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1. Introduction and Preliminaries

Fixed point theory is one of the out standing subfields of non linear functional analysis. It has been used in research

area of mathematics and non linear sciences. In 1922 Banach [3] proved a fixed point theorem for contraction mappings

is one of the pivotal results in analysis. This theorem which has been extended and generalized by several authors. In

1973, Geraghty [7] introduced and studied a generalization of Banach contraction mapping principle in complete metric

spaces by taking the class of functions Γ = {β : [0,∞)→ [0,∞)|β (tn)→ 1⇒ tn → 0}. Throughout this paper, Γ =

{β : [0,∞)→ [0,∞)|β (tn)→ 1⇒ tn → 0}. Ψ =
{
ψ : R+ → R+ | ψ (t) is a decreasing an ψ (t) = 0⇔ t = 0

}
. F (f) the set

of all fixed points of f .

Definition 1.1 ([7]). Let (X, d) be a metric space. A selfmap f : X → X is said to be a Geraghty contraction if there exists

β ∈ Γ such that

d (fx, fy) ≤ β (d (x, y)) d (x, y) for all x, y ∈ X. (1)

Theorem 1.2 ([7]). Let (X, d) be a complete metric space. Let f : X → X be a self map. If there exists β ∈ Γ such that

d (fx, fy) ≤ β (d (x, y)) d (x, y) for all x, y ∈ X, (2)

then f has a unique fixed point.
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Definition 1.3. A selfmap f : X → X is said to be a generalized Geraghty contraction if there exists β ∈ Γ satisfying, for

all x, y ∈ X

d (fx, fy) ≤ β (M (x, y))M (x, y) ,

where

M (x, y) = max

{
d (x, y) , d (x, fx) , d (y, fy) ,

1

2
[d (x, fx) + d (y, fx)]

}
.

The following class of functions namely the class of altering distance functions which we denote by Ψ1 was introduced by

Khan, Swaleh and Sessa [11] as follows. Ψ =
{
ψ : R+ → R+ | ψ is non decreasing, continuous and ψ (t) = 0⇔ t = 0

}
. The

altering distance functions were used by many researchers [6, 12] to obtain fixed points. In 1970, Takahashi [13] introduced

the notation of convexity in metric spaces. Guay, Singh and Whitfield [8] and many authors [1, 2] have studied fixed point

theorems in convex metric spaces.

Definition 1.4 ([13]). Let (X, d) be a metric space. A continuous mapping W : X×X× [0.1] is said to be a convex structure

on X for all x, y ∈ Xand λ ∈ [0, 1] such that

d (u,W (x, y, λ)) ≤ λd (u, x) + (1− λ) d (u, x) holds for all u ∈ X. (3)

The metric space (X, d) together with a convex structure W is called a convex metric space, which is denoted by (X, d,W ) .

Note: Normed linear spaces are examples of convex matric spaces.

Definition 1.5 ([13]). A subset K of a convex metric space (X, d,W ) is said to be a convex set if W (x, y, λ) ∈ K for all x, y ∈

K and λ ∈ [0, 1] .

Definition 1.6. A set M is called q-star shaped with q ∈ M if the segment [q, x] = {W (q, x, λ) |0 ≤ λ ≤ 1} is contained in

M for all x ∈M.

Definition 1.7 ([8]). A convex metric spac (X, d,W ) is said to satisfy property (I) if for all x, y, q ∈ Xand λ ∈ [0, 1],

d (W (x, q, λ) , W (y, q, λ) ≤ λd (x, y) .

Definition 1.8. For a non-empty subset M of a metric space (X, d) and x ∈ X, an element y ∈ M is said to be a best

approximant of x in M or a best M-approximant to x if d (x, y) = dist (x,M) = inf {d (x, y) : y ∈M} . The set of all best

M-approximants to x is denoted by PM (x).

Definition 1.9. For a convex subset M of a convex metric space (X, d,W ) a mapping f : M → X is said to be affine if for

all x, y ∈M, f (W (x, y, λ)) = W (fx, fy, λ) for all λ ∈ [0, 1] .f is said to be affine with respect to q ∈M if f (W (x, q, λ)) =

W (fx, fq, λ) for all x ∈M and λ ∈ [0, 1].

Suppose M is a nonempty subset of a metric space (X, d) and f, T are self mappings of M. A point x ∈ M is a common

fixed(coincidence) point of f and T if x = fx = Tx (fx = Tx).

