem

Theorem 1.4 ([1]). The sequence {ck}∞k=1 is a surbodinating factor sequence if and only if

Re

{
1 + 2

∞∑
k=1

ckz
k

}
> 0 (z ∈ U) (5)

Let

Sn(α) =

{
f ∈ A : Re

( (Dn+1f(z)

Dnf(z)

)
> α, z ∈ U

}
(6)

Here Dnf(z) is the Salagean derivatives, n = 0, 1, 2, . . . . Such that

Dof(z) = f(z)

D1f(z) = Df(z) = zf ′(z)

Dnf(z) = D(Dn−1f(z)) = z[Dn−1f(z)]′

therefore,

Dnf(z) = z +

∞∑
k=2

knakz
k

The class Sn(α) was studied by Salagean [2] and Kadioglu [3]. In [3] the following result was established

Theorem 1.5 ([3]). f(z) ∈ Sn(α) if and only if

∞∑
k=2

kn(k − α)|ak| ≤ 1− α (7)

where n ∈ N, 0 ≤ α < 1,

It is natural to consider the class S̃n(α) such that

S̃n(α) =

{
f ∈ A :

∞∑
k=2

kn(k − α)|ak| ≤ 1− α

}
(8)

n = N ∪ [0], 0 ≤ α < 1,

Remark 1.6 ([4]). If n = 0 and α=0 in S̃n(α) we have the class So(0) =
{
f ∈ A :

∑∞
k=2 k|ak| ≤ 1

}
which is the subclass

of the class of starlike function.

Remark 1.7 ([5]). If n = 0 in S̃n(α) we have the class So(α) =
{
f ∈ A :

∑∞
k=2(k − α)|ak| ≤ 1− α

}
which is the subclass

of class of starlike function of order α.

Remark 1.8 ([4]). If n = 1 and α = 0 in S̃n(α) we have the classS1(0) =
{
f ∈ A :

∑∞
k=2 k

2|ak| ≤ 1
}

which is the subclass

of class of convex function.

Remark 1.9 ([5]). If n = 1 in S̃n(α) we have the classS1(α) =
{
f ∈ A :

∑∞
k=2 k(k − α)|ak| ≤ 1− α

}
which is the subclass

of the class of convex function of order α.
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2. Main Result

Our main result in this paper in the following theorem.

Theorem 2.1. Let f(z) ∈ S̃n(α), then

2n(2− α)

2[(1− α) + 2n(2− α)]
(f ∗ g)(z) ≺ g(z) (9)

where n ∈ N ∪ [0], 0 ≤ α < 1, g(z) is a convex function. and

Re(f(z)) > − (1− α) + 2n(2− α)]

2n(2− α)
(10)

The constant factor 2n(2−α)
2[(1−α)+2n(2−α)] cannot be replaced by a larger one

Proof. Let f(z) ∈ S̃n(α) and suppose that g(z) = z +
∞∑
k=2

bkz
k ∈ K(α) i.e. g(z) is a convex function of order α. Then by

definition,

2n(2− α)

2[(1− α) + 2n(2− α)]
(f ∗ g)(z) =

2n(2− α)

2[(1− α) + 2n(2− α])
(z +

∞∑
k=1

akbkz
k)

=

∞∑
k=1

2n(2− α)

2[(1− α) + 2n(2− α)
akbkz

k, a1 = 1 (11)

Hence, by Definition 1.3, to show subordination (9) it is enough to prove that

{
2n(2− α)

2[(1− α) + 2n(2− α)]
ak

}∞
k=1

. (12)

is a surbodinating factor sequence with a1 = 1. Therefore by Theorem 1.1 , it is sufficient to show that

Re

{
1 + 2

∞∑
k=1

2n(2− α)

2[(1− α) + 2n(2− α)]
akz

k

}
> 0, (z ∈ U) (13)

Now,

Re

{
1 + 2

∞∑
k=1

2n(2− α)

2[(1− α) + 2n(2− α)]
akz

k

}
= Re

{
1 +

2n(2− α)z

1− α+ 2n(2− α)
+

2n(2− α)z

1− α+ 2n(2− α)
×
∞∑
k=2

akz
k

}

> Re

{
1− 2n(2− α)r

1− α+ 2n(2− α)
− 1

1− α+ 2n(2− α)
×
∞∑
k=2

kn(k − α)|ak|r

}

> Re

{
1− 2n(2− α)r

1− α+ 2n(2− α)
− (1− α)r

1− α+ 2n(2− α)

}
= 1− r > 0 (14)

Since (|z| = r < 1). Therefore, we obtain

Re

{
1 + 2

∞∑
k=1

2n(2− α)

