International Journal of Mathematics And its Applications

On a Subordination Associated with a Certain Subclass of Analytic Functions Defined by Salagean Derivatives

R.A.Bello ${ }^{1}$ and T.O.Opoola ${ }^{2 *}$
1 Department of Mathematics and Statistics, College of Pure and Applied Science, Kwara State University, Malete, Kwara State.
2 Department of Mathematics, Faculty of Physical Science, University of Ilorin, Ilorin, Kwara State.

Abstract: In this paper we discuss some subordination results for a subclass of functions analytic in the unit disk U.
Keywords: Subordination, Salagean Derivatives, Subclass of Analytic Functions.
(C) JS Publication.

1. Introduction

Let A be the class of functions $f(z)$ analytic in the unit disk $U=\{z:|z|<1\}$ and let S denote a subclass of A consisting of functions univalent in U and normalized by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

We denote the class of convex functions of order α by $K(\alpha)$, i.e.,

$$
K(\alpha)=\left\{f \in S: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}}{f^{\prime}}\right)>\alpha, z \in U\right\}
$$

Definition 1.1 (Hadamard product or convolution). Given two functions $f(z)$ and $g(z)$, where $f(z)$ is defined as in (1) and $g(z)$ is given by

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

The Hadamard product (or convulation) $f * g$ of $f(z)$ and $g(z)$ is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) \tag{2}
\end{equation*}
$$

Definition 1.2. Let $f(z)$ and $g(z)$ be analytic in the unit disk U. Then $f(z)$ is said to be subordinate to $g(z)$ in U and we write $f(z) \prec g(z), \quad z \in U$.

[^0]if there exists a Schwarz function $\omega(z)$, analytic in U with $\omega(0)=0,|\omega(z)|<1$ such that
\[

$$
\begin{equation*}
f(z)=g(\omega(z)), \quad z \in U \tag{3}
\end{equation*}
$$

\]

In particular, if the function $g(z)$ in univalent in U, then $f(z)$ is surbodinate to $g(z)$ if

$$
\begin{equation*}
f(0)=g(0), f(U) \subseteq g(U) \tag{4}
\end{equation*}
$$

Definition 1.3. A sequence $\left\{C_{n}\right\}_{n=1}^{\infty}$ of complex numbers is said to be a surbodinating factor sequence of $f(z)$ if whenever $f(z)$ of the form (1) is analytic, univalent and convex in U, the surbodination is given by $\sum_{n=1}^{\infty} a_{n} C_{n} z^{n} \prec f(z) z \in U, a_{1}=1$. We have the following theorem

Theorem 1.4 ([1]). The sequence $\left\{c_{k}\right\}_{k=1}^{\infty}$ is a surbodinating factor sequence if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} c_{k} z^{k}\right\}>0 \quad(z \in U) \tag{5}
\end{equation*}
$$

Let

$$
\begin{equation*}
S_{n}(\alpha)=\left\{f \in A: \operatorname{Re}\left(\frac{\left(D^{n+1} f(z)\right.}{D^{n} f(z)}\right)>\alpha, z \in U\right\} \tag{6}
\end{equation*}
$$

Here $D^{n} f(z)$ is the Salagean derivatives, $n=0,1,2, \ldots$ Such that

$$
\begin{aligned}
& D^{o} f(z)=f(z) \\
& D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
& D^{n} f(z)=D\left(D^{n-1} f(z)\right)=z\left[D^{n-1} f(z)\right]^{\prime}
\end{aligned}
$$

therefore,

$$
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}
$$

The class $S_{n}(\alpha)$ was studied by Salagean [2] and Kadioglu [3]. In [3] the following result was established
Theorem $1.5([3]) . f(z) \in S_{n}(\alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}(k-\alpha)\left|a_{k}\right| \leq 1-\alpha \tag{7}
\end{equation*}
$$

where $n \in N, 0 \leq \alpha<1$,
It is natural to consider the class $\widetilde{S}_{n}(\alpha)$ such that

$$
\begin{equation*}
\widetilde{S}_{n}(\alpha)=\left\{f \in A: \sum_{k=2}^{\infty} k^{n}(k-\alpha)\left|a_{k}\right| \leq 1-\alpha\right\} \tag{8}
\end{equation*}
$$

$n=N \cup[0], 0 \leq \alpha<1$,
Remark 1.6 ([4]). If $n=0$ and $\alpha=0$ in $\widetilde{S}_{n}(\alpha)$ we have the class $S_{o}(0)=\left\{f \in A: \sum_{k=2}^{\infty} k\left|a_{k}\right| \leq 1\right\}$ which is the subclass of the class of starlike function.

