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1. Introduction

Let the transforms

∂n =

n∑
k=1

anksk (1)

σn =

n∑
k=1

bnksk (2)

be two regular methods of summability. Then both transform of a sequence {sn} is given by

tn =

n∑
p=1

anpσp =

n∑
p=1

n∑
k=1

anpbpksk, (3)

the sequence {sn} is said to be summable tn to the sum s, if

lim
n→∞

tn = s (4)

Let s(t) ∈ C2π be a 2π-periodic analog signal whose Fourier trigonometric expansion be given by

s (t) ∼ 1

2
a0 +

∞∑
n=1

(an cosnt+ bn sinnt) =

∞∑
n=0

An(t) (5)

and let {sn(t)} be the sequence of partial sum of (5). Let the (E, 1) and (C, 2) transform for the sequence {sn} be defined

by

E1
n =

1

2n

n∑
k=0

(n
k

)
sk(t), (6)
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C2
n =

2

(n+ 1) (n+ 2)

n∑
k=0

(n− k + 1)sk(t) (7)

The product (C, 2)(E, 1) transform is given by

tn (s, t) =
2

(n+ 1) (n+ 2)

n∑
k=0

(n− k + 1)
1

2k

k∑
v=0

(
k

v

)
sv(t) (8)

The sequence {sn} is said to be (E, 1)(C, 2) to the sum s, if

lim
n→∞

tn(s; t) = s (9)

2. Regularity Condition

tn (s, t) =
2

(n+ 1) (n+ 2)

n∑
k=0

(n− k + 1)
1

2k

k∑
v=0

(
k

v

)
sv(t) =

∞∑
k=0

Cn,ksk, (10)

where

Cn,k =


(n−k+1)21−k

(n+1)(n+2)

k∑
v=0

(
n
v

)
, k ≤ n;

0, k > n.

(11)

Now

(1)
∞∑
k=0

|Cn,k| =
n∑
k=0

∣∣∣∣ (n−k+1)21−k

(n+1)(n+2)

k∑
v=0

(
k
v

)∣∣∣∣ = 1

(2) Cn,k =
(

1
n+1

)
(1)→ 0 as n→∞ for fixed k

(3)
∞∑
k=0

Cn,k = 1

Thus (C,2)(E,1) method is regular. Singh [7] defined the space Hα by

Hα = {s (t) ∈ C2π : |s (t1)− s (t2)| = K (|t1 − t2|α)} (12)

The norm ||.||α by

||s||α = ||s||c + sup
t1,t2

{∆αs (t1, t2)} (13)

Where

||s||c = sup
0=t=2π

|s (t) |

∆αs (t1, t2) =
|s (t1)− s (t2)|
|t1 − t2|α

, t1 6= t2 (14)

And choosing ∆0s (t1, t2) = 0. The element of the space Hα are called Holder continuous functions. If D is the collection of

all differentiable functions defined on [π, π] then C2π ⊇ Hβ ⊇ Hα ⊇ D for 0 ≤ β < α ≤ 1.

Hα = {s (t) ∈ C2π : |s (t1)− s (t2)| = K|t1 − t2|α, 0 < α ≤ 1} (15)

is Banach space and the metric induced by the norm ||.||α on Hα is said to be Holder metric. We write

∅t1 (t) = s (t1 + t) + s (t1 − t)− 2s(t1) (16)

Kn (t) =
1

p (n + 1) (n + 2)

n∑
k=0

{
(n− k + 1)

2k

k∑
v=0

[(
k

v

)
sin
(
v + 1

2

)
t

sin
(
t
2

) ]}
(17)
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3. Known Result

Singh and Mahajan [7] established the following theorems:

Theorem 3.1. Let w(t) defined in (12) be such that

∫ π

t

w(u)

u2
du = O {H (t)} , H(t) ≥ 0 (18)

∫ t

0

H (u) du = O {tH (t)} , as t→ 0+ (19)

Then for 0 ≤ β < η ≤ 1 and s ∈ Hw we have

‖tn (s; t1)− s‖w∗ = O

{(
(n+ 1)−1H

(
π

n+ 1

))1− β
η

}
(20)

Theorem 3.2. Let w(t) defined in (12) and for 0 ≤ β < η ≤ 1 and s ∈ Hw, we have

‖tn (s; t1)− s‖w∗ = O

(w (πn + 1
))1− β

η
+

(
(n+ 1)−1

n+1∑
k=1

w

(
1

K + 1

) )1− β
η

 (21)

4. Main Result

In this paper we proved the following theorems:

Theorem 4.1. Let for 0 ≤ β < α ≤ 1 and s ∈ Hα, then

‖tn (s; t1)− s‖β = O
[
(n+ 1)−α+β log (n+ 1)

β
α

]
(22)

5. Lemma

For the proof of our theorems following lemmas are required.