Definition 1.10. The mappings f, T : M → M are said to satisfy property (P) in M if d (fxn, Txn) → 0 implies

d (f (Txn) , T (fxn))→ 0 for any sequence {xn} in M.

Definition 1.11 ([9]). A pair (f, T ) of self mappings of a metric space (X, d) is said to be compatible, if

d (f (Txn) , T (fxn))→ 0 whenever xn is a sequence in X such that Txn, fxn → z ∈ X.
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Definition 1.12 ([10]). A pair (f, T ) of self mappings of a metric space (X, d) is said to be weakly compatible if they

commute at their coincidence points. i.e., if fTx = Tfx whenever fx = Tx.

In 2013, Chandok and Narang [5] proved the following result.

Theorem 1.13 ([5]). Let M be a nonempty closed subset of a metric space (X, d). Let f, T : M →M be self mappings,

q ∈ F (f) and T (M\ {q}) ⊂ f (M) \ {q} .

Suppose that there exist k ∈ (0, 1) such that

d (Tx, Ty) ≤ kmax

{
d (fx, fy) , d (fx, Tx) , d (fy, Ty) ,

1

2
[d (fx, Ty) + d (fy, Ty)]

}

for all x, y ∈M .

If further, f and T are continuous, cl [T (M\ {q})] is complete and f and T are weakly compatible on M\ {q}, then

F (f)
⋂
F (T ) is a singleton. The following Lemma, which we use in the next Section, can be easily established.

Lemma 1.14 ([4]). Let (X, d) be a metric space. Let {xn} sequence in X such that d (xn+1, xn) → 0 as n → ∞. If {xn}

not a Cauchy sequence then there exists an ε > 0 and sequences of positive integers {mk} and {nk} with nk > mk > k and

d (xmk, xnk) > ε. For each k > 0, corresponding to mk we can choose nk to be the smallest integer such that d (xmk, xnk) > ε

and d (xmk, xnk−1) ≤ ε. It can be shown that the following identities are satisfied:

(1) lim
k→∞

d (xnk−1, xmk+1) = ε,

(2) lim
k→∞

d (xnk, xmk) = ε,

(3) lim
k→∞

d (xnk−1, xmk) = ε,

(4) lim
k→∞

d (xnk, xmk+1) = ε.

2. Main Results

Now we prove the existence of common fixed points for generalized Geraghty contractions in complete metric spaces, with

property (P), under the influence of altering distances.

Theorem 2.1. Let M be a nonempty closed subset of a metric space (X, d). Let f, T : M →M be self mappings, q ∈ F (f)

and T (M\ {q}) ⊂ f (M) \ {q}. Suppose that there exist β ∈ Γ and ψ ∈ Ψ such that for all x, y ∈M

ψ (d (Tx, Ty)) ≤ β (ψ (M (x, y)))ψ (M (x, y)) , (4)

where M (x, y) = max
{
d (fx, fy) , d (fx, Tx) , d (fy, Ty) , 1

2
[d (fx, Ty) + d (fy, Tx)]

}
. Let x0 ∈ M\ {q}. Then {fxn} is a

Cauchy sequence in M\ {q} where fxn = Txn−1 for n = 1, 2, 3, . . . .

If further, f and T are continuous, cl [T (M\ {q})] is complete and f and T satisfy property (P) then F (f) ∩ F (T ) is

singleton.
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Proof. Let x0 ∈ M\ {q}. Since T (M\ {q}) ⊂ f (M) \ {q} , we can find x1 ∈ M\ {q} such that y1 = fx1 = Tx0 with

y1 6= q and we can find x2 ∈ M\ {q} such that y2 = fxn = Tx1 with y2 6= q. Similarly we can find xn ∈ M\ {q} such that

yn = fxn = Txn−1 with yn 6= q for n ≥ 1. Now,

ψ (d (fxn+1, fxn)) = ψ (d (Txn, Txn−1)) ≤ β (ψ (M (xn, xn−1)))ψ (M (xn, xn−1)) (5)

where

M (xn, xn−1) = max

{
d (fxn, fxn−1) , d (fxn, Txn) , d (fxn−1, Txn−1) ,

1

2
[d (fxn, Txn−1) + d (fxn−1, Txn)]