Remark 1.7 ([5]). If $n=0$ in $\widetilde{S}_{n}(\alpha)$ we have the class $S_{o}(\alpha)=\left\{f \in A: \sum_{k=2}^{\infty}(k-\alpha)\left|a_{k}\right| \leq 1-\alpha\right\}$ which is the subclass of class of starlike function of order α.

Remark 1.8 ([4]). If $n=1$ and $\alpha=0$ in $\widetilde{S}_{n}(\alpha)$ we have the class $S_{1}(0)=\left\{f \in A: \sum_{k=2}^{\infty} k^{2}\left|a_{k}\right| \leq 1\right\}$ which is the subclass of class of convex function.

Remark 1.9 ([5]). If $n=1$ in $\widetilde{S}_{n}(\alpha)$ we have the class $S_{1}(\alpha)=\left\{f \in A: \sum_{k=2}^{\infty} k(k-\alpha)\left|a_{k}\right| \leq 1-\alpha\right\}$ which is the subclass of the class of convex function of order α.

2. Main Result

Our main result in this paper in the following theorem.

Theorem 2.1. Let $f(z) \in \widetilde{S}_{n}(\alpha)$, then

$$
\begin{equation*}
\frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}(f * g)(z) \prec g(z) \tag{9}
\end{equation*}
$$

where $n \in N \cup[0], 0 \leq \alpha<1, g(z)$ is a convex function. and

$$
\begin{equation*}
\operatorname{Re}(f(z))>-\frac{\left.(1-\alpha)+2^{n}(2-\alpha)\right]}{2^{n}(2-\alpha)} \tag{10}
\end{equation*}
$$

The constant factor $\frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}$ cannot be replaced by a larger one
Proof. Let $f(z) \in \widetilde{S}_{n}(\alpha)$ and suppose that $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \in K(\alpha)$ i.e. $g(z)$ is a convex function of order α. Then by definition,

$$
\begin{align*}
\frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}(f * g)_{(z)} & =\frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha]\right)}\left(z+\sum_{k=1}^{\infty} a_{k} b_{k} z^{k}\right) \\
& =\sum_{k=1}^{\infty} \frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right.} a_{k} b_{k} z^{k}, \quad a_{1}=1 \tag{11}
\end{align*}
$$

Hence, by Definition 1.3, to show subordination (9) it is enough to prove that

$$
\begin{equation*}
\left\{\frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]} a_{k}\right\}_{k=1}^{\infty} \tag{12}
\end{equation*}
$$

is a surbodinating factor sequence with $a_{1}=1$. Therefore by Theorem 1.1 , it is sufficient to show that

$$
\begin{equation*}
\operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} \frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]} a_{k} z^{k}\right\}>0, \quad(z \in U) \tag{13}
\end{equation*}
$$

Now,

$$
\begin{align*}
\operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} \frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]} a_{k} z^{k}\right\} & =\operatorname{Re}\left\{1+\frac{2^{n}(2-\alpha) z}{1-\alpha+2^{n}(2-\alpha)}+\frac{2 n(2-\alpha) z}{1-\alpha+2^{n}(2-\alpha)} \times \sum_{k=2}^{\infty} a_{k} z^{k}\right\} \\
& >\operatorname{Re}\left\{1-\frac{2^{n}(2-\alpha) r}{1-\alpha+2^{n}(2-\alpha)}-\frac{1}{1-\alpha+2^{n}(2-\alpha)} \times \sum_{k=2}^{\infty} k^{n}(k-\alpha)\left|a_{k}\right| r\right\} \\
& >\operatorname{Re}\left\{1-\frac{2^{n}(2-\alpha) r}{1-\alpha+2^{n}(2-\alpha)}-\frac{(1-\alpha) r}{1-\alpha+2^{n}(2-\alpha)}\right\} \\
& =1-r>0 \tag{14}
\end{align*}
$$