Lemma 5.1 ([7]). Let ∅t1 (t) be defined in (16) then for s ∈ Hα and 0 < α ≤ 1 we have

|∅t1 (t)− ∅t2 (t) | = 4K (|t1 − t2|α) (23)

|∅t1 (t)− ∅t2 (t) | = 4K (|t|α) (24)

Lemma 5.2 ([2]). For 0 ≤ t ≤ π
n+1

, sinnt ≤ n sin t, we have

|Kn (t) | = O(n+ 1) (25)

Lemma 5.3 ([2]). For π
n+1
≤ t ≤ π, sin t

2
≥ t

π
and sinnt ≤ 1, we have

|Kn (t) | = O

(
1

t

)
(26)
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6. Proof of the Theorem

Proof of the Theorem 4.1: BY Zygmund [1], we have

sn (t1)− s =
1

2π

∫ π

0

∅t1 (t)
sin
(
n+ 1

2

)
t

sin t
2

dt (27)

The (E, 1) transform is given by

E1
n (t1)− s =

1

π2n+1

∫ π

0

∅t1 (t)

{
n∑
k=0

(n
k

) sin
(
k + 1

2

)
t

sin
(
t
2

) }
dt (28)

The (C, 2)(E, 1) transform is given by

|tn (s; t1)− s| = 1

p (n + 1) (n + 2)

n∑
k=0

{
(n− k + 1)

2k

∫ p

0

∅t1 (t)

sin t
2

[
k∑
v=0

(
k

v

)
sin

(
v +

1

2

)
t

]
dt

}
=

∫ π

0

∅t1 (t)Kn (t) dt (29)

Now

En (t) =

∫ π

0

∅t1 (t)Kn (t) dt

En (t1, t2) = |En (t1)− En (t2)| =

(∫ π
n+1

0

+

∫ π

π
n+1

)
|∅t1 (t)− ∅t2 (t)

∣∣ |Kn (t)
∣∣ dt

= I1 + I2 (30)

Now

I1 =

∫ π
n+1

0

|∅t1 (t)− ∅t2 (t)
∣∣ |Kn (t)

∣∣ dt
Using Lemma 5.2 and Equation (24)

I1 = O (n+ 1)

∫ π
n+1

0

tαdt

= O (n+ 1)

(
1

(n+ 1)α+1

)
= O

(
(n+ 1)−α

)
(31)

Now

I2 =

∫ π

π
n+1

|∅t1 (t)− ∅t2 (t)
∣∣ |Kn (t)

∣∣ dt
Using Lemma 5.3 and Equation (24)

I2 = O

∫ π

π
n+1

tα
(

1

t

)
dt

I2 = O
(
(n+ 1)−α

)
(32)

Again

I1 =

∫ π
n+1

0

|∅t1 (t)− ∅t2 (t)
∣∣ |Kn (t)

∣∣ dt
= O (|t1 − t2|α)

∫ π
n+1

0

|Kn (t) | dt

= O (|t1 − t2|α (n+ 1)) (33)
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Now

I2 =

∫ π

π
n+1

|∅t1 (t)− ∅t2 (t)
∣∣ |Kn (t)

∣∣ dt
= O (|t1 − t2|α)

∫ π

π
n+1

|Kn (t) | dt

= O (|t1 − t2|α)

∫ π

π
n+1

1

t
dt

= O (|t1 − t2|αlog (n+ 1) ) (34)

Now

Ir = Ir
1− β

α Ir
β
α , r = 1, 2 (35)

From (31) and (33),

I1 = O

[{
(n+ 1)−α

}1− β
α (|t1 − t2|α (n+ 1))

β
α

]
= O

[
(n+ 1)−α+β |t1 − t2|β (n+ 1)

β
α

]
= O

[
(n+ 1)−α+β+

β
α |t1 − t2|β

]
(36)

From (32) and (34),

I2 = O

[{
(n+ 1)−α

}1− β
α (|t1 − t2|αlog (n+ 1) )

β
α

]
= O

[
(n+ 1)−α+β |t1 − t2|β log (n+ 1)

β
α

]
(37)

From (36) and (37), we have

|s (t1)− s (t2)| = O
[
(n+ 1)−α+β+

β
α |t1 − t2|β

]
+O

[
(n+ 1)−α+β |t1 − t2|β log (n+ 1)

β
α

]
= O

[
(n+ 1)−α+β |t1 − t2|β log (n+ 1)

β
α

]

From (14)

∆βs (t1, t2) =
|s (t1)− s (t2)|
|t1 − t2|β

, t1 6= t2

= O
[
(n+ 1)−α+β log (n+ 1)

β
α

]
(38)

Now

‖s‖c = O
(
(n+ 1)−α

)
(39)

Combining (38) and (39)

‖tn (s; t1)− s‖β= O
[
(n+ 1)−α+β log (n+ 1)

β
α

]
This completes the proof of Theorem 4.1.
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