}
= max

{
d (fxn, fxn−1) , d (fxn, fxn+1) , d (fxn−1, fxn) ,

1

2
[d (fxn, fxn) , d (fxn−1, fxn+1)]

}
= max {d (fxn, fxn−1) , d (fxn+1, fxn)}

Suppose d (fxn, fxn−1) < d (fxn+1, fxn) for some n, then from (5)

ψ (d (fxn+1, fxn)) ≤ β (ψ (d (fxn+1, fxn)))ψ (d (fxn+1, fxn)) < ψ (d (fxn+1, fxn)) ,

a contradiction. Therefore d (fxn+1, fxn) ≤ d (fxn, fxn−1), which implies that ψ (d (fxn+1, fxn−1)) ≤ ψ (d (fxn, fxn−1)).

Thus {d (fxn+1, fxn−1)} is a decreasing sequence and converges to r(say) and {ψ (d (fxn+1, fxn))} is a decreasing sequence

and converges to s(say). From (5), we have

ψ (d (fxn+1, fxn)) ≤ β (ψ (d (fxn, fxn−1)))ψ (d (fxn, fxn−1)) .

Suppose β (ψ (d (fxn, fxn−1))) → 1 then by hypothesis ψ (d (fxn, fxn−1)) → 0, which implies that s = 0. Now r ≤

d (fxn, fxn+1) implies ψ (r) ≤ ψ (d (fxn, fxn+1)) → 0. Hence ψ (r) ≤ 0 so that r = 0. Hence without loss of generality we

may suppose that β (ψ (d (fxn, fxn−1))) 91, then there exists 0 < γ < 1 such thatβ (ψ (d (fxn, fxn−1))) < r for infinitely

many n. Therefore ψ (d (fxn+1, fxn)) ≤ γψ (d (fxn, fxn−1)) for infinitely many n. On letting n→∞, we get s ≤ γs which

implies that s = 0. Therefore r = 0. Now we show that {fxn} is Cauchy. Suppose that {yn} = {fxn} is not Cauchy.

Then by Lemma 1.14 there exists an ε > 0 and sequences of positive integers nk > mk > k and d (ymk, ynk) > ε and

d (ymk, ynk−1) ≤ ε. Then the following identities can be established.

(1) lim
k→∞

d (ymk, ynk) = ε,

(2) lim
k→∞

d (ymk+1, ynk−1) = ε,

(3) lim
k→∞

d (ymk, ynk−1) = ε, and

(4) lim
k→∞

d (ymk+1, ynk) = ε.

we have

ψ (∈) ≤ ψ (d (ymk, ynk)) = ψ (d (fxmk, fxnk)) = ψ (d (Txmk−1, Txnk−1)) ≤ β (ψ (M (xmk−1, xnk−1)))ψ (M (xmk−1, xnk−1))

where

M (xmk−1, xnk−1) = max {d (fxmk−1, fxnk−1) , d (fxmk−1, Txmk−1) , d (fxnk−1, Txnk−1) ,

1

2
[d (fxmk−1, Txnk−1) + d (fxnk−1, Txmk−1)]

}
= max

{
d (ymk−1, ynk−1) , d (ymk−1, ymk) , d (ynk−1, ynk) ,

1

2
[d (ymk−1, ynk) , d (ymk−1, ymk)]

}
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Now β (ψ (M (xmk−1, xnk−1))) → 1 implies ψ (M (xmk−1, xnk−1)) → 0. From (??), we have ψ (ε) = 0, a contradiction.

Hence β (ψ (M (xmk−1, xnk−1))) 9 1. Then there exists 0 < γ < 1 such that β (ψ (M (xmk−1, xnk−1))) < γ for infinitely

many k. Then from (??) we have,

ψ (∈) ≤ ψ (d (ymk, ynk)) ≤ γψ (M (xmk−1, xnk−1)) . (6)

On letting k →∞ in (6), since d (ymk, ynk) > ε we have,

0 < ψ (∈ +0) = lim
k→∞

ψ (d (ymk, ynk)) ≤ γψ (M (xmk−1, xnk−1)) ≤ γψ (∈ +0) ,

a contradiction. Therefore {fxn} is a Cauchy sequence in M\ {q}. Hence {Txn−1} is a Cauchy sequence in M\ {q}.