Since $(|z|=r<1)$. Therefore, we obtain

$$
\operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} \frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]} a_{k} z^{k}\right\}>0, \quad(z \in U)
$$

which is (13) that we are to established. We now show that

$$
\operatorname{Re}(f(z))>-\frac{2(1-\alpha)+2^{n}(2-\alpha)}{2^{n}(2-\alpha)}
$$

Taking $g(z)=\frac{z}{1-z}$ which is a convex function (9) becomes

$$
\frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]} f(z) * \frac{z}{1-z} \prec \frac{z}{1-z}
$$

and note that $f(z) * \frac{z}{1-z}$. Since

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z}{1-z}\right)>-\frac{1}{2}, \quad|z|=r \tag{15}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]} f(z) * \frac{z}{1-z}\right\}>-\frac{1}{2} \tag{16}
\end{equation*}
$$

Hence, we have

$$
\operatorname{Re}(f(z))>-\frac{(1-\alpha)+2^{n}(2-\alpha)}{2^{n}(2-\alpha)}
$$

which is the (10). To show the sharpness of the constant factor $\frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}$ we consider the function:

$$
\begin{equation*}
f_{1}(z)=\frac{z\left(2^{n}(2-\alpha)\right)+(1-\alpha) z^{2}}{2^{n}(2-\alpha)} \tag{17}
\end{equation*}
$$

Applying (10) with $g(z)=\frac{z}{1-z}$ and $f(z)=f_{1}(z)$ we have

$$
\begin{equation*}
\frac{z\left(2^{n}(2-\alpha)\right)+(1-\alpha) z^{2}}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]} \prec \frac{z}{1-z} \tag{18}
\end{equation*}
$$

By using the fact that

$$
\begin{equation*}
|\operatorname{Re}(z)| \leq|z| \tag{19}
\end{equation*}
$$

We show that

$$
\begin{equation*}
\min _{z \in U}\left\{R e \frac{z\left(2^{n}(2-\alpha)\right)+(1-\alpha) z^{2}}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}\right\}=-\frac{1}{2} \tag{20}
\end{equation*}
$$

We have that

$$
\begin{align*}
\left|\operatorname{Re} \frac{z\left(2^{n}(2-\alpha)\right)+(1-\alpha) z^{2}}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}\right| & \leq\left|\frac{z\left(2^{n}(2-\alpha)\right)+(1-\alpha) z^{2}}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}\right| \\
& =\left|\frac{z\left[\left(2^{n}(2-\alpha)\right)+(1-\alpha) z\right]}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}\right|=\frac{\left|z\left[\left(2^{n}(2-\alpha)\right)-(1-\alpha) z\right]\right|}{\left|2\left[(1-\alpha)+2^{n}(2-\alpha)\right]\right|} \\
& \leq \frac{|z| 2^{n}(2-\alpha)-(1-\alpha) z \mid}{\left|2\left[(1-\alpha)+2^{n}(2-\alpha)\right]\right|} \leq \frac{\left|2^{n}(2-\alpha)-(1-\alpha) z\right|}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]} \\
& \leq \frac{\left|2^{n}(2-\alpha)+(1-\alpha) z\right|}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]} \leq \frac{2^{n}(2-\alpha)+(1-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}=\frac{1}{2}, \quad(|z|=1), \tag{21}
\end{align*}
$$

This implies that

$$
\begin{array}{r}
\left|\operatorname{Re} \frac{z\left(2^{n}(2-\alpha)\right)-(1-\alpha) z^{2}}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}\right| \leq \frac{1}{2} \\
\text { ie., }-\frac{1}{2} \leq\left|\operatorname{Re} \frac{z\left(2^{n+1}\right)-(1-\alpha) z^{2}}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}\right| \leq \frac{1}{2} \tag{23}
\end{array}
$$