2[(1− α) + 2n(2− α)]
akz

k

}
> 0, (z ∈ U)

which is (13) that we are to established. We now show that

Re(f(z)) > −2(1− α) + 2n(2− α)

2n(2− α)
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Taking g(z) =
z

1− z which is a convex function (9) becomes

2n(2− α)

2[(1− α) + 2n(2− α)]
f(z) ∗ z

1− z ≺
z

1− z

and note that f(z) ∗ z
1−z . Since

Re

(
z

1− z

)
> −1

2
, |z| = r (15)

which implies that

Re

{
2n(2− α)

2[(1− α) + 2n(2− α)]
f(z) ∗ z

1− z

}
> −1

2
(16)

Hence, we have

Re(f(z)) > − (1− α) + 2n(2− α)

2n(2− α)

which is the (10). To show the sharpness of the constant factor
2n(2− α)

2[(1− α) + 2n(2− α)]
we consider the function:

f1(z) =
z(2n(2− α)) + (1− α)z2

2n(2− α)
(17)

Applying (10) with g(z) =
z

1− z and f(z) = f1(z) we have

z(2n(2− α)) + (1− α)z2

2[(1− α) + 2n(2− α)]
≺ z

1− z (18)

By using the fact that

|Re(z)| ≤ |z| (19)

We show that

min
z∈U

{
Re

z(2n(2− α)) + (1− α)z2

2[(1− α) + 2n(2− α)]

}
= −1

2
(20)

We have that

∣∣∣∣Rez(2n(2− α)) + (1− α)z2

2[(1− α) + 2n(2− α)]

∣∣∣∣ ≤ ∣∣∣∣z(2n(2− α)) + (1− α)z2

2[(1− α) + 2n(2− α)]

∣∣∣∣
=

∣∣∣∣z[(2n(2− α)) + (1− α)z]

2[(1− α) + 2n(2− α)]

∣∣∣∣ =
|z[(2n(2− α))− (1− α)z]|
|2[(1− α) + 2n(2− α)]|

≤ |z||2
n(2− α)− (1− α)z|

|2[(1− α) + 2n(2− α)]| ≤
|2n(2− α)− (1− α)z|
2[(1− α) + 2n(2− α)]

≤ |2
n(2− α) + (1− α)z|

2[(1− α) + 2n(2− α)]
≤ 2n(2− α) + (1− α)

2[(1− α) + 2n(2− α)]
=

1

2
, (|z| = 1), (21)

This implies that ∣∣∣∣Rez(2n(2− α))− (1− α)z2

2[(1− α) + 2n(2− α)]

∣∣∣∣ ≤ 1

2
(22)

ie., − 1

2
≤
∣∣∣∣Re z(2n+1)− (1− α)z2

2[(1− α) + 2n(2− α)]

∣∣∣∣ ≤ 1

2
(23)

Hence, we have

min
z∈U

{
Re

z(2n(2− α))− (1− α)z2

2[(1− α) + 2n(2− α)]

}
≥ −1

2

ie., min
z∈U

{
Re

2n(2− α)

2[(1− α) + 2n(2− α)]
(f1 ∗

z

1− z )

}
≥ −1

2

which completes the proof of Theorem 1.3.
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3. Some Applications

Taking n = 0 in Theorem 2.1, we obtain the following:

Corollary 3.1. If the function f(z) defined by (1) is in S̃n(α) then 2−α
6−4α

(f ∗ g)(z) ≺ g(z), (z ∈ U ; g ∈ K(α)) and

Re (f(z)) > −3− 2α

2− α (24)

which is a result of [6].

Taking n = 0 and α = 0 in Theorem 2.1, we obtain the following:

Corollary 3.2. If the function f(z) defined by (1) in S̃n(α) f(z) then 1
3
(f ∗ g)(z) ≺ g(z), (z ∈ U ; g ∈ K(α)) and

Re (f(z)) > −3

2
(25)

which is a result of [7].

Taking n = 1 in Theorem 2.1, we obtain the following:

Corollary 3.3. If the function f(z) defined by (1) in S̃n(α) f(z) then 2−α
5−3α

(f ∗ g)(z) ≺ g(z), (z ∈ U ; g ∈ K(α)) and

Re (f(z)) > −5− 3α

4− 2α
(26)

which is the result generalized by [7].

Taking n = 1 and α = 0 in Theorem 2.1, we obtain the following:

Corollary 3.4. If the function f(z) defined by (1.1) in S̃n(α) f(z) then 2
5
(f ∗ g)(z) ≺ g(z), (z ∈ U ; g ∈ K(α)) and

Re (f(z)) > −5

4
(27)

which is the result generalized by [4].
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