Therefore Txn−1 → z (say) ∈ cl [T (M\ {q})] and consequently fxn → z. Now d (fxn, Txn) = d (fxn, fxn+1) → 0 as

n → ∞. From property(P) we have d (Tfxn, fTxn+1) → 0. Since f and T are continuous so that d (Tz, fz) = 0. Hence

Tz = fz. Therefore z is a coincidence points of f and T. Again by property(P), we have fTz = Tfz. Now

ψ (d (Tfz, Tz)) ≤ β (ψ (M (fz, z)))ψ (M (fz, z))

where

M (fz, z) = max

{
d (ffz, fz) , d (ffz, Tfz) , d (fz, Tz) ,

1

2
[d (ffz, Tz) + d (fz, Tfz)]

}
= d (Tfz, Tz)

Therefore, from (??) we have,

ψ (d (Tfz, Tz)) ≤ β (ψ (d (Tfz, Tz)))ψ (d (Tfz, Tz)) ,

which implies that ψ (d (Tfz, Tz)) = 0. Hence Tfz = Tz. Therefore Tfz = ffz = Tz = fz. Let z and w be two fixed

points of f and T with w 6= z. Consider ψ (d (Tz, Tw)) ≤ β (ψ (M (z, w)))ψ (M (z, w)), which implies that ψ (d (Tz, Tw)) ≤

β (ψ (d (z, w)))ψ (d (z, w)) < ψ (d (z, w)), a contradiction. Therefore F (f) ∩ F (T ) is singleton.

Note: We observe that Theorem 1.13 follows from Theorem 2.1 by taking ψ (T ) = kt for t > 0.

Theorem 2.2. Let M be a nonempty closed subset of a metric space (X, d). Let f, T : M →M be a self mappings, q ∈ F (f)

and T (M\ {q}) ⊂ f (M) \ {q}. Suppose that there exist β ∈ Γ and ψ ∈ Ψ and a positive integer n such that for all x, y ∈M

ψ (d (Tnx, Tny)) ≤ β (ψ (M1 (x, y)))ψ (M1 (x, y)) , (7)

where M1 (x, y) = max
{
d (fx, fy) d (fx, Tnx) , d (fy, Tny) , 1

2
[d (fx, Tny) + d (fy, Tnx)]

}
. Let x0 ∈ M\ {q}. Then {fxm}

is a Cauchy sequence in M\ {q} where fxm = Tnxm−1, for m = 1, 2, 3, . . . .

If further, f and Tn are continuous, cl [T (M\ {q})] is complete, and f and Tn satisfy property (P) then F (f) ∩ F (Tn) is

singleton.

Proof. By using the hypotheses T (M\ {q}) ⊂ f (M) \ {q} we can prove Tn (M\ {q}) ⊂ f (M) \ {q} by induction n.

Therefore the proof of Theorem 2.2 follows from Theorem 2.1 by replacing T with Tn.

Now we extend the existence of common fixed points for generalized Geraghty contractions in convex metric spaces with

property (P) under the influence of altering distances.
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Theorem 2.3. Let M be a nonempty closed subset of a convex metric space (X, d,W ) with property (I). Let f, T : M →M

be a self mappings. Suppose that M is q-star shaped with q ∈ F (f) and f is continuous and affine with respect to q. Define

Tλ : M → M by Tλ (x) = W (Tx, q, λ) , 0 < λ < 1. Suppose f and Tλ have property (P) and cl [T (M\ {q})] is complete.

cl [T (M)] ⊂ f (M) \ {q} , T is continuous. Suppose that there exist β ∈ Γ and ψ ∈ Ψ such that for all x, y ∈M

ψ (d (Tx, Ty)) ≤ β (ψ (M2 (x, y)))ψ (M3 (x, y)) , (8)

where

M2 (x, y) = max

{
d (fx, fy) , d (fx, [Tx, q]) , d (fy, [Ty, q]) ,

1

2
[d (fx, [Ty, q]) + d (fy, [Tx] q)]

}
and

M3 (x, y) = max

{
d (fx, fy) , d (fx, Tλx) , d (fy, Tλy) ,

1

2
[d (fx, Tλy) + d (fy, Tλx)]

}
.

Let x0 ∈M\ {q}. Then for 0 < λ < 1, f and Tλ have unique fixed point xλ. i.e., F (f) ∩ F (Tλ) is singleton.