Hence, we have

$$
\begin{aligned}
\min _{z \in U}\left\{\operatorname{Re} \frac{z\left(2^{n}(2-\alpha)\right)-(1-\alpha) z^{2}}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}\right\} & \geq-\frac{1}{2} \\
\text { ie., } \min _{z \in U}\left\{\operatorname{Re} \frac{2^{n}(2-\alpha)}{2\left[(1-\alpha)+2^{n}(2-\alpha)\right]}\left(f_{1} * \frac{z}{1-z}\right)\right\} & \geq-\frac{1}{2}
\end{aligned}
$$

which completes the proof of Theorem 1.3.

3. Some Applications

Taking $n=0$ in Theorem 2.1, we obtain the following:
Corollary 3.1. If the function $f(z)$ defined by (1) is in $\widetilde{S}_{n}(\alpha)$ then $\frac{2-\alpha}{6-4 \alpha}(f * g)(z) \prec g(z),(z \in U ; g \in K(\alpha))$ and

$$
\begin{equation*}
\operatorname{Re}(f(z))>-\frac{3-2 \alpha}{2-\alpha} \tag{24}
\end{equation*}
$$

which is a result of [6].
Taking $n=0$ and $\alpha=0$ in Theorem 2.1, we obtain the following:
Corollary 3.2. If the function $f(z)$ defined by (1) in $\widetilde{S}_{n}(\alpha) f(z)$ then $\frac{1}{3}(f * g)(z) \prec g(z),(z \in U ; g \in K(\alpha))$ and

$$
\begin{equation*}
\operatorname{Re}(f(z))>-\frac{3}{2} \tag{25}
\end{equation*}
$$

which is a result of [7].

Taking $n=1$ in Theorem 2.1, we obtain the following:
Corollary 3.3. If the function $f(z)$ defined by (1) in $\widetilde{S}_{n}(\alpha) f(z)$ then $\frac{2-\alpha}{5-3 \alpha}(f * g)(z) \prec g(z),(z \in U ; g \in K(\alpha))$ and

$$
\begin{equation*}
\operatorname{Re}(f(z))>-\frac{5-3 \alpha}{4-2 \alpha} \tag{26}
\end{equation*}
$$

which is the result generalized by [7].
Taking $n=1$ and $\alpha=0$ in Theorem 2.1, we obtain the following:
Corollary 3.4. If the function $f(z)$ defined by (1.1) in $\widetilde{S}_{n}(\alpha) f(z)$ then $\frac{2}{5}(f * g)(z) \prec g(z),(z \in U ; g \in K(\alpha))$ and

$$
\begin{equation*}
\operatorname{Re}(f(z))>-\frac{5}{4} \tag{27}
\end{equation*}
$$

which is the result generalized by [4].

References

[^1]
[^0]: * E-mail: opoolato@unilorin.edu.ng

[^1]: [1] H.S.Wilf, Surbodination Factor Sequence for some convex maps circle, Proceeding of the American Mathematical Society, 12(1961), 689-693.
 [2] G.S.Salagean, Subclass of univalent functions, Lecture Note in Mathematics, Springer, Berlin, (1983).
 [3] E.Kedioglu, On Subclass of univalent functions with negative coefficients, Applied Mathematics and computation, 146(2003), 351-358.
 [4] Selveraj and K.R.Karthikeyan, Certain Subordination results for a class of analytic function defined by generalized integral operator, Int. J. Comput. Math. Sci., 2(4)(2008), 166-169.
 [5] H.Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1)(1975), 109-116.
 [6] Rohisan M.Ali, V.Ravichandran and N.Senivasagan, Subordination by Convex Functions, International Journal of Mathematics and Mathematical Science, 2006(2006), 1-6.
 [7] E.A.Oyekan and T.O.Opoola, On a subordination result for analytic function defined by convolution, Annales Universitatis Mariae Curie-Sklodowska Lublin-Polonia, LXVIII(1)(2014).