Proof. Suppose 0 < λ < 1, f and define Tλx = W (Tx, q, λ) for all x ∈ M . Let x0 ∈ M\ {q}. Since Tλ (M\ {q}) ⊂

f (M) \ {q}. We can find x1 ∈ M\ {q} such that y1 = fx1 = Tλx0 with y1 6= q and we can find x2 ∈ M\ {q} such that

y2 = fx2 = Tλx1 with y2 6= q. Similarly we can find xn ∈ M\ {q} such that yn = fxn = Tλxn−1 with yn 6= q for n ≥ 1.

Now

ψ (d (fxn+1, fxn)) = ψ (d (Tλxn, Tλxn−1)) = ψ (W (Tn, q, λ) ,W (Tn−1, q, λ))

≤ ψ (λd (Txn, Txn−1)) ≤ ψ (d (Txn, Txn−1))

≤ β (ψ (M2 (xn, xn−1)))ψ (M3 (xn, xn−1)) (9)

where

M2 (xn, xn−1) = max

{
d (fxn, fxn−1) , d (fxn, [Txn, q]) ,d (fxn−1, [Txn−1, q]) ,

1

2
[d (fxn, [Txn−1, q]) + d (fxn−1, [Txn, q])]

}

and

M3 (xn, xn−1) = max {d (fxn, fxn−1) , d (fxn, Tλxn) , d (fxn, Tλxn) , d (fxn−1, Tλxn−1) ,

1

2
[d (fxn, Tλxn−1) + d (fxn−1, Tλxn)]}

= max {d (fxn, fxn−1) , d (fxn, fxn+1)}

Suppose d (fxn, fxn−1) < d (fxn+1, fxn) for some n, then from (9)

ψ (d (fxn+1, fxn)) ≤ β (ψ (M2 (fxn, fxn−1)))ψ (d (fxn+1, fxn)) < ψ (d (fxn+1, fxn)) ,

a contradiction. Therefore d (fxn+1, fxn) ≤ d (fxn, fxn−1) for all n, which implies that ψ (d (fxn+1, fxn)) ≤

ψ (d (fxn, fxn−1)) for all n. Thus {d (fxn+1, fxn)} is a decreasing sequence and converges to r (say) and {ψ (d (fxn+1, fxn))}

is a decreasing sequence and converges to s (say). We know that r ≤ d (fxn, fxn+1) which implies that ψ (r) ≤

ψ (d (fxn, fxn+1)) so that ψ (r) ≤ r. Now d (fxn, fxn−1) ≤ M2 (xn, xn−1) so that ψ (d (fxn, fxn−1)) ≤ ψ (M2 (xn, xn−1)).

Suppose that β (ψ (M2 (xn, xn−1)))→ 1 implies ψ (M2 (xn, xn−1))→ 0 which implies that ψ (d (fxn, fxn−1))→ 0. Therefore

s = lim
n→∞

ψ (d (fxn, fxn−1)) = 0. Therefore ψ (r) ≤ s implies ψ (r) = 0 so that r = 0.
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Now suppose that β (ψ (M2 (xn, xn−1))) 9 1, that there exists 0 < α < 1 such that β (ψ (M2 (xn, xn−1))) < α for infinitely

many n. Therefore

ψ (r) ≤ s ≤ ψ (d (fxn, fxn+1)) ≤ β (ψ (M2 (xn, xn−1)))ψ (d (fxn, fxn−1))

≤ αψ (d (fxn, fxn−1))

On letting n→∞, we get s ≤ αs which implies that s = 0. Therefore r = 0. Now we show that {fxn} is Cauchy. Suppose

{yn} = {fxn} is not Cauchy. Then by Lemma 1.14 there exists an ε > 0 and sequences of positive integers nk > mk > k

and d (ymk, ynk) >∈ and d (ymk, ynk−1) ≤ ε. We have

ψ (∈) ≤ ψ (d (ymk, ynk)) = ψ (d (fxmk, fxnk)) = ψ (d (Tλxmk−1, Tλxnk−1))

= ψ (d (W (Txmk−1, q, λ) ,W (Txnk−1, q, λ)))

≤ ψ (λd (Txmk−1, Txnk−1))

≤ ψ (d (Txmk−1, Txnk−1))

≤ β (ψ (M2 (xmk−1, xnk−1)))ψ (M3 (xmk−1, xnk−1)) (10)

where

M2 (xmk−1, xnk−1) = max {d (fxmk−1, fxnk−1) , d (fxmk−1, [Txmk−1, q]) , d (fxnk−1, [Txnk−1, q]) ,

1

2
[d (fxmk−1, [Txnk−1, q]) + d (fxnk−1, [Txmk−1, q])]} and

M3 (xmk−1, xnk−1) = max {d (fxmk−1, fxnk−1) , d (fxmk−1, Tλxmk−1) , d (fxnk−1, Tλxnk−1) ,

1

2
[d (fxmk−1, Tλxnk−1) + d (fxnk−1, Tλxmk−1)]}

= max

{
d (ymk−1, ynk−1) , d (ymk−1, ymk) , d (ynk−1, ynk) ,

1

2
[d (ymk−1, ynk) + d (ynk−1, ymk)]

}
.

Now β (ψ (M2 (xmk−1, xnk−1))) → 1 implies ψ (M2 (xmk−1, xnk−1)) → 0, which implies that d (ymk−1, ynk−1) → 0 so

that ε = 0, a contradiction. Now suppose that β (ψ (M2 (xmk−1, xnk−1))) 9 1, that there exists 0 < γ < 1 such that

β (ψ (M2 (xmk−1, xnk−1))) < γ for infinitely many k. Therefore

≤ ψ (d (ymk, ynk)) ≤ γψ (M3 (xmk−1, xnk−1)) ≤ γψ (d (ymk−1, ynk−1)) . (11)

On letting k →∞ in (11), we have

ψ (∈ +0) = lim
k→∞

ψ (d (ymk, ynk)) ≤ γlim ψ (M3 (xmk−1, ynk−1)) .

a contradiction. Therefore {fxn} is Cauchy sequence in M\ {q}. Hence {Tλxn−1} is Cauchy sequence in M\ {q}. Therefore

Tλxn−1 → z (say) ∈ cl [T (M\ {q})] and consequently fxn → z. Now d (fxn, Tλxn) = d (fxn, fxn+1)→ 0 as n→∞. From

property(P) we have d (Tλfxn, fTλxn) → 0. Since f and Tλ are continuous so that d (Tλz, fz) → 0. Hence Tλz = fz.

Therefore z is a coincidence point of f and Tλ. Again by property (P), we have fTλz = Tλfz. Now

ψ (d (Tfz, Tz)) ≤ β (ψ (M2 (fz, z)))ψ (M3 (fz, z)) (12)
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where

M (fz, z) = max

{
d (ffz, fz) , d (ffz, Tλfz) , d (fz, Tλfz) ,

1

2
[d (ffz, Tλfz) + d (fz, Tλfz)]

}
= d (Tλfz, Tλfz) .

Therefore, from (12) we have,

ψ (d (Tλfz, Tλfz)) = ψ (d (W (Tλfz, q, λ) ,W (Tλz, q, λ)))

≤ ψ (λd (Tfz, Tz))

≤ ψ (d (Tfz, Tz))

≤ β (ψ (M2 (fz, z)))ψ (M3 (fz, z))

= β (ψ (M2 (fz, z)))ψ (d (Tλfz, Tλz)) ,

which implies that ψ (d (Tλfz, Tλfz)) = 0. Hence Tλfz = Tλz. Therefore Tλfz = ffz = Tλz = fz. Suppose z and w are

two fixed points of f and Tλ with w 6= z. Consider

ψ (d (z, w)) = ψ (d (fz, fw)) = ψ (d (Tλz, Tλw)) ≤ ψ (λd (Tz, Tw))

≤ ψ (d (Tz, Tw))

≤ β (ψ (M2 (z, w)))ψ (M3 (z, w))

< ψ (M3 (z, w)) = ψ (d (z, w)) ,

a contradiction. Therefore F (f)
⋂
F (Tλ) is singleton.

Open Problem 2.4. If f and T have property(P) then is it true that f and Tλ have property(P)? (Here we observe that

if {xn} is such that d (fxn, Txn)→ 0 then d (fTλxn, Tλfxn)→ 0).

Open Problem 2.5. If p is a common fixed point of f and T then is it true that pλ = W (p, q, λ) a fixed point of f and Tλ?

(We observe that pλ is a fixed point of f, since f is affine with respect to q. i.e., f (pλ) = f (W (p, q, λ)) = W (fp, fq, λ) =

W (p, q, λ) = pλ).